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Supplementary Fig. 1 The fabrication process and characterization of the basic

properties of composite membranes.

a, Fabrication process of CFO@BTO core-shell particles and

CFO@BTO/P(VDF-TrFE) membrane. b, SEM images of 2 CSCM, CSCM and 1/2

CSCM. An enlarged view of the interior of CSCM is shown at the lower right. c, SEM

images of the surface of CSCM and CCM. At least three times of experiments were

repeated independently.



Supplementary Fig. 2 Characterization of the basic properties of composite
membranes.
a, FTIR results of CSCM and CCM. b, XPS results for CSCM and CCM. (CSCM
represents a composite membrane containing 10% CFO@BTO core-shell particles by
weight; 2 CSCM means that the weight content of the core-shell particles is 20%,
twice that of CSCM; 1/2 CSCM means 5% core-shell particle weight content, which
is half that of CSCM). c, Image of CFO@BTO/P(VDF-TrFE) membrane (CSCM). d,
XRD results of CFO@BTO core-shell. Source data are provided as a Source Data file.



Supplementary Fig. 3 Surface characteristics and mechanical properties of
composite membranes.
a, Surface topography and roughness (b) measured by AFM of 2 CSCM, CSCM and
1/2 CSCM.There was no difference in surface roughness between the different
membrane groups. n=6 independent membrane samples; mean±SEM. c, Data
statistics and photos of water contact angle, which also showed no significant
differences. The contact angle values were 80°±, indicating similar hydrophilicity.
n=6 independent membrane samples; mean±SEM. d, Tensile strength and elastic
modulus of 2 CSCM, CSCM and 1/2 CSCM. n=6 independent membrane samples;
mean±SEM. Source data are provided as a Source Data file.
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Supplementary Fig. 4 Characterization of the electrical properties of
magnetoelectric composite membranes.
a,b, Zeta potential of CSCM (a) and CCM (b) immersed in phosphate buffer solution
(PBS), with or without exposure to a remote DC magnetic field after 1, 7, 14 days.
n=12 membranes for per group and per time point; mean±SEM. c, Surface potential
measured by SKPM and (d) zeta potential of CSCM under a continuous magnetic
field, 12 h immersion and 12 h magnetic field, 24 h immersion and 12 h magnetic
field, 48 h immersion and 12 h magnetic field, 72 h immersion and 12 h magnetic
field, and without magnetic field. On the 13th day, a magnetic field was applied to the
non-magnetic field exposed group, to observe its reactivation effect on the surface
potential. n=6 membranes for per group and per time point; mean±SEM. Source data
are provided as a Source Data file.



Supplementary Fig. 5 Phase change detection results and device photos.
a, The XRD results of CSCM under different conditions (without magnetic field,
applied magnetic field, magnet removal and 24, 48 h after removing magnet and
finally reloading magnetic field). b, An enlarged view of figure (a), showing the
location of the β-phase. According to Bragg Law λ=2d • sinθ，the interplanar crystal
spacing of CSCM increased after the magnetic field loading. c, The XRD results of
P(VDF-TrFE) without magnetic field (black line) and applied magnetic field (red line),
which showed no shift of the β-phase position. d, The electric hysteresis loop of
CSCM under different conditions. e, Pictures of the device for XRD detection. Source
data are provided as a Source Data file.



Supplementary Fig. 6 Morphologies of surface potential and interfacial
polarization detection
a, The topography shows the instant change of surface potential before and after
applying magnetic field in situ (b). c, 3D topography image of detecting the interface
polarization.



Supplementary Fig. 7 Phase-field simulation of the strain distributions along the
x-direction under different magnetic fields (a) H=0 (b) H=1200 Oe (c) H=2400 Oe.
The polarization component Pz distributions under different magnetic fields (d) H=0
(e) H=1200 Oe (f) H=2400 Oe. The electrical potential distributions under different
magnetic fields (g) H=0 (h) H=1200 Oe (i) H=2400 Oe.



Supplementary Fig. 8 Biocompatibility of composite membranes in the various
groups.
a, Cell proliferation of BM-MSCs cultured on the membranes of various groups by
the CCK-8 assay after 1, 2 and 3 days. n=9 biologically independent samples;
mean±SEM; one-way ANOVA. b, The lactate dehydrogenase content in the
supernatants of BM-MSCs cultured on the membranes after 1, 2 and 3 days. c, Live
and dead cell staining on the membranes of different groups. n=9 biologically
independent samples; mean±SEM; one-way ANOVA. Source data are provided as a
Source Data file.



Supplementary Fig. 9 Characterization of cell spreading on the membrane

surfaces.

a, SEM and immunofluorescence images (b) of cell spreading on the different

membrane groups. At least three times of experiments were repeated independently.



Supplementary Fig. 10 Osteogenic properties of core-shell magnetoelectric
composite membranes
a,b, Immunofluorescence images showed the upregulated expression of RUNX2 in
the CSCM-M group after 3 and 7 days of cell culture (Scale bars: 50 µm). c, ALP
activity after 3 and 7 days of cell culture. n=9 biologically independent samples;
mean±SEM. *P<0.05, one-way ANOVA. d, Quantification of Alizarin red staining
after 21 days of cell culture. n=9 biologically independent samples; mean±SEM.
*P<0.05, one-way ANOVA. Source data are provided as a Source Data file.



Supplementary Fig. 11 | Osteogenic properties of core-shell magnetoelectric
composite membranes in vivo.
a,b, Micro-CT images of bone regeneration in rat cranial defects at 4 (a) and 8 (b)
weeks after membrane implantation, showing the most abundant new bone formation
in the CSCM-M group. (Yellow arrows indicated enhanced bone regeneration in the
CSCM-M group. Yellow triangles denote the new bone. Yellow dotted lines denote
the boundary between nascent bone and host bone.) c,d, Quantitative statistics of new
bone from Micro-CT analysis. n=3 rats for per group and per time point; mean±SEM.
*P<0.05, one-way ANOVA. Source data are provided as a Source Data file.
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Supplementary Fig. 12 | Osteogenic properties of core-shell magnetoelectric

composite membranes in vivo

a,b, H&E staining (NB: nascent bone) at 4, 8 weeks after implantation. c, Masson’s

trichrome staining (MB: mature bone; IMB: immature bone). At least three times of

experiments were repeated independently.



Supplementary Fig. 13 | Osteogenic inhibition by high dose dexamethasone in
vivo.
a, H&E staining and Masson’s trichrome staining at 1 week, after 3 days implantation
and dexamethasone injection. b, Micro-CT images of bone regeneration in rat cranial
defects at 2 weeks after 3 days of membrane implantation and dexamethasone
injection. c, Quantitative statistics of new bone from micro-CT analysis. n=4 rats for
per group and per time point; mean±SEM.*P<0.05, one-way ANOVA. d, H&E
staining and Masson’s trichrome staining at 1 week after 3 days implantation and
dexamethasone injection. At least three times of experiments were repeated
independently. Source data are provided as a Source Data file.



Supplementary Fig. 14 | The reactivation effect of the implanted core-shell

magnetoelectric composite membrane in vivo within the rat skull defect model

with osteogenesis inhibition.

a, Micro CT images and quantitative statistics (b) of bone volume after

dexamethasone (Dex) injection to inhibit osteogenesis with and without magnetic

treatment (4 weeks). n=3 rats for per group; mean±SEM. *P<0.05, one-way ANOVA.

c, H&E staining and Masson’s trichrome staining (d) of new bone formation after

dexamethasone (Dex) injection to inhibit osteogenesis with and without magnetic

treatment (4 weeks). Source data are provided as a Source Data file. At least three

times of experiments were repeated independently.



Supplementary Fig. 15 | The reactivation effect of implanted core-shell
magnetoelectric composite membrane in vivo within the rat skull defect model
with LPS-induced systemic inflammation.
a, Micro CT images and quantitative statistics (b) of bone volume after LPS injection
to induce systemic inflammation with and without magnetic treatment (4 weeks). n=3
rats for per group; mean±SEM. *P<0.05, one-way ANOVA. c,White blood cell count
at 7 d after membrane implantation. (LPS-1 mg/kg LPS injection, NS-normal saline
injection, Blank-without any injection). n=5 rats for per group; mean±SEM. *P<0.05,
one-way ANOVA. d, H&E staining and Masson’s trichrome staining (e) of new bone
formation after LPS injection to induce systemic inflammation with and without
magnetic treatment (4 weeks). Source data are provided as a Source Data file. At least
three times of experiments were repeated independently.
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Supplementary Fig. 16 The surface potentials of the membranes immersed in
culture medium decreased over time. n=6 independent membrane samples for per
group and per time point; mean±SEM. Source data are provided as a Source Data file.



Supplementary Fig. 17 Relative area of β-phase calculated from XRD. The β

-phase transition was detected from day 7 to day 28 after the magnetic field was
removed and 3 cycles were performed. Source data are provided as a Source Data file.



Supplementary Fig. 18 Comparison of osteogenic effects of CSCM versus
commercially-available membranes in promoting bone defect repair. The model
of mandibular critical defect (3 mm) combined with Dex-induced osteogenic
inhibition in rats were used in this study. a, Three-dimensional micro-CT images at
four weeks after material implantation, with and without magnetic field treatment (4
weeks). The bone defect areas are marked by a red dotted circle. b, Two-dimensional
images of the defect areas at 4 weeks after material implantation and co-morbidity
model preparation. The bone defect areas are marked by circles or rectangles.
S=Sagittal plane, C=Coronal plane, A=Cross section. c, Quantitative statistics of the
ratio of new bone volume to total volume (BV/TV). n=3 rats for per group;
mean±SEM. *P<0.05, one-way ANOVA. Source data are provided as a Source Data
file.



Supplementary Fig.19 Comparison of osteogenic effects of CSCM versus
commercially-available membranes in promoting bone defect repair. The model
of mandibular 3 mm critical defect combined LPS-induced systemic inflammation in
rats were used in this study. a, Three-dimensional micro-CT images of four weeks
after material implantation, with and without magnetic field treatment (4 weeks). The
bone defect areas were marked by a red dotted circle. b, Two-dimensional images of
the defect areas 4 weeks after material implantation and comorbid model preparation.
The bone defect areas were marked by circles or rectangles. S=Sagittal plane,
C=Coronal plane, A=Cross section. c, Quantitative statistics of the ratio of new bone
volume to total volume (BV/TV). n=3 rats for per group; mean±SEM. *P<0.05,
one-way ANOVA. Source data are provided as a Source Data file.



Table S1 Osteogenesis efficiency and material morphology of the referenced materials

Material name Morphology
Stimulus
type

Data
form

Osteogenesis
efficiency (%)

References

BTO NP
/P(VDF-TrFE)

membrane Electroactive BV/TV
56 (12 w);
50 (4 w)

(1)

BFO+ membrane Electroactive BV/TV 54 (8 w) (2)

P(VDF-TrFE) membrane Electroactive BV/TV 52 (8 w) (3)

KNN ceramic Electroactive BV 1.2 mm3 (4)

AGCP gel Electroactive BV/TV 53 (12 w) (5)

Actuator scaffold Electroactive Area 40 (4 w) (6)

PVDF-TrFE/BT scaffold Electroactive BV/TV 20 (4 w) (7)

GO-CMC scaffold Electroactive BV/TV 30± (8)

nHA/GO/CS+ scaffold Photothermal BV/TV 20 (8 w) (9)

5BCN@AKT scaffold Photothermal BV/TV 58.2 (8 w) (10)

GdPO4/CS/Fe3O4 scaffold Photothermal BV/TV 61.23 (12w) (11)

TCP-PDLLA-5LB scaffold Photothermal Area 35 (8 w) (12)

BP-SrCl2/PLGA
+Laser

microsphere Photothermal BV/TV 38 (8 w) (13)

BPs@PLGA+NIR membrane Photothermal BV/TV 29.57 (10 w) (14)

ACS+NSD-BMP+
US

liposome Sonodynamic BV/TV 20 (4 w) (15)

LIPUS+BaTiO3/pT
i

scaffold Sonodynamic BV/TV 30 (12 w) (16)

α-TCP/CS/Fe3O4/G
O

cement Magnetic BV/TV 18 (8 w) (17)

AKT-Fe3O4-CaO2 scaffold Magnetic BV/TV 12 (8 w) (18)

BMSC-Fe3O4-
SMF-Exos

particles Magnetic BV/TV 49 (12 w) (19)

Magnetic scaffold
B

scaffold Magnetic Area 36.23 (8 w) (20)

Iron oxide core
coated with PEI-B

particles Magnetic Healing 43 (8 w) (21)

CS/Col/Fe3O4

/nHAP
scaffold Magnetic BV/TV 23 (8 w) (22)

CFO/P(VDF-TrFE)
-E/M

membrane
Magneto-
electric

BV/TV 52.41 (8 w) (23)

CFO@BTO/P(VD
F-TrFE)-M

membrane
Magneto-
electric

BV/TV 69.33 (8 w) Our work

mailto:BP@PLGA+NIR
mailto:5BCN@AKT
mailto:BPs@PLGA+NIR
mailto:CFO@BTO/P(VDF-TrFE)-M
mailto:CFO@BTO/P(VDF-TrFE)-M


Table S1. Studies using animal experiments to assess in vivo osteogenesis
efficiency were included.
Based on a natural bone healing time of 12 weeks, this table only included in vivo
studies that lasted no longer than 12 weeks to compare the efficiency of biomaterials.
All included biomaterials and the results of CSCM-M under both conventional and
co-morbidity conditions were concluded in Fig 1a.

Table S2 Osteogenesis efficiency (%) at 4 weeks
post-implantation

Group Name Bone defect Bone defect with Co-morbidity

CSCM-M 56.05 52.08

CCM-M 40.76 33.67

CSCM 37.85 29.63

CCM 31.78 22.99
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