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1 Notations

Table S1: Definition of potential energy terms and their abbreviations used as subscripts.a

Energy Term Index Description Collective Term

Ubond 7 Bond stretch Bonded (b)
Ub = Ubond

+ Uang + Utor

Uang 6 Angle bend

Utor 5 Torsion rotate (proper/improper)

ULJ 4 Lennard-Jones

Non-bonded (nb)
Unb = Udir + U1−4Ele

+ ULJ + U1−4LJ

U1−4LJ 3 1-4 Lennard-Jones

Udir 2 PME direct/real space

U1−4Ele 1 1-4 Electrostatic

Urec 0 PME reciprocal space

aAbsence of an energy term subscript indicates all energy terms (i.e., summation over all
energy terms, index t = 0, · · · 7). The bonded and non-bonded terms are “short” and “inter-
mediate” ranged, respectively, and kept track of with array lists, the latter for which is set
by a distance cut-off and updated dynamically when needed. Note under these definitions,
the 1-4 electrostatic and LJ terms are considered part of the non-bonded terms, and the
total electrostatic energy (UEle) is not purely a “non-bonded” term as it contains also the
non-local reciprocal space term. i.e., UEle = Udir + U1−4Ele + Urec.

Each of the energy terms in Table S1, with the exception of Urecip, involves a straight-forward

summation over the relevant sets of atoms to compute 2-body, 3-body or 4-body interactions.

In the case of free energy simulations, we need to further distinguish between contributions

to the energy that are made from different non-overlapping sets of atoms. Specifically,

we need to subdivide the system into two main subdivisions: one region is alchemically

transforming, whereas the remainder of the system is immutable (I), i.e., not transforming.

Within the hybrid single-dual-topology, the immutable region is represented by a single

“topology” and set of coordinates. The transforming region of the system is represented by a

formal dual topology and separate sets of coordinates for each state, and is further subdivided

into constrained coordinate/common core (CC) and the separable-coordinate/softcore (SC)

regions. The CC region has corresponding atoms in each topology constrained to have the
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same positions in order to facilitate phase space overlap between states during the alchemical

transformation. The SC region, on the other hand, has separable independent coordinates

for each topology that can adopt different conformations and do not directly interact with

one another.

For example, if two drug molecules involved in an alchemical transformation share a

common chemical core of atoms such as an aromatic ring and differ only by certain attached

substituent for which atoms between the topologies cannot easily be mapped, then the

CC region would contain the atoms of the common aromatic ring and the SC region would

contain the atoms of the different substituent. In the alchemical transformation of λ : 0 → 1,

the SC atoms of state “0” are “turned off” by mutating the real atoms of state “0” into

so-called “dummy atoms”,S1 while at the same time the SC atoms of state “1” are being

“turned on” in a synchronous counter-transformation. The dummy atoms do not interact

with their environment, with the exception of certain bonded interactions that must obey the

constraint conditions that they introduce no net potential of mean force onto any non-dummy

atom. Often this separable dual-coordinate approach requires the introduction of “softcore

potentials”,S2,S3 i.e., explicit non-linear λ-dependent terms to “soften” the interaction of these

atoms with their surroundings. These are most often employed for non-bonded interactions

such as LJ and Ele (or in the case of PME electrostatics, often just the Udir term), but other

forms have also been developed for bonds and other energy terms.S2,S4,S5

Thus the system can be divided into non-overlapping regions described in Table S2:

I (immutable), CC (transforming constrained/common core) and SC (transforming sepa-

rable/softcore). The I region has the same atomic coordinates, parameters and internal

potential energy for both states 0 and 1. The CC region can have different parameters be-

tween states 0 and 1, but the coordinates of mapped atoms are constrained to be the same.

The SC region also can have different parameters between states 0 and 1, but unlike the CC

region each state has its own separable set of atomic coordinates.
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Table S2: Energy decomposition based on non-overlapping sets of atoms comprising the SC, CC
and I regionsa.

Energy Region/Interactions Description

U
SC Internal energy of the Transform-

ing: Separable coordinate/softcore
(SC) region

Each of the contributing bonded or non-bonded internal
energy terms arises from a set of atoms that are contained
within SC region; i.e., all atoms of the term belong to the
SC region.

U
CC Internal energy of the Trans-

forming: Constrained coordi-
nate/common core (CC) region

Each of the contributing bonded or non-bonded internal
energy terms arises from a set of atoms that are contained
within CC region; i.e., all atoms of the term belong to the
CC region.

U
I Internal energy of the Immutable (I)

region
Each of the contributing bonded or non-bonded internal
energy terms arises from a set of atoms that are contained
within I region; i.e., all atoms of the term belong to the I
region.

U
(CC+I) Internal energy of the combined CC

and I regions; U
CC+I = U

CC +
U

CC/I + U
I

Each of the contributing bonded or non-bonded internal
energy terms arises from a set of atoms that are contained
within (CC+I) region; i.e., all atoms of the term belong to
the (CC+I) region.

U
SC/(CC+I) Interaction energy between SC and

(CC+I) regions; U
SC/(CC+I) =

U
SC/CC + U

SC/I

Each of the contributing bonded or non-bonded interac-
tion energy terms arises from a set of atoms that span the
SC and combined (CC+I) regions; i.e., some belong to
the SC region, while others in the same term belong to
the (CC+I) region.

U
(SC+CC+I) Total internal of the system; U =

U
(SC+CC+I).

Total potential energy of the system. This can be decom-
posed into contributions within the SC and (CC+I) re-
gions, and interaction energy between regions as: U =
U

(SC+CC+I) = U
(CC+I) + U

SC + U
SC/(CC+I).

aThe three regions are as follows. 1) SC, Transforming: Separable coordinate/softcore; 2) CC, Transforming: Con-
strained coordinate/common core; and 3) I, Immutable (not transforming). Regions can be combined as a union of
atom sets with the “+” operator; e.g., (SC+CC) combines the SC and CC regions, and (SC+CC+I) would imply all

regions (and hence atoms) of the system. The energy decomposition involves using the superscripts UX to indicate ei-

ther an internal energy within the region “X”, or an interaction energy U
X/Y between regions “X” and “Y”. Thus in its

most expanded form, the total potential energy can be written as U = U
SC+U

CC+U
I+U

SC/CC+U
SC/I+U

CC/I .
Note the absence of subscripts indicates a summation over all energy terms in Table S1; however, the superscript no-
tation can also be applied to energy terms individually. It is assumed that the SC, CC and I regions are defined in such
a way that no individual 3-body or 4-body term spans all three regions (e.g., there is no angle bending term that has
one atom in each of the SC, CC and I regions).
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2 Smoothstep functions

Consider the family of smoothstep functions of orders P (P = 0, 1, 2, · · · ) defined as the

polynomial functions (up to P = 4 shown):

for 0 ≤ x ≤ 1 :

S0(x) = x,

S1(x) = −2x3 + 3x2,

S2(x) = 6x5 − 15x4 + 10x3,

S3(x) = −20x7 + 70x6 − 84x5 + 35x4,

S4(x) = 70x9 − 315x8 + 540x7 − 420x6 + 126x5,

and

SP (x ≤ 0) = 0;SP (x ≥ 1) = 1, ∀ P ∈ N (1)

The smoothstep functions are monotonically increasing functions that have desirable 0 and

1 endpoint values and vanishing endpoint derivative properties:

[

dkSP (x)

dxk

]

x=0

=

[

dkSP (x)

dxk

]

x=1

= 0 ∀ k ∈ N, 0 < k ≤ P (2)

In addition, the smoothstep functions obey the symmetry condition

SP (1− x) = 1− Sp(x) (3)

A smoothstep function with a higher order will have a smoother function curve and smaller

derivatives near 0 and 1 but a larger derivative in between. The zero-order (P = 0) smooth-

step function is in fact simply linear with constant slope, including at the endpoints, which

can lead to endpoint catastrophe problems. As illustrated in previous work,S3 the second

order smoothstep function (P = 2) overall offers a good balance between smooth vanishing
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derivatives at the endpoints, and modest derivatives for intermediate values of λ. AMBER20

offers the flexibility to choose different smoothstep functions through the λ-scheduling mech-

anism described below.

3 Form of the λ-dependent weight functions

We now describe a general form for the weight functions W (λ), where we only retain the

0 and 1 subscript to indicate the state. The weight functions are defined in term of the

smoothstep functions as

W0(λ) = 1− SP (λ) = SP (1− λ) (4)

W1(λ) = SP (λ) (5)

Previous work has illustrated that use of smoothstep functions of order greater than 0 (i.e., a

weight function that goes beyond the simple linear λ-dependence and has vanishing deriva-

tives at the endpoints), affords improvement of the the transformation pathway, particularly

at the endpoints where large variation in < ∂U/∂λ >λ can occur.S3 These weight functions

both operate within the range 0 ≤ λ ≤ 1 (they have constant endpoint values outside of this

range), and satisfy the normalization condition:

W0(λ) +W1(λ) = 1 (6)

and the symmetry condition:

W0(1− λ) = W1(λ) (7)
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4 λ-scheduling of weight functions

In some cases, it is desirable to have the flexibility to apply more complicated λ schedules

that operate over a subinterval of λ values between 0 and 1. The generalized λ scheduling

weight for W0 can be defined so that it is changing only within the interval λmin ≤ λ ≤ λmax

as

W0(λ) = 1− SP (z(λ))

z(λ)























= 0, if λ ≤ λmin

= λ−λmin

λmax−λmin
, if λmin ≤ λ ≤ λmax

= 1, if λmax ≤ λ

(8)

where 0 ≤ λmin ≤ λmax ≤ 1. In the current framework, the complementary weight function

W1(λ) can be selected to either satisfy the normalization condition (eq 6), or the symmetry

condition (eq 7) above. Only if the interval z(λ) is centered at λ = 0.5 are both the

normalization and symmetry conditions simultaneously satisfied. AMBER22 allows flexible

λ scheduling of this form for different energy components. The lambda-scheduling can be

enabled by setting the input control gti_lam_sch=1 and the scheduling is defined in the

lambda-scheduling control file (the file name has default value of “lambda.sch” and can be

specified by the command line argument -lambda_sch). The detailed usage can be found

in the updated AMBER22 manual.S6

5 New Softcore Potentials

In the current framework, softcore potentials are developed for both the LJ and non-bonded

electrostatic interactions (i.e., the direct/real space component of the PME method). Hence,

the main terms that are affected by the softcore potentials are those contained in the

non-bonded interactions between the SC and (CC+I) regions, i.e., those terms present in

U
SC/(CC+I)
nb . Formally, these terms can also be present in the internal energy of the SC
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region, if these terms are being “turned off” to form the “dummy state”. In principle, the

internal potential energy interactions in the dummy state are arbitrary so long as they are

treated consistently in different legs of the thermodynamic cycle that are subtracted. How-

ever, in practice, choice of the interactions in the dummy state are important, and should

be selected to minimize the volume of phase space needed to sample the dummy state while

at the same time avoiding sampling traps (multiple distinct free energy basins separated

by high barriers) that could lead to inconsistent results. In fact, proper choice of potential

energy interactions in the dummy state, together with generalized ensemble methods such

as Hamiltonian replica exchange, can lead to powerful new alchemical enhanced sampling

methods. For the present paper, the dummy state was created by scaling (i.e., “turning off”)

electrostatic interactions, and in some cases also torsion angle and 1-4 LJ terms, but keeping

other bonded and normal LJ terms in place. Hence, the major influence of the new form of

the softcore potential will affect the U
SC/(CC+I)
nb term, which as results presented later in the

paper will show has a profound affect on the free energy estimates.

The LJ, Coulomb and PME direct-space interactions for a set of interacting point particles

i and j separated by a distance rij are given by

ULJ(rij) = 4ǫij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

(9)

UCoul(rij) =

(

qiqj
4πǫ0

)

1

rij
(10)

and

Udir(rij) =

(

qiqj
4πǫ0

)

erfc(κrij)

rij
(11)

where σij and ǫij are the pairwise LJ contact distance and well depth, respectively, and qi

and qj are the partial charges of particles i and j, respectively, erfc() is the complementary

error function and κ is the Ewald coefficient.

To soften these pairwise interactions particles, the introduction of a parametric form for
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scaling with an adjustable parameter is utilized to modify the effective interaction distance.

A commonly used form of these modificationsS2,S4 is shown as

rLJ
ij (λ;α) =

[

rnij + λασn
ij

]1/n
(12)

and

rCoul
ij (λ; β) =

[

rmij + λβ
]1/m

(13)

where n and m are positive integers and α and β are adjustable positive semi-definite pa-

rameters (note that α is unitless whereas β has units of distance raised to the power of m).

The value of n = 6 and m = 2 are often used, and have been the default values in AM-

BER, until recently a modified form of the separation-shifted scaling leads to considerable

improvement.S7

We introduce a new form of the interaction distance with separation-shifted scaling, given

as

rLJ∗
ij (λ;αLJ∗) =

[

rnij + αLJ · fSW (rij)S2(λ)σ
n
ij

]1/n
(14)

and

rCoul∗
ij (λ;αCoul) =

[

rmij + αCoul · fSW (rij)S2(λ)σ
m
ij

]1/m
(15)

where αLJ and αCoul are the corresponding unitless parameters, S2 is the 2nd-order smooth-

step function in eq 1, and fSW (rij) is a switching function designed to smoothly return to

the normal rij, and thus long-ranged behavior, by the end of the cutoff

fSW (rij) ≡ 1− S2

(

rij −Rcut,i

Rcut,f −Rcut,i

)

(16)

where Rcut,i is the distance that the switching function begins switching and Rcut,f is the

final distance where the switching ends (returning the effective interaction distance to be

rij). Henceforth, we will set Rcut,f = Rcut, and Rcut,i = Rcut − 2, respectively.
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The form of the new softcore potential is thus

ULJ(rij;λ) = ULJ [r
LJ∗
ij (λ;αLJ∗)] (17)

UC(rij;λ) = UC [r
Coul∗
ij (λ;αCoul∗)] (18)

and

Udir(rij;λ) = Udir[r
Coul∗
ij (λ;αCoul∗)] (19)

Most free energy simulations in the condensed phase are performed under periodic boundary

conditions and use the PME methodS8,S9 to treat long-ranged electrostatic interactions, in

which case the electrostatic softcore potentials described here apply to the Udir term (eq 19).

If, on the other hand, PME electrostatics is not used, then the electrostatic softcore potential

apply to the UC term (eq 18).

6 REST2-like enhanced sampling implementation

A REST2 like enhanced sampling scheme has been implemented in the AMBER22 package.

As already discussed in the main text. The REST2 formula in fact is very similar to an al-

chemical transformation. Here we describe our REST2-like implementation, which is similar

to REST2 in spirit but it provides more controls over how the weight functions behavior.

A region to be enhanced sampled is designed as the RE region. A parameter, τ , similar

to λ in alchemical transformation, is used to define the reduction of interactions involved

in the RE region. A set of τ -dependent weighting functions can be utilized to form the
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τ -dependent total potential energy U(rN ; τ) can be written as

U(rN ; τ) = Urec(r
N ;Wrec(τ) · q

RE)

+
∑

t 6=rec

WRE
t (τ) · URE

t (rN ; τ) +
∑

t 6=rec

W
RE/Env
t (τ) · U

RE/Env
t (rN ; τ) (20)

where U(rN ; τ) is the system total potential energy. The subscription "rec" represents the

PME reciprocal term and "t" represents all general terms (Table S1). The superscript "RE"

represents the interactions within the RE region while "RE/Env" the interactions between

the RE region and its surrounding environment. "qRE" is the charge set of all atoms in the

RE region. In eq 20, the τ -dependency of the PME reciprocal term is through the scaling of

the charges of the RE region atoms by the weight function Wrec(τ), and other terms through

alchemical transformation-like weight functions. In the default linear dependency scheme,

the weight functions are

Wrec(τ) = W
RE/Env
t (τ) = (1− τ)

WRE
t (τ) = (1− τ)2

0 ≤ τ,Wrec(τ),W
RE/Env
t (τ),WRE

t (τ) ≤ 1. (21)

It is clear that τ = 0 corresponds to unscaled interactions while τ = 1 the totally vanished

interactions (similar to setting temperature as infinity). Table S3 shows the corresponding

REST2 temperatures for different τ and weight functions. In our implementation, these

weight functions can be modified just as the alchemical transformation weight functions,

including non-linear dependency using smoothstep functions and onset/offset at different τ

values (τ scheduling).
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Table S3: The corresponding REST2 temperatures for different τ and weight functions, assuming
that the simulation is perform at 298.0K

τ W
RE/Env
t (τ) = (1− τ) WRE

t (τ) = (1− τ)2 REST2 temperature (K)

0 1 1 298.00
0.1 0.9 0.81 367.90
0.2 0.8 0.64 465.63
0.3 0.7 0.49 608.16
0.4 0.6 0.36 827.78
0.5 0.5 0.25 1192.00
0.6 0.4 0.16 1862.50
0.7 0.3 0.09 3311.11

Furthermore, these weight functions can be turned on or off to accommodate different

situations. Similar to the gti_add_sc input control for the alchemical transformation, the

gti_add_re input control is shown in Table S4.
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Table S4: The scaling behavior τ -dependence of the weight functions in eq 21, controlled by the
gti_add_re flag, for different energy terms and regions/interactions in AMBER22.

Weight Energy Term Region / gti_add_re flag

Symbol Abbreviation Interaction 1 2 3 4 5 6 7

WRE
bond bond RE P P P P P P P

WRE
ang ang RE P P P P P P S

WRE
tor tor RE P P P S S S S

WRE
dir dir RE P S S P S S S

WRE
1−4Ele 1-4 Ele RE P S S S S S S

WRE
LJ LJ RE P P S P P S S

WRE
1−4LJ 1-4 LJ RE P P S S S S S

W
RE/Env
dir dir RE/Env S S S S S S S

W
RE/Env
1−4Ele 1-4 Ele RE/Env S S S S S S S

W
RE/Env
LJ LJ RE/Env S S S S S S S

W
RE/Env
1−4LJ 1-4 LJ RE/Env S S S S S S S

Wrec rec all S S S S S S S

Energy terms are defined in text (and also Table S1). RE: the RE region internal interactions, RE/Env the
interactions between the RE region and the environment.
Flags:

S: Scaled with τ . The corresponding λ-dependent weight function will be used.
P: Not scaled with τ . The corresponding weight function is simply 1.

The implemented module will be enabled by setting the input control "ifreaf=1"

and the parameter τ is defined by the input "reaf_tau", e,g.,reaf_tau=0.001, The RE

region is defined by the standard AMBER mask selection, e.g., "reaf_mask1=’@1-8’".

The "reaf_mask1" is used to define the RE region which are in a regular MD or at the

λ = 0 in an alchemical transformation. This implementation can be used in conjunction

with alchemical transformation, similar to FEP/REST. When used together with alchemical

transformation, "reaf_mask2" is used to define the RE region at the state of λ = 1. Details

are described in the AMBER22 manual.S6
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7 Preliminary tests of different lambda spacing schemes

The Hamiltonian replica exchange efficiency will critically impact the ACES results, which

leads to a related often-asked question: the best choice of lambda points and spacing. As

a preliminary effort towards the optimal choice of lambda points and spacing, We repeated

the XX simulation with different lambda-spacing schemes. Several schemes are defined:

21W: 21 evenly-spaced lambda windows from 0 to 1, spacing = 0.05

11W: 11 evenly-spaced lambda windows from 0 to 1, spacing = 0.10

13W(S1): 13 lambda windows from 0 to 1: 0.000, 0.177, 0.259, 0.326, 0.387, 0.444, 0.500,

0.556, 0.613, 0.674, 0.741, 0.823, 1.000

13W(S2): 13 lambda windows from 0 to 1: 0.000, 0.230, 0.303, 0.359, 0.409, 0.455, 0.500,

0.545, 0.591, 0.641, 0.697, 0.770, 1.000

13W(S1+S2): 13 lambda windows from 0 to 1: 0.000, 0.203, 0.282, 0.344, 0.399, 0.450,

0.500, 0.550, 0.601, 0.656, 0.718, 0.797, 1.000

We calculated several quantities for neighbor lambda window pairs, including, the ex-

changed probability pexi,i−1, the exchange probability between the ith replica and the i − 1th

replica, as well as ( 1
pex
i,i−1

− 1), the standard errors and the variance of MBAR, the overlap

between neigh windows (in percentage). Comparisons between these calculated quantities

are shown in the following sections.

Figure S1 shows the exchange probabilities from different lambda schemes. The 21W

scheme has all exchange probabilities > 0.3, although with smaller values in the middle

range, apparently due to the small spacing between windows. The 11W scheme, on the

other hand, has exchange probabilities less <0.1 between 0.3 and 0,7. All schemes with 13

windows, designed to smooth out the exchange probability distribution over the lambda axis,

have narrow distributions between 0.2 and 0.5.

Figure S2 shows the relation between the exchange probabilities and the MBAR errors
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(in the logarithm scale) and demonstrates that the error is highly (anti-)correlated to the

exchange probability. Note that in the 11W scheme, which has high exchange probabilities

near the end states and low exchange probabilities in between, the MBAR errors are very

small near the end stats but much larger otherwise. Similar situations are also seen in

Figures S3 and S4.
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vs the MBAR variance (the square of the MBAR errors) are shown in Figures S3 and S4,

respectively. While all figures show strong correlations, Figure S4 shows a particularly strong

linear relation between ( 1
pex
i,i−1

− 1) and the MBAR variance. The term ( 1
pex
i,i−1

− 1) is the core

part of the analytic solution of the round trip time derived from an ideal Markov Chain

Monte Carlo model, E[T ]:S10

E[T ] = 2N

{

1 +
N
∑

i=2

(

1

pexi,i−1

− 1

)

}

(22)

where N is the total number of replicas, i is the replica index running from 1 to N . The

strong linear correlation between ( 1
pex
i,i−1

−1) and the MBAR variance suggests that ( 1
pex
i,i−1

−1)

could be a very useful measure of the efficiency of replica exchange or ACES simulations.
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