Supplementary Material for Publication

Supplementary Table 1. Umbrella Review: search terms and strategy used

Search terms for PubMed

#1 ("beverages" [Mesh] OR "drink" [Title/Abstract] OR "drinks" [Title/Abstract] OR

"beverage" [Title/Abstract] OR "beverages" [Title/Abstract] OR "soda" [Title/Abstract] OR

"pop"[Title/Abstract] OR "sweetened iced tea"[Title/Abstract] OR "fruit punch"[Title/Abstract] OR

"cordials"[Title/Abstract] OR "squashes"[Title/Abstract] OR "lemonade"[Title/Abstract])

#2 ("prospective studies" [Mesh] OR "cohort studies" [Mesh] OR "longitudinal studies" [Mesh] OR

"prospective"[Title/Abstract] OR "longitudinal"[Title/Abstract] OR "cohort"[Title/Abstract] OR

"cohorts"[Title/Abstract] OR "follow-up"[Title/Abstract] OR "followed up"[Title/Abstract])

#3 (#1 AND #2)

#4 (#3 AND "systematic review"[Title/Abstract] OR "meta-analysis"[Title/Abstract]

Search terms for Embase

#1 beverage/ or beverage.mp. or beverages.mp. or drink.mp. or drinks.mp. or soda.mp. or pop.mp.

or fruitades.mp. or sweetened iced tea.mp. or fruit punch.mp. or cordials.mp. or squashes.mp. or

lemonade.mp.

#2 cohort analysis/ or longitudinal study/ or prospective study/ or follow up/ or prospective.mp. or

longitudinal.mp. or cohort.mp. or cohorts.mp. or follow-up.mp. or followed up.mp.

#3 (#1 AND #2)

#4 systematic review.mp. or meta-analysis.mp.

(#3 AND #4)

Search terms for Web of Science

#1 TS=("drink" OR "drinks" OR "beverage" OR "beverages" OR "soda" OR "pop" OR "sweetened

iced tea" OR "fruit punch" OR "cordials" OR "squashes" OR "lemonade")

#2 TS=("prospective" OR "longitudinal" OR "cohort" OR "cohorts" OR "follow-up" OR "followed

up")

#3 (#1 AND #2)

#4 TS=("systematic review" OR "meta-analysis")

Author and year of publication	PECO (Population, Intervention, Control and Outcome) question	Exposure variable	Outcome variable	Number of studies in each meta- analysis	Number of cohort studies	Number of case- control studies	Main result in each meta- analysis	Source of funding of the systematic review
Baghavathula et al. 2022 (15)	May the consumption of 2 drinks (250 ml=1 drink), or more of ASBs (versus 0 drinks) increase cardiovascular mortality risk in adults?	2 (o more) drinks versus 0	Cardiovascular mortality	4 reported, 3 met inclusion criteria	3	0	RR 1.33; 95% CI 1.12 to 1.55	No research funding
Jatho et al. 2021 (16)	May the highest consumption of ASBs (versus no or low) increase gastrointestinal cancer risk in adults?	The highest consumption versus no or low	Gastro- intestinal cancer	32 reported, 8 met inclusion criteria	7	1	RR 1.02; 95% CI 0.92 to 1.14	Unreported
Jatho et al. 2021 (16)	May the highest consumption of ASBs (versus no or low) increase colorectal cancer risk in adults?	The highest consumption versus no or low	Colorectal cancer	9 reported, 4 met inclusion criteria	4	0	RR 0.98; 95% CI 0.79 to 1.23	Unreported
Lo et al. 2021 (17)	May the highest consumption of ASBs (versus the lowest) increase Chronic Kidney Disease risk in adults?	The highest consumption versus no or low	Chronic Kidney Disease	3 reported, 2 met inclusion criteria	1	1	RR 1.40; 95% CI 0.65 to 3.02	Shuang Ho Hospital, Taipei Medical University and Ministry of Science and Technology

Supplementary Table 2. Descriptive data of selected systematic reviews and meta-analysis of ASBs and health outcomes

Pan et al. 2021 (6)	May a higher consumption of ASBs increase all-cause mortality risk in adults?	Per 250 ml/day increase of ASBs	All-cause mortality	7 reported, 7 met inclusion criteria	7	0	RR 1.04; 95% CI 1.00 to 1.09	Gansu Hospital
Pan et al. 2021 (6)	May a higher consumption of ASBs increase cancer mortality risk in adults?	Per 250 ml/day increase of ASBs	Cancer mortality	3 reported, 3 met inclusion criteria	3	0	RR 1.01; 95% CI 0.98 to 1.05	Gansu Hospital
Qin et al. 2020 (4)	May a higher consumption of ASBs increase all-cause mortality risk in adults?	Per 250 ml/day increase of ASBs	Obesity	5 reported, 4 met inclusion criteria	4	0	RR 1.21; 95% CI 1.09 to 1.35	Foundations (National China, Guangdong and Shenzhen)
Qin et al. 2020 (4)	May a higher consumption of ASBs increase Type 2 diabetes risk in adults?	Per 250 ml/day increase of ASBs	Type II Diabetes	13 reported, 11 met inclusion criteria	11	0	RR 1.15; 95% CI 1.05 a 1.26	Foundations (National China, Guangdong and Shenzhen)
Qin et al. 2020 (4)	May a higher consumption of ASBs increase hypertension risk in adults?	Per 250 ml/day increase of ASBs	Hypertension	5 reported, 4 met inclusion criteria	4	0	RR 1.08; 95% CI 1.06 a 1.10	Foundations (National China, Guangdong and Shenzhen)
Yin et al. 2021 (18)	May a higher consumption of ASBs increase cardiovascular disease risk in adults?	Per 250 ml/day increase of ASBs	Cardiovascular Disease (incidence)	8 reported, 8 met inclusion criteria	8	0	RR 1.07; 95% CI 1.05 a 1.10	National Program of Research and Development y
Llaha et al. 2021 (19)	May the highest consumption of ASBs (versus the lowest) increase pancreatic cancer risk in adults?	The highest consumption versus lowest	Pancreatic cancer	5 reported, 5 met inclusion criteria	3	2	RR 1.07; 95% CI 0.77 a 1.48	National health Institute Carlos III

Supplementary Table 3. Original studies excluded (and reasons) of each selected systematic review and meta-analysis of ASBs and health outcomes

Systematic Review: First author and year of publication	Health outcome reported	Excluded studies (First author and year of publication, outcome) and reasons
Baghavathula et al. 2022 (15)	Cardiovascular mortality	Ramne et al. 2019 (Cardiovascular mortality): The exposure variable was Sugar-Sweetened Beverages (SSBs)
Jatho et al. 2021 (16)	Gastro-intestinal cancer	Lagergren et al. 2006 (Esophageal adrenocarcinoma): The exposure variable was SSBs plus ASBs Lagergren et al. 2006 (Gastric Cancer): The exposure variable was SSBs plus ASBs Larsson et al. 2006 (Pancreatic cancer): The exposure variable was SSBs Mayne et al. 2006 (Oesophageal AC): The exposure variable was SSBs plus ASBs Mayne et al. 2006 (Oesophageal SCC): The exposure variable was SSBs plus ASBs Mayne et al. 2006 (Gastric Cardia): The exposure variable was SSBs plus ASBs Mayne et al. 2006 (Gastric Cardia): The exposure variable was SSBs plus ASBs Gallus et al. 2007 (Colorectal colon): The exposure variable included teaspoons/week, saccharin, and other sweeteners, expressed in sachets or tablets/week Gallus et al. 2007 (Colorectal rectum): The exposure variable included teaspoons/week, saccharin, and other sweeteners, expressed in sachets or tablets/week

	onur m,
and other sweeteners, expressed in sachets or tablets/week	
Ibiebele et al. 2008 (Oesophageal AC): The exposure variable was SSBs plus ASBs	
Ibiebele et al. 2008 (Oesophageal AEG): The exposure variable was SSBs plus ASBs	
Ibiebele et al. 2008 (Oesophageal SCC): The exposure variable was SSBs plus ASBs	
Bossetti et al. 2009 (Gastric cancer): The exposure variable included teaspoons/week,	
saccharin, and other sweeteners, expressed in sachets or tablets/week	
Bossetti et al. 2009 (Pancreatic cancer): The exposure variable included teaspoons/we	ek,
saccharin, and other sweeteners, expressed in sachets or tablets/week	
Gallus et al. 2007 (Pancreatic cancer): The exposure variable included teaspoons/wee	κ,
saccharin, and other sweeteners, expressed in sachets or tablets/week	
Mahfouz et al. 2014 (Colorectal cancer): The exposure variable was poorly defined: F	X.
artificial sweeteners (unclear if they included food supplements plus beverages or not)
Stepien et al. 2016 (Liver cancer-Men): The exposure variable was SSBs plus ASBs	
Stepien et al. 2016 (Liver cancer-Women): The exposure variable was SSBs plus ASI	Bs
Li et al. 2017 (Oesophageal cancer-Men): The exposure variable was SSBs	
Li et al. 2017 (Oesophageal cancer-Women): The exposure variable was SSBs	
Li et al. 2017 (Gastric cancer): The exposure variable was SSBs	
Bassett et al. 2020: The outcome variable included a non-specific cancer site, cancers	
unrelated to obesity	
Luo et al. 2019 (Liver cancer): The exposure variable was SSBs	

Jatho et al. 2021 (16)	Colorectal cancer	Khan et al. 2004 (Colorectal-Men): The exposure variable was SSBs plus ASBs plus juices
		Khan et al. 2004 (Colorectal-Women): The exposure variable was SSBs plus ASBs plus
		juices
		Gallus et al. 2007 (Colon): The exposure variable included teaspoons/week, saccharin, and
		other sweeteners, expressed in sachets or tablets/week
		Gallus et al. 2007 (Rectum): The exposure variable included teaspoons/week, saccharin, and
		other sweeteners, expressed in sachets or tablets/week
		Mahfouz et al. 2014 (Colorectal): The exposure variable was poorly defined: Ex. artificial
		sweeteners (unclear if they included food supplements plus beverages or not)
Lo et al. 2021 (17)	Chronic Kidney Disease	Bomback et al. 2010: The exposure variable was SSBs
Qin et al. 2020 (4)	Obesity	Duffey et al. 2010: The reference group was ASBs consumers (exposure group: non-
		consumers of ASBs)
Qin et al. 2020 (4)	Type 2 Diabetes	Ma et al. 2016: The outcome variable was defined as prediabetes, instead Type 2 diabetes
		Duffey et al. 2010: The reference group was ASBs consumers (exposure group: non-
		consumers of ASBs)
Qin et al. 2020 (4)	Hypertension	Duffey et al. 2010: The reference group was ASBs consumers (exposure group: non-
		consumers of ASBs)

Author	Journal	Sample	Health outcome	Number of RCTs	Control group	Duration	Effects
Brown et al. 2010	Int J Pediatr Obes	0-18 years	Weight loss or	3 trials			
			BMI differences				
				Knopp et al. 1976	2.7 gr/day	13 weeks	No significant
					Aspartame		differences in weight
					versus placebo		loss
				Ebbeling et al. 2006	Replacing SSBs	25 weeks	No significant
					with ASBs,		difference in BMI
					versus control		between those in
							intervention (replacing
							SSBs with ASBs) vs.
							control group except
							among heaviest
							subjects
				Williams et al. 2007		12 weeks	No significant
							difference in BMI
					ASBs versus		between those
					SSB		permitted sugar-

Supplementary 7	Cable 4.	Systematic rev	views of ran	domized co	ontrolled trials	(intervention	arm: ASB	s) versus	(control arms)	on health	outcomes

							sweetened soda vs.
							those only artificially-
							sweetened soda
Mehat et al. 2022	Adv in Nutr	Adults	Energy intake	3 trials			Energy intake (24 h)
			and glucose				
			levels	Bonnet et al. 2018	660 ml/day	2 x 12	Asp/Ace-K < water
					carbonated water	weeks	(P = 0.002)
					versus	Cross-	
					carbonated water	over	
					with aspartame		
					and acefulsame		
					К		
				Kim et al. 2020	600 ml/day carbonated water versus ASBs with aspartame and acefulsame K	2 x 2 weeks Cross- over	Blood glucose (60 min) No significant difference between Asp/Ace-K when compared with water and sugar controls

						1	
				Van Wymelbeke et al. 2004	Mineral water with sucrose with orange or raspberry versus ASBs with with aspartame, saccharin and	2 x 10 weeks Cross- over	Energy intake (48 h) Asp/Ace-K < sugar (P = 0.004)
					acefulsame K		
Espinosa et al.	The lancet global	Children	BMI	5 trials	Non-nutritive	Median	Less BMI gain
2023	health	and			sweeteners (25–	follow-	(standardised mean
		adolescents			2400 mg/day,	up 19	difference –0·42
					from food and	weeks	kg/m ² [95% CI –0·79
					beverages		to -0.06]; $I^2 = 89\%$)
					versus intake of		compared with the
					sugar from food		intake of sugar from
					and beverages		food and beverages.
							Removing studies with potential conflicts of

			interest attenuated the
			estimates.
			No randomised
			controlled trials
			tested beverages
			containing non-
			nutritive sweeteners
			versus water.

References:

Ramne S, Alves Dias J, González-Padilla E, Olsson K, Lindahl B, Engström G, Ericson U, Johansson I, Sonestedt E. Association between added sugar intake and mortality is nonlinear and dependent on sugar source in 2 Swedish population-based prospective cohorts. *Am J Clin Nutr.* 2019;109(2):411-23.

Lagergren J, Viklund P, Jansson C. Carbonated soft drinks and risk of esophageal adenocarcinoma: a population-based case-control study. *J Natl Cancer Inst.* 2006;98(16):1158-61.

Larsson SC, Bergkvist L, Wolk A. Consumption of sugar and sugar-sweetened foods and the risk of pancreatic cancer in a prospective study. *Am J Clin Nutr*. 2006;84:1171-6.

Mayne ST, Risch HA, Dubrow R, Chow WH, Gammon MD, Vaughan TL, Borchardt L, Schoenberg JB, Stanford JL, West AB. Carbonated soft drink consumption and risk of esophageal adenocarcinoma. *J Natl Cancer Inst.* 2006;98;72-5.

Gallus S, Scotti L, Negri E, Talamini R, Franceschi S, Montella M, Giacosa A, Dal Maso L, La Vecchia C. Artificial sweeteners and cancer risk in a network of case– control studies. *Ann Oncol.* 2007;18,40-4.

Ibiebele TI, Hughes MC, O'Rourke P, Webb PM, Whiteman DC; Australian Cancer Study. Cancers of the esophagus and carbonated beverage consumption: a population-based case-control study. *Cancer Causes Control.* 2008;19, 577-84.

Bosetti C, Gallus S, Talamini R, Montella M, Franceschi S, Negri E, La Vecchia C. Artificial sweeteners and the risk of gastric, pancreatic, and endometrial cancers in Italy. *Cancer Epidemiol Biomarkers Prev.* 2009;18(8):2235-8.

Mahfouz EM, Sadek RR, Abdel-Latief WM, Mosallem FA, Hassan EE. The role of dietary and lifestyle factors in the development of colorectal cancer: case control study in Minia, Egypt. *Cent Eur J Public Health*. 2014;22(4):215-22.

Stepien M, Duarte-Salles T, Fedirko V, Trichopoulou A, Lagiou P, Bamia C, Overvad K, Tjønneland A, Hansen L, Boutron-Ruault MC, et al. Consumption of soft drinks and juices and risk of liver and biliary tract cancers in a European cohort. *Eur J Nutr*. 2016;55(1):7-20.

Li N, Petrick JL, Steck SE, Bradshaw PT, McClain KM, Niehoff NM, Engel LS, Shaheen NJ, Risch HA, Vaughan TL. A pooled analysis of dietary sugar/carbohydrate intake and esophageal and gastric cardia adenocarcinoma incidence and survival in the USA. *Int J Epidemiol.* 2017;46(6):1836-46.

Bassett JK, Milne RL, English DR, Giles GG, Hodge AM. Consumption of sugarsweetened and artificially sweetened soft drinks and risk of cancers not related to obesity. *Int J Cancer*. 2020;146(12):3329-34.

Luo X, Sui J, Yang W, Sun Q, Ma Y, Simon TG, Liang G, Meyerhardt JA, Chan AT, Giovannucci EL, et al. Type 2 Diabetes prevention diet and hepatocellular carcinoma risk in US men and women. *Am J Gastroenterol*. 2019;114(12):1870-7.

Khan MM, Goto R, Kobayashi K, Suzumura S, Nagata Y, Sonoda T, Sakauchi F, Washio M, Mori M. Dietary habits and cancer mortality among middle aged and older Japanese living in hokkaido, Japan by cancer site and sex. *Asian Pac J Cancer Prev.* 2004;5(1):58-65.

Bomback AS, Derebail VK, Shoham DA, Anderson CA, Steffen LM, Rosamond WD, Kshirsagar AV. Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. *Kidney Int.* 2010;77(7):609-16.

Duffey KJ, Gordon-Larsen P, Steffen LM, Jacobs DR Jr, Popkin BM. Drinking caloric beverages increases the risk of adverse cardiometabolic outcomes in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. *Am J Clin Nutr*. 2010;92(4):954-9.

Ma J, Jacques PF, Meigs JB, Fox CS, Rogers GT, Smith CE, Hruby A, Saltzman E, McKeown NM. Sugar-sweetened beverage but not diet soda consumption is

14

positively associated with progression of insulin resistance and prediabetes. *J Nutr*. 2016;146(12):2544-50.

Qin P, Li Q, Zhao Y, Chen Q, Sun X, Liu Y, Li H, Wang T, Chen X, Zhou Q, et al. Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. *Eur J Epidemiol.* 2020;35(7):655-71.

Baghavathula AS, Rahmani J, Vidyasagar K, Tesfaye W, Khubchandani J. Sweetened beverage consumption and risk of cardiovascular mortality: A systematic review and meta-analysis. *Diabetes Metab Syndr*. 2022;16(4):102462.

Jatho A, Cambia JM, Myung SK. Consumption of artificially sweetened soft drinks and risk of gastrointestinal cancer: a meta-analysis of observational studies. *Public Health Nutr.* 2021;24(18):6122-36.

Lo WC, Ou SH, Chou CL, Chen JS, Wu MY, Wu MS. Sugar- and artificiallysweetened beverages and the risks of chronic kidney disease: a systematic review and dose-response meta-analysis. *J Nephrol.* 2021;34(6):1791-804.

Brown RJ, de Banate MA, Rother KI. Artificial sweeteners: a systematic review of metabolic effects in youth. *Int J Pediatr Obes*. 2010; 5(4):305-12.

Mehat K, Chen Y, Corpe CP. The combined effects of aspartame and acesulfame-K blends on appetite: A systematic review and meta-analysis of randomized clinical trials. *Adv Nutr.* 2022;13(6):2329-40.

Espinosa A, Mendoza K, Laviada-Molina H, Rangel-Méndez JA, Molina-Segui F, Sun Q, Tobias DK, Willett WC, Mattei J. Effects of non-nutritive sweeteners on the BMI of children and adolescents: a systematic review and meta-analysis of randomised controlled trials and prospective cohort studies. *Lancet Glob Health*. 2023;11 Suppl 1:S8.