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Supporting Information Text 

S1. Genomic DNA RRBS library construction. 

The RRBS libraries of the genomic DNA from the 521 tissue samples were constructed following 

the standard RRBS protocol [1].  100-200 ng of intact genomic DNA in the volume of 21.5 µl was 

used as input material. Restriction digestion was done with 2.5 µl 10xCutSmart buffer and 1 µl MspI 

(NEB) for 18 h at 37  oC and 20 min at 65 oC. 0.5 µl 10xCutSmart buffer, 0.3 µl dACGTP mixture 

(100 mM dATP, 10 mM dCTP, 10 mM dGTP), 1 µl Klenow (exo-, 5U/µl, NEB) and 2.6 µl RT-PCR 

water, 0.6 µl 50 mM DTT (ThermoFisher) was added to the mixture for end repair and A-overhang 

addition with the program 30 oC for 20 min, 37 oC for 1 h and 75 oC for 20 min. Adapter ligation was 

then performed with 1 µl 10xThermoFisher HC T4 ligase buffer, 0.4 µl 100 mM ATP 

(ThermoFisher), 0.2 µl 50 mM DTT, 1 µl ThermoFisher HC T4 DNA ligase (30 Weiss Unit/µl), 30 ng 

home-made duplex UMI adapter with all the cytosines methylated (protocol adopted from Kennedy 

et al. [2]) at 16  oC for 20 h and 65  oC for 20 min. Bisulfite conversion of the adapter-ligated product 

was carried out with QIAGEN EpiTect plus DNA bisulfite kit following their protocol for two rounds 

of conversion. The converted product was purified with Qiagen MinElute spin column and eluted 

with 20 µl RT-PCR water. PCR amplification was done using the NEBNext Multiplex Oligos for 

Illumina (2.5 µl of universal and index primer each) and 25 µl KAPA HiFi HotStart Uracil+ ReadyMix 

(Roche) with the following cycling conditions: 98  oC for 45 s, 9 cycles of 98  oC for 15 s, 60  oC for 

30 s and 72  oC for 30 s, followed by a final extension at 72  oC for 5 min. The PCR product was 

purified with 1x AmpureXP beads and eluted with 30 µl EB buffer. DNA concentration was 

measured by Qubit 1xdsDNA HS assay. 5% TBE-UREA PAGE and bioanalyzer assay was 

performed as quality control on each library before sequencing.  

S2. Plasma cfDNA cfMethyl-Seq library construction. 

The cfMethyl-Seq libraries of the serial plasma cfDNA samples from the four NSCLC patients were 

constructed following the standard protocol [3]. 10 ng of cfDNA in the volume of 25 µl was used as 

input material. 5’-end dephosphorylation was done with 3 µl 10xCutSmart buffer and 2 µl quick CIP 

from NEB (Ipswich, MA) at 37 oC for 30 min then heat-inactivated at 80 oC for 5 min. The 3’-end 

blocking was done with 0.5 µl 10xCutSmart buffer, 3 µl 2.5 mM CoCl2, 1 µl terminal transferase (all 

from NEB), and 0.5 µl 1 mM ddGTP at 37 oC for 2 h followed by 75 oC for 20 min. The mixture was 

then purified with 2x AmpureXP beads (Beckman Coulter, Indianapolis, IN) and eluted in 21.5 µl 

RT-PCR grade water (Thermo-Fisher, Waltham, MA). Restriction digestion was done with 2.5 µl 

10xCutSmart buffer and 1 µl MspI (NEB) for 18 h at 37  oC and 20 min at 65 oC . 0.5 µl 10xCutSmart 

buffer, 0.3 µl dACGTP mixture (100 mM dATP, 10 mM dCTP, 10 mM dGTP), 1 µl Klenow (exo-, 

5U/µl, NEB) and 2.6 µl RT-PCR water, 0.6 µl 50 mM DTT (ThermoFisher) was added to the mixture 
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for end repair and A-overhang addition with the program 30  oC for 20 min, 37 oC for 1 h and 75 oC 

for 20 min. Adapter ligation was then performed with 1 µl 10xThermoFisher HC T4 ligase buffer, 

0.4 µl 100 mM ATP (ThermoFisher), 0.2 µl 50 mM DTT, 1 µl ThermoFisher HC T4 DNA ligase (30 

Weiss Unit/µl), 5 ng home-made duplex UMI adapter with all the cytosines methylated (protocol 

adopted from Kennedy et al. [2]) at 16 oC for 20 h and 65 oC for 20 min. Bisulfite conversion of the 

adapter-ligated product was carried out with QIAGEN EpiTect plus DNA bisulfite kit following their 

protocol for two rounds of conversion. The converted product was purified with Qiagen MinElute 

spin column and eluted with 20 µl RT-PCR water. PCR amplification was done using the NEBNext 

Multiplex Oligos for Illumina (2.5 µl of universal and index primer each) and 25 µl KAPA HiFi 

HotStart Uracil+ ReadyMix (Roche) with the following cycling conditions: 98  oC for 45 s, 15 cycles 

of 98  oC for 15 s, 60  oC for 30 s and 72  oC for 30 s, followed by a final extension at 72  oC for 5 min. 

The PCR product was purified with 1x AmpureXP beads and eluted with 30 µl EB buffer. DNA 

concentration was measured by Qubit 1xdsDNA HS assay. 5% TBE-UREA PAGE and bioanalyzer 

assay was performed as quality control on each library before sequencing.  

 

S3. Data preprocessing and analysis. 

We performed three steps to preprocess cfMethyl-Seq data. In Step 1, we removed the UMI 

sequence and trimmed the raw sequencing reads. Our custom adapters contain an 8 bp random 

UMI and a 5 bp fixed sequence at the beginnings of both forward and reverse reads. These 

sequences are removed before adapter trimming (and written into the read name). Then Trimgalore 

[4] was used to trim the default Illumina adapters from the sequencing reads (using the options --

three_prime_clip_R1 15 --three_prime_clip_R2 13 --clip_R2 2 --length 15 --phred33). In Step 2, we 

performed sequence alignment, deduplication, and methylation calling. We first used Bismark [5] 

to align the trimmed reads to the reference genome hg19 [6] (GRCh37 (GCA 000001405.1)). Then 

Umi-Grinder [7] was used to remove PCR duplicates based on the UMI labels (now in the read 

names), allowing 4 mismatches in the total 16 bp UMI. Bismark methylation extractor was then 

used to call methylation in the mapped, deduplicated reads. In Step 3, the paired reads R1 and R2 

were merged to form one fragment based on their mapping location. Tissue RRBS samples were 

preprocessed in the same manner as cfMethylSeq data.  

 

S4. Orthogonal validation of the tissue marker atlas 

We curated orthogonal validation data from public databases (Supplementary Table 6), including 

the whole-genome bisulfite sequencing (WGBS) data from the Epigenome Roadmap projects [8], 



 

 

4 

 

the RNA-seq data from the GTEx project [9], and the chromatin immunoprecipitation sequencing 

(ChIP-seq) data from the ENCODE project [10]. The tissue sites of these data were matched with 

our tissue RRBS data. Note that not all 29 tissue types in our analysis can find validation data in 

these public databases, so only those tissue types with available data were validated.  

S4.1. Validation of the reproducibility using WGBS data from the Epigenome Roadmap 

projects 

The WGBS data from the Epigenome Roadmap projects (16 samples from 14 tissue types) were 

downloaded as the bigwig files containing the total allele count and the methylated allele count at 

individual CpG sites. We calculated the beta values for the tissue-specific methylation markers of 

our atlas from the bigwig files. The beta values were calculated as the proportion of the methylated 

alleles in all alleles across the marker region. To validate the tissue-specific markers in our atlas, 

on the WGBS data from the Epigenome Roadmap project, we calculated the fold change of the 

average beta values at a marker between the tissues in the positive and negative groups from 

which the marker was selected. On the RRBS data of our tissue samples, we performed a one-

sided Wilcoxon rank-sum test (comparing less methylated tissues with more methylated tissues) 

on the count of tissue-specific fragments. We calculated fold changes on the WGBS data due to 

the very limited sample size. There were only one or two samples per tissue type, which was 

inadequate for statistical test. On the contrary, our RRBS data contained 6~57 samples (median 

15) per tissue type, so we performed statistical test on our RRBS data. From our marker discovery 

method, the tissues in the positive group were supposed to have a lower methylation level than 

those in the negative group. Therefore, we treated the markers with a fold change < 1 in the WGBS 

data as having consistent tissue-specific methylation patterns with our marker atlas. The markers 

with consistent methylation patterns were considered to be reproducible in the independent 

dataset. In this independent dataset, 92.9% of the tissue markers showed tissue-specific 

methylation consistent with our tissue RRBS data (Figure 2b and Supplementary Figure 1a). This 

indicated that the tissue marker atlas captured real tissue-specific methylation patterns 

reproducible in other tissue samples. 

S4.2. Marker association with tissue-specific transcription activity using RNA-seq data from 

the GTEx project  

The RNA-seq data from the GTEx projects were downloaded as a numeric matrix containing the 

transcript per million (TPM) for each transcript. Since our tissue samples were also from the GTEx 

projects, we can find the matched RNA-seq data of the tissue samples from which our tissue RRBS 

data were generated. Therefore, we included these samples in our validation analysis. These 

matched RNA-seq data could show whether the tissue-specific differentially methylated regions 
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identified from our tissue RRBS data impacted the tissue-specific transcriptome. To map the 

transcription data to the tissue-specific markers, we overlapped the promoter regions (defined by 

GeneHancer [11]) with the tissue-specific marker regions. If a gene promoter was identified to have 

over 50% overlap with a tissue-specific marker, we mapped the TPM of that gene to the tissue-

specific marker. To evaluate the tissue specificity of transcription activity, we performed Wilcoxon 

rank-sum tests on the transcription levels between the corresponding tissues from which the gene-

associated markers were identified. At 63.0% of tissue markers, we observed increased gene 

transcription levels when the corresponding promoter regions were hypomethylated in the tissue 

types (Figure 2d). The tissue-specific transcription pattern implied that the methylation level at the 

tissue markers in our atlas may impact the downstream transcription activity.  

S4.3. Marker validation for the association with tissue-specific histone modification using 

ChIP-seq data from the ENCODE project 

We downloaded the ChIP-seq data (72 samples of 19 tissue types) for the histone modification 

H3K27ac from the ENCODE project as the bed files of replicated peak calls. Specifically, in a tissue 

marker region, for each tissue type, we calculated the peak frequency among the samples, i.e., the 

fraction of tissue samples that had H3K27ac peak calls overlapping with the tissue marker region. 

To evaluate the tissue-specific H3K27ac modification, we calculated the fold change of the peak 

frequency at a marker between the tissues in the positive and negative groups from which the 

marker was selected. Note that we calculated fold changes because there were only one peak 

frequency profile per tissue type, which was not enough for statistical tests. We observed consistent 

tissue-specific H3K27ac modification at 93.7% of the tissue markers (Figure 2c and Supplementary 

Figure 1b). A hypomethylated region for a tissue usually corresponds to a tissue-specific elevation 

of H3K27ac modification, consistent with previous studies [8][12].  

S4.4. Validation of tissue-specific markers by their association with tissue-specific 

transcription regulation   

We performed the enrichment analysis for the transcription factor binding motifs at the tissue-

specific markers. The enriched transcription factor binding motifs were identified using HOMER 

[13] findMotifsGenome.pl with the hg19 reference genome and an input bed file of the genomic 

coordinates of the tissue-specific markers used in the tissue deconvolution. We found that the 

enriched motifs are mostly related to development, differentiation, and tissue-specific expression 

(Figure 2e and Supplementary Table 2). For example, HOXD12 was the top 3 enriched motif, which 

was part of the developmental regulatory system [14][15]. The transcription factors that regulated 

specific tissue development and differentiation were also enriched, such as MEF2A, MEF2B, and 

MEF2C for the muscle, GSC for the nervous system, USF2 for the mammary gland (in the breast), 
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COUP-TFI for the adipose tissue, MR2F2 for the ovary, BAPX1 for the stomach, NKX3.1 for the 

prostate, and GLIS3 for the pancreas, thyroid, liver, and kidney [14][15]. These results indicated 

that the tissue markers may involve in tissue-specific biological processes. 

 

S5. cfSort workflow. 

S5.1. Input data preprocessing 

After the preprocessing of the raw sequencing reads, we need to convert the methylation 

information in the aligned DNA fragments to the numerical features at the selected tissue markers. 

From the marker selection procedure, every selected tissue marker has two associated information: 

(1) a genomic region and (2) an 𝛼-value threshold that reflects the tissue-specific methylation and 

can be used to determine the tissue-specific DNA fragments. Note that the distribution of cfDNA in 

a genomic region was impacted by the epigenetics (e.g. the nucleosome positioning) of the cells 

which the cfDNA originates from. Thus different epigenetics in different tissues can affect the tissue 

contribution of the cfDNA in a local genomic region, thus affecting the methylation profiles of the 

cfDNA. In other words, the tissue composition at the small-sized tissue markers can deviate from 

the overall tissue composition. As a result, the cfDNA methylation profiles in the small-sized tissue 

markers can be unstably fluctuated, which further impairs the data quality and tissue deconvolution 

performance. To address the challenge of this data characteristic, we designed a strategy of 

combining tissue markers of small genomic regions into large-size merged markers that are robust 

against the local read distribution variation. Specifically, we performed constrained K-means 

clustering [16] on the individual markers from each comparison (e.g. liver vs. non-liver tissues), 

allowing four to seven individual markers in a cluster. The clustering was based on the methylation 

profiles of the training tissue samples. In this way, the markers with similar methylation profiles 

among tissues will be clustered together. Then we combined the individual markers in a cluster. 

Because the markers within a cluster have similar methylation profiles across tissues, they share 

similar tissue-specific methylation signals. Therefore, the tissue-specific methylation signals in 

individual markers will not be blurred in the merged marker. As a result, the merged markers 

(approximately 400bp to 1000bp) had a much larger size compared to the DNA wrapped around a 

nucleosome (approximately 166bp [17][18]), which can make methylation at the merged-marker 

level effectively robust against the local read distribution variation due to the nucleosome 

positioning. For every merged tissue marker, we derived a numerical feature, by calculating the 

fraction of tissue-specific DNA fragments across all individual markers within this merged marker. 

The tissue-specific DNA fragments were identified at every individual marker as the DNA fragment 

with 𝛼-value above the marker-specific threshold. 
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Then we transformed the feature values to make the input data more suitable for machine learning. 

Firstly, we transformed the features to the logarithmic space using the log1p function in the python 

NumPy package [19]. This transformation accounted for the heteroscedasticity and improved the 

statistical properties of the features [20]. Secondly, we rescaled every feature to the range [0,1], 

making the features at the same scale. Because the raw features were the fraction of tissue-specific 

reads at every marker, these features were not impacted by per-sample variation in the sequencing 

depth. Therefore, additional per-sample scaling was not necessary. After the two rescaling steps, 

the data were ready to be used as the input of cfSort. Note that the rescaling factors were learned 

only from the training data. To preprocess the validation, testing, or any new data, we applied the 

same rescaling factors. Therefore, there was no data leakage in the preprocessing step.  

S5.2. cfSort model 

The cfSort model was built by supervised training on the simulated cfMethyl-Seq data of the in 

silico cfDNA samples for deconvolving the fractions of the 29 tissue types in cfDNA. The cfSort 

model is an ensemble of two DNNs, which can effectively reduce the prediction variance as 

previously reported [21].  The two DNNs have three dense hidden layers with a decreased number 

of nodes (1024, 512, 128, and 256, 128, 32 respectively), which finally connect to an output layer 

with 29 nodes. In each dense layer, we will use the rectified linear unit [22] as an activation function 

to implement the nonlinearity of methylation caused by the tissue epigenetics and generate higher-

order latent representations of the tissue signatures. Considering the complexity and diversity of 

our training data, we applied a batch normalization layer before each dense layer to standardize 

the contributions of each merged marker and each training batch. This was proven effective to 

stabilize and accelerate the training process [23]. We also applied a dropout layer after each dense 

layer (with the dropout rate 0, 0.05, 0, and 0, 0, 0 respectively for the two DNNs) to regularize the 

DNN to increase model robustness and avoid overfitting [24].  Since the tissue composition 

naturally adds up to 1, we used the Softmax activation function in the output layer. We used python 

and the TensorFlow library to implement the cfSort model. 

S5.3. Model training and prediction 

After data preprocessing, the cfSort model was trained on the simulated cfMethyl-Seq data 

generated from the mixtures of RRBS data of real tissue samples with known tissue composition. 

To train the model, we used the state-of-the-art optimizer Adam [25] with a learning rate of 0.001 

and a batch size of 32. We used the mean absolute error between the estimated tissue composition 

and the ground truth as the loss function. In addition, we utilized the early stopping strategy to 

further avoid overfitting, which has proven effective in cell-type proportion estimation with gene 

expression data [20]. Specifically, we evaluated the mean absolute error on the validation data (i.e., 
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the validation loss) after each epoch. If the validation loss did not drop after 10 epochs, we 

terminated the training process. We also tried waiting for 5 epochs, which did not have much impact 

on the performance. To predict tissue composition on the real cfDNA sample (or simulated testing 

cfDNA sample) with the cfSort, we can extract the methylation profile of the merged markers from 

the raw data of a cfDNA sample into the trained cfSort model, and a predicted tissue composition 

consisting of fractions of 29 tissue types will be generated. 

 

S6. Comparison with two existing methods. 

S6.1. Non-negative least squares (NNLS) 

Non-negative least squares or quadratic programming was widely used in methylation-based tissue 

deconvolution [26][27][28]. This method assumes and models cfDNA methylation as a linear 

combination of the tissue methylation in the reference tissue samples at tissue markers. Then it 

determines the tissue composition using quadratic programming [26][27][28]. Because the tissue 

markers used in these methods were identified from a limited number of samples for each tissue 

type, these markers cannot cover all tissue types in our analysis and may not be representative 

enough for each tissue type under the inter-individual variance. To fairly compare the non-negative 

least squares with cfSort, we identified the new markers using our training and validation sets of 

the tissue RRBS samples using the tissue marker selection procedure of Sun et al. [26]. Then we 

used the training and validation tissue RRBS samples as the reference samples and extracted the 

reference tissue methylation profiles from them. The reference methylation profile was calculated 

as the averaged methylation levels of the training and validation RRBS samples for each tissue 

type. The reference profiles were then used in the quadratic programming to estimate the tissue 

composition in the testing samples.  

S6.2. CelFIE 

CelFIE is a recent tissue deconvolution algorithm that uses an expectation maximization (EM) 

algorithm [29]. CelFIE required a reference methylation profile per tissue type, and then it optimized 

the estimated tissue fractions by maximizing the likelihood of the observed methylation levels in 

the cfDNA. CelFIE included a tissue marker selection pipeline. Therefore, we directly applied its 

marker selection method to the reference methylation profiles of the 29 tissue types. The reference 

methylation profile was calculated as the average normalized methylated read counts and the 

average normalized total read counts of the training and validation RRBS samples for each tissue 

type. Based on the reference tissue profiles and the selected markers, CelFIE was directly applied 

to the testing samples.   
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Fig. S1. Marker validation in (a) the Epigenome Roadmap WGBS data and (b) the ENCODE 

H3K27ac ChIP-seq data. (a) Heatmaps of the average methylation level at the tissue markers in 

our RRBS data (left) and in the Epigenome Roadmap WGBS data (right). (b) Heatmaps of the 

average methylation level at the tissue markers in our RRBS data (left) and the peak frequency in 

ENCODE H3K27ac ChIP-seq data (right). The rows in the left and right subfigures correspond to 

the tissue markers that were sorted in the same order in (a) and (b). Only the tissue markers with 

available data in the Epigenome Roadmap project and the ENCODE project were shown in (a) and 

(b) respectively.  

  

Supplementary Figure 2
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Fig. S2. Overview of the tissue sample used for the marker discovery, model training, 

validation, and testing. All tissue samples were randomly split into three sets, used for the model 

training (75%), validation (10%), and testing (15%). The training set and the validation set were 

used in the marker selection. 

  

Supplementary Figure 4
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Fig. S3. The detailed procedure of the generation of a simulated cfMethylSeq sample. In four 

steps, we generated a simulated cfMethylSeq sample. In Step 1, we first selected the tissue types 

that contributed positive fractions to the simulated sample. WBC always contributed positively to 

the final mixture. In Step 2, we chose an original tissue sample at random for each selected tissue 

type and WBC. In Step 3, we created a random tissue composition for the simulated sample. We 

set the tissue fraction to zero if a tissue type was not chosen in Step 1, and we required WBC to 

always have the highest tissue fraction. In Step 4, we sampled sequencing reads at random from 

the selected samples (from Step 2) based on tissue composition (generated in Step 3). 
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Fig. S4. The detection limit of cfSort (a), NNLS (b), and CelFiE (c) on dilution series at 40x, 

60x, 90x, and 120x. The detection limit was measured by the statistical significance of a one-sided 

Student’s t-test between the estimated tissue fractions of the samples at every dilution level and 

the control samples (i.e., 0% tissue fraction). The statistical significance in the figures indicated the 

p-values of the one-sided Student’s t-tests at 0.5% and 1%: “ns” means not statistically significant 

(p-value > 0.05); “*” means p-value < 0.05; “**” means p-value < 0.01; “***” means p-value < 0.001; 

“****” means p-value < 0.0001. 
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Fig. S5. The tissue fraction of all tissue types estimated from the cfMethyl-Seq data of the 

plasma samples in the main text Figures 6 and 7. (a) Bar plots of the tissue composition in the 

cfDNA samples. (b) Violin plots of the tissue fractions in each clinical cohorts for individual tissue 

types. 
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Fig. S6. The tissue-derived cfDNA fractions of the host tissue in the cancer patients at 

different stages. The plasma samples from cancer patients were divided based on the cancer 

stages. The early stage included plasma samples from stage I and II patients; the late stage 

included plasma samples from stage III and IV patients. The title of the subfigures indicated the 

cancer types. For each cancer type, the value on the y-axis showed the host tissue fraction in the 

cfDNA estimated from cfSort. The number on the top of each violin showed the number of samples 

within the violin. 
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Table S1. The number of tissue samples for the 29 tissue types. 

tissue type total training validation test 

adipose tissue 22 18 2 2 

adrenal gland  14 11 2 1 

bladder        6 4 1 1 

blood vessel   30 23 3 4 

breast         15 11 2 2 

cervix uteri   11 8 1 2 

colon          29 22 3 4 

esophagus      44 34 4 6 

fallopian tube 6 4 1 1 

heart          24 17 3 4 

kidney         13 10 1 2 

liver          12 10 1 1 

lung           16 12 2 2 

muscle         10 7 1 2 

nerve          13 10 1 2 

ovary          16 11 2 3 

pancreas       14 11 1 2 

pituitary      15 10 2 3 

prostate       13 9 2 2 

salivary gland 14 11 1 2 

skin           23 18 2 3 

small intestine 16 12 2 2 

spleen         18 13 2 3 

stomach        14 11 1 2 

testis         16 12 2 2 

thyroid        11 9 1 1 

uterus         12 9 1 2 

vagina         17 12 2 3 

WBC            57 51 2 4 
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Table S2. The enriched transcription factor binding motifs at the tissue markers.  

Motif Name P-value 
q-value 
Benjamini 

Mef2a(MADS)/HL1-Mef2a.biotin-ChIP-Seq(GSE21529)/Homer 1e-663 0 

Mef2c(MADS)/GM12878-Mef2c-ChIP-Seq(GSE32465)/Homer 1e-631 0 

Hoxd12(Homeobox)/ChickenMSG-Hoxd12.Flag-ChIP-
Seq(GSE86088)/Homer 1e-628 0 

GSC(Homeobox)/FrogEmbryos-GSC-ChIP-
Seq(DRA000576)/Homer 1e-529 0 

Mef2b(MADS)/HEK293-Mef2b.V5-ChIP-Seq(GSE67450)/Homer 1e-518 0 

EAR2(NR)/K562-NR2F6-ChIP-Seq(Encode)/Homer 1e-400 0 

Usf2(bHLH)/C2C12-Usf2-ChIP-Seq(GSE36030)/Homer 1e-346 0 

COUP-TFII(NR)/K562-NR2F1-ChIP-Seq(Encode)/Homer 1e-338 0 

CRX(Homeobox)/Retina-Crx-ChIP-Seq(GSE20012)/Homer 1e-325 0 

Nkx3.1(Homeobox)/LNCaP-Nkx3.1-ChIP-Seq(GSE28264)/Homer 
1.00E-

301 0 

Bapx1(Homeobox)/VertebralCol-Bapx1-ChIP-
Seq(GSE36672)/Homer 

1.00E-
290 0 

Npas4(bHLH)/Neuron-Npas4-ChIP-Seq(GSE127793)/Homer 
1.00E-

280 0 

COUP-TFII(NR)/Artia-Nr2f2-ChIP-Seq(GSE46497)/Homer 
1.00E-

272 0 

RARa(NR)/K562-RARa-ChIP-Seq(Encode)/Homer 
1.00E-

185 0 

THRb(NR)/Liver-NR1A2-ChIP-Seq(GSE52613)/Homer 
1.00E-

153 0 

Erra(NR)/HepG2-Erra-ChIP-Seq(GSE31477)/Homer 
1.00E-

149 0 

GLIS3(Zf)/Thyroid-Glis3.GFP-ChIP-Seq(GSE103297)/Homer 
1.00E-

140 0 

Pitx1(Homeobox)/Chicken-Pitx1-ChIP-Seq(GSE38910)/Homer 
1.00E-

132 0 

ZNF711(Zf)/SHSY5Y-ZNF711-ChIP-Seq(GSE20673)/Homer 
1.00E-

111 0 

Mef2d(MADS)/Retina-Mef2d-ChIP-Seq(GSE61391)/Homer 
1.00E-

106 0 

Reverb(NR),DR2/RAW-Reverba.biotin-ChIP-
Seq(GSE45914)/Homer 

1.00E-
104 0 

SF1(NR)/H295R-Nr5a1-ChIP-Seq(GSE44220)/Homer 1.00E-86 0 

Nr5a2(NR)/Pancreas-LRH1-ChIP-Seq(GSE34295)/Homer 1.00E-56 0 

HIF-1b(HLH)/T47D-HIF1b-ChIP-Seq(GSE59937)/Homer 1.00E-56 0 

HIF-1a(bHLH)/MCF7-HIF1a-ChIP-Seq(GSE28352)/Homer 1.00E-44 0 

Atf1(bZIP)/K562-ATF1-ChIP-Seq(GSE31477)/Homer 1.00E-44 0 

ARE(NR)/LNCAP-AR-ChIP-Seq(GSE27824)/Homer 1.00E-44 0 

p73(p53)/Trachea-p73-ChIP-Seq(PRJNA310161)/Homer 1.00E-41 0 

HIF2a(bHLH)/785_O-HIF2a-ChIP-Seq(GSE34871)/Homer 1.00E-38 0 

Esrrb(NR)/mES-Esrrb-ChIP-Seq(GSE11431)/Homer 1.00E-37 0 

Cdx2(Homeobox)/mES-Cdx2-ChIP-Seq(GSE14586)/Homer 1.00E-35 0 
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Jun-AP1(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 1.00E-34 0 

p53(p53)/mES-cMyc-ChIP-Seq(GSE11431)/Homer 1.00E-33 0 

HIC1(Zf)/Treg-ZBTB29-ChIP-Seq(GSE99889)/Homer 1.00E-32 0 

ERRg(NR)/Kidney-ESRRG-ChIP-Seq(GSE104905)/Homer 1.00E-31 0 

MITF(bHLH)/MastCells-MITF-ChIP-Seq(GSE48085)/Homer 1.00E-31 0 

Smad2(MAD)/ES-SMAD2-ChIP-Seq(GSE29422)/Homer 1.00E-29 0 

EBNA1(EBV-virus)/Raji-EBNA1-ChIP-Seq(GSE30709)/Homer 1.00E-28 0 

Atf2(bZIP)/3T3L1-Atf2-ChIP-Seq(GSE56872)/Homer 1.00E-28 0 

Fosl2(bZIP)/3T3L1-Fosl2-ChIP-Seq(GSE56872)/Homer 1.00E-28 0 

Tlx?(NR)/NPC-H3K4me1-ChIP-Seq(GSE16256)/Homer 1.00E-27 0 

Atf7(bZIP)/3T3L1-Atf7-ChIP-Seq(GSE56872)/Homer 1.00E-27 0 

LXRE(NR),DR4/RAW-LXRb.biotin-ChIP-Seq(GSE21512)/Homer 1.00E-27 0 

Smad4(MAD)/ESC-SMAD4-ChIP-Seq(GSE29422)/Homer 1.00E-24 0 

p53(p53)/Saos-p53-ChIP-Seq(GSE15780)/Homer 1.00E-24 0 

p53(p53)/Saos-p53-ChIP-Seq/Homer 1.00E-24 0 

THRa(NR)/C17.2-THRa-ChIP-Seq(GSE38347)/Homer 1.00E-22 0 

Hoxd13(Homeobox)/ChickenMSG-Hoxd13.Flag-ChIP-
Seq(GSE86088)/Homer 1.00E-22 0 

CDX4(Homeobox)/ZebrafishEmbryos-Cdx4.Myc-ChIP-
Seq(GSE48254)/Homer 1.00E-22 0 

Tbx5(T-box)/HL1-Tbx5.biotin-ChIP-Seq(GSE21529)/Homer 1.00E-22 0 

Nr5a2(NR)/mES-Nr5a2-ChIP-Seq(GSE19019)/Homer 1.00E-21 0 

Ascl2(bHLH)/ESC-Ascl2-ChIP-Seq(GSE97712)/Homer 1.00E-20 0 

p63(p53)/Keratinocyte-p63-ChIP-Seq(GSE17611)/Homer 1.00E-20 0 

Hoxa13(Homeobox)/ChickenMSG-Hoxa13.Flag-ChIP-
Seq(GSE86088)/Homer 1.00E-17 0 

GRE(NR),IR3/A549-GR-ChIP-Seq(GSE32465)/Homer 1.00E-16 0 

HOXB13(Homeobox)/ProstateTumor-HOXB13-ChIP-
Seq(GSE56288)/Homer 1.00E-15 0 

CLOCK(bHLH)/Liver-Clock-ChIP-Seq(GSE39860)/Homer 1.00E-15 0 

Elk4(ETS)/Hela-Elk4-ChIP-Seq(GSE31477)/Homer 1.00E-15 0 

Atoh1(bHLH)/Cerebellum-Atoh1-ChIP-Seq(GSE22111)/Homer 1.00E-15 0 

ZFX(Zf)/mES-Zfx-ChIP-Seq(GSE11431)/Homer 1.00E-15 0 

ZNF136(Zf)/HEK293-ZNF136.GFP-ChIP-Seq(GSE58341)/Homer 1.00E-15 0 

FoxD3(forkhead)/ZebrafishEmbryo-Foxd3.biotin-ChIP-
seq(GSE106676)/Homer 1.00E-14 0 

NeuroG2(bHLH)/Fibroblast-NeuroG2-ChIP-Seq(GSE75910)/Homer 1.00E-14 0 

Fos(bZIP)/TSC-Fos-ChIP-Seq(GSE110950)/Homer 1.00E-13 0 

TEAD1(TEAD)/HepG2-TEAD1-ChIP-Seq(Encode)/Homer 1.00E-13 0 

Slug(Zf)/Mesoderm-Snai2-ChIP-Seq(GSE61475)/Homer 1.00E-13 0 

FOXA1(Forkhead)/MCF7-FOXA1-ChIP-Seq(GSE26831)/Homer 1.00E-13 0 

PGR(NR)/EndoStromal-PGR-ChIP-Seq(GSE69539)/Homer 1.00E-12 0 

GATA(Zf),IR4/iTreg-Gata3-ChIP-Seq(GSE20898)/Homer 1.00E-12 0 

BATF(bZIP)/Th17-BATF-ChIP-Seq(GSE39756)/Homer 1.00E-12 0 
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Hnf1(Homeobox)/Liver-Foxa2-Chip-Seq(GSE25694)/Homer 1.00E-11 0 

CREB5(bZIP)/LNCaP-CREB5.V5-ChIP-Seq(GSE137775)/Homer 1.00E-11 0 

JunB(bZIP)/DendriticCells-Junb-ChIP-Seq(GSE36099)/Homer 1.00E-11 0 

Fra1(bZIP)/BT549-Fra1-ChIP-Seq(GSE46166)/Homer 1.00E-11 0 

TEAD3(TEA)/HepG2-TEAD3-ChIP-Seq(Encode)/Homer 1.00E-10 0 

Foxa2(Forkhead)/Liver-Foxa2-ChIP-Seq(GSE25694)/Homer 1.00E-10 0 

TEAD4(TEA)/Tropoblast-Tead4-ChIP-Seq(GSE37350)/Homer 1.00E-10 0 

HOXA2(Homeobox)/mES-Hoxa2-ChIP-
Seq(Donaldson_et_al.)/Homer 1.00E-10 0 

Fra2(bZIP)/Striatum-Fra2-ChIP-Seq(GSE43429)/Homer 1.00E-09 0 

MyoG(bHLH)/C2C12-MyoG-ChIP-Seq(GSE36024)/Homer 1.00E-09 0 

FOXA1(Forkhead)/LNCAP-FOXA1-ChIP-Seq(GSE27824)/Homer 1.00E-09 0 

Hoxd11(Homeobox)/ChickenMSG-Hoxd11.Flag-ChIP-
Seq(GSE86088)/Homer 1.00E-09 0 

Max(bHLH)/K562-Max-ChIP-Seq(GSE31477)/Homer 1.00E-09 0 

Otx2(Homeobox)/EpiLC-Otx2-ChIP-Seq(GSE56098)/Homer 1.00E-09 0 

c-Myc(bHLH)/mES-cMyc-ChIP-Seq(GSE11431)/Homer 1.00E-08 0 

USF1(bHLH)/GM12878-Usf1-ChIP-Seq(GSE32465)/Homer 1.00E-08 0 

TCF4(bHLH)/SHSY5Y-TCF4-ChIP-Seq(GSE96915)/Homer 1.00E-08 0 

Arnt:Ahr(bHLH)/MCF7-Arnt-ChIP-Seq(Lo_et_al.)/Homer 1.00E-08 0 

TEAD2(TEA)/Py2T-Tead2-ChIP-Seq(GSE55709)/Homer 1.00E-08 0 

FXR(NR),IR1/Liver-FXR-ChIP-Seq(Chong_et_al.)/Homer 1.00E-08 0 

E2A(bHLH)/proBcell-E2A-ChIP-Seq(GSE21978)/Homer 1.00E-08 0 

ZNF519(Zf)/HEK293-ZNF519.GFP-ChIP-Seq(GSE58341)/Homer 1.00E-07 0 

c-Jun-CRE(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 1.00E-07 0 

Hoxa11(Homeobox)/ChickenMSG-Hoxa11.Flag-ChIP-
Seq(GSE86088)/Homer 1.00E-07 0 

THRb(NR)/HepG2-THRb.Flag-ChIP-Seq(Encode)/Homer 1.00E-07 0 

Hoxc9(Homeobox)/Ainv15-Hoxc9-ChIP-Seq(GSE21812)/Homer 1.00E-07 0 

Unknown(Homeobox)/Limb-p300-ChIP-Seq/Homer 1.00E-07 0 

AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512)/Homer 1.00E-07 0 

HEB(bHLH)/mES-Heb-ChIP-Seq(GSE53233)/Homer 1.00E-07 0 

Olig2(bHLH)/Neuron-Olig2-ChIP-Seq(GSE30882)/Homer 1.00E-07 0 

Ptf1a(bHLH)/Panc1-Ptf1a-ChIP-Seq(GSE47459)/Homer 1.00E-06 0 

Foxa3(Forkhead)/Liver-Foxa3-ChIP-Seq(GSE77670)/Homer 1.00E-06 0 

FoxL2(Forkhead)/Ovary-FoxL2-ChIP-Seq(GSE60858)/Homer 1.00E-06 0 

NPAS2(bHLH)/Liver-NPAS2-ChIP-Seq(GSE39860)/Homer 1.00E-06 0 

Stat3(Stat)/mES-Stat3-ChIP-Seq(GSE11431)/Homer 1.00E-06 0 

Myf5(bHLH)/GM-Myf5-ChIP-Seq(GSE24852)/Homer 1.00E-05 0 

Tcf12(bHLH)/GM12878-Tcf12-ChIP-Seq(GSE32465)/Homer 1.00E-05 0 

MafB(bZIP)/BMM-Mafb-ChIP-Seq(GSE75722)/Homer 1.00E-05 0 

Tcf21(bHLH)/ArterySmoothMuscle-Tcf21-ChIP-
Seq(GSE61369)/Homer 1.00E-05 0 
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Atf3(bZIP)/GBM-ATF3-ChIP-Seq(GSE33912)/Homer 1.00E-05 0 

Oct4:Sox17(POU,Homeobox,HMG)/F9-Sox17-ChIP-
Seq(GSE44553)/Homer 1.00E-05 0 

Brachyury(T-box)/Mesoendoderm-Brachyury-ChIP-
exo(GSE54963)/Homer 1.00E-05 0 

Twist2(bHLH)/Myoblast-Twist2.Ty1-ChIP-Seq(GSE127998)/Homer 1.00E-05 0 

Pit1+1bp(Homeobox)/GCrat-Pit1-ChIP-Seq(GSE58009)/Homer 1.00E-05 0 

bHLHE40(bHLH)/HepG2-BHLHE40-ChIP-Seq(GSE31477)/Homer 1.00E-05 0 

NeuroD1(bHLH)/Islet-NeuroD1-ChIP-Seq(GSE30298)/Homer 1.00E-04 0.0001 

IRF4(IRF)/GM12878-IRF4-ChIP-Seq(GSE32465)/Homer 1.00E-04 0.0001 

Ap4(bHLH)/AML-Tfap4-ChIP-Seq(GSE45738)/Homer 1.00E-04 0.0001 

Hoxd10(Homeobox)/ChickenMSG-Hoxd10.Flag-ChIP-
Seq(GSE86088)/Homer 1.00E-04 0.0002 

BHLHA15(bHLH)/NIH3T3-BHLHB8.HA-ChIP-
Seq(GSE119782)/Homer 1.00E-04 0.0002 

KLF5(Zf)/LoVo-KLF5-ChIP-Seq(GSE49402)/Homer 1.00E-03 0.0004 

FOXK1(Forkhead)/HEK293-FOXK1-ChIP-Seq(GSE51673)/Homer 1.00E-03 0.0004 

Ascl1(bHLH)/NeuralTubes-Ascl1-ChIP-Seq(GSE55840)/Homer 1.00E-03 0.0006 

Rfx6(HTH)/Min6b1-Rfx6.HA-ChIP-Seq(GSE62844)/Homer 1.00E-03 0.0008 

Foxf1(Forkhead)/Lung-Foxf1-ChIP-Seq(GSE77951)/Homer 1.00E-03 0.001 

Bach1(bZIP)/K562-Bach1-ChIP-Seq(GSE31477)/Homer 1.00E-03 0.0017 

FOXM1(Forkhead)/MCF7-FOXM1-ChIP-Seq(GSE72977)/Homer 1.00E-03 0.0023 

MafF(bZIP)/HepG2-MafF-ChIP-Seq(GSE31477)/Homer 1.00E-03 0.0031 

Snail1(Zf)/LS174T-SNAIL1.HA-ChIP-Seq(GSE127183)/Homer 1.00E-02 0.0033 

PRDM9(Zf)/Testis-DMC1-ChIP-Seq(GSE35498)/Homer 1.00E-02 0.006 

Tcfcp2l1(CP2)/mES-Tcfcp2l1-ChIP-Seq(GSE11431)/Homer 1.00E-02 0.0073 

Hoxb4(Homeobox)/ES-Hoxb4-ChIP-Seq(GSE34014)/Homer 1.00E-02 0.0075 

Elk1(ETS)/Hela-Elk1-ChIP-Seq(GSE31477)/Homer 1.00E-02 0.0075 

Pitx1:Ebox(Homeobox,bHLH)/Hindlimb-Pitx1-ChIP-
Seq(GSE41591)/Homer 1.00E-02 0.0075 

PAX6(Paired,Homeobox)/Forebrain-Pax6-ChIP-
Seq(GSE66961)/Homer 1.00E-02 0.0081 

PBX2(Homeobox)/K562-PBX2-ChIP-Seq(Encode)/Homer 1.00E-02 0.0137 

ZNF322(Zf)/HEK293-ZNF322.GFP-ChIP-Seq(GSE58341)/Homer 1.00E-02 0.0145 

ZNF165(Zf)/WHIM12-ZNF165-ChIP-Seq(GSE65937)/Homer 1.00E-02 0.0167 

Foxo3(Forkhead)/U2OS-Foxo3-ChIP-Seq(E-MTAB-2701)/Homer 1.00E-02 0.021 

REST-NRSF(Zf)/Jurkat-NRSF-ChIP-Seq/Homer 1.00E-02 0.0224 

Stat3+il21(Stat)/CD4-Stat3-ChIP-Seq(GSE19198)/Homer 1.00E-02 0.0227 

GRHL2(CP2)/HBE-GRHL2-ChIP-Seq(GSE46194)/Homer 1.00E-02 0.0245 

TFE3(bHLH)/MEF-TFE3-ChIP-Seq(GSE75757)/Homer 1.00E-01 0.0342 

Barx1(Homeobox)/Stomach-Barx1.3xFlag-ChIP-
Seq(GSE69483)/Homer 1.00E-01 0.0361 

ZNF143|STAF(Zf)/CUTLL-ZNF143-ChIP-Seq(GSE29600)/Homer 1.00E-01 0.0371 

NF-E2(bZIP)/K562-NFE2-ChIP-Seq(GSE31477)/Homer 1.00E-01 0.0443 
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Table S3. The p-values of the Student’s t-tests in the detection limit analysis. For the testing 

dilution series, a one-sided Student’s t-test was performed between the estimated tissue fractions 

in the samples at each dilution level and the control samples (i.e., 0% tissue fraction).  

depth 
ground truth 
tissue fraction cfSort NNLS CelFiE 

20x 0 0.5 0.5 0.5 

20x 0.001 0.028402 0.510893 0.301254 

20x 0.003 0.000292 0.562574 0.205946 

20x 0.005 3.47E-17 0.383126 0.010409 

20x 0.007 1.77E-25 0.367383 0.007062 

20x 0.01 3.57E-82 0.406064 0.000184 

20x 0.03 1.89E-246 0.165466 2.76E-78 

20x 0.05 0 0.009471 1.48E-146 

20x 0.07 0 4.90E-08 2.37E-177 

20x 0.1 0 3.59E-21 4.06E-218 

20x 0.13 0 1.16E-46 9.05E-245 

20x 0.15 0 6.60E-58 1.46E-234 

20x 0.17 0 3.94E-73 2.95E-241 

20x 0.2 0 3.44E-101 2.68E-266 

20x 0.23 0 3.66E-114 7.81E-252 

20x 0.25 0 1.69E-136 1.58E-261 

20x 0.27 0 1.90E-147 2.51E-255 

20x 0.3 0 4.04E-173 1.16E-269 

40x 0 0.5 0.5 0.5 

40x 0.001 0.002906 0.482749 0.385675 

40x 0.003 1.40E-17 0.47991 0.19932 

40x 0.005 1.51E-41 0.456067 0.03948 

40x 0.007 2.51E-60 0.446784 0.006553 

40x 0.01 2.68E-85 0.42277 5.77E-06 

40x 0.03 2.95E-174 0.241485 1.83E-60 

40x 0.05 6.08E-193 0.041948 3.25E-92 

40x 0.07 2.47E-204 7.81E-05 5.94E-107 

40x 0.1 1.50E-224 2.95E-13 2.51E-124 

60x 0 0.5 0.5 0.5 

60x 0.001 0.004528 0.488055 0.722332 

60x 0.003 2.27E-22 0.478513 0.506807 

60x 0.005 1.13E-47 0.467371 0.206796 

60x 0.007 1.75E-65 0.452665 0.007831 

60x 0.01 4.27E-89 0.437801 4.33E-05 

60x 0.03 3.93E-180 0.238676 3.24E-53 

60x 0.05 3.96E-203 0.043386 2.10E-83 

60x 0.07 6.47E-191 9.03E-05 3.01E-110 

60x 0.1 3.81E-202 5.91E-13 1.02E-122 

90x 0 0.5 0.5 0.5 

90x 0.001 1.25E-05 0.493773 0.43938 

90x 0.003 2.16E-21 0.47513 0.200315 

90x 0.005 6.67E-56 0.465318 0.021783 
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90x 0.007 7.99E-71 0.452403 0.000801 

90x 0.01 2.64E-95 0.427204 3.03E-06 

90x 0.03 1.50E-188 0.25716 7.49E-51 

90x 0.05 3.53E-195 0.035521 8.22E-82 

90x 0.07 1.79E-194 5.19E-05 4.55E-97 

90x 0.1 2.82E-212 4.54E-13 1.68E-124 

120x 0 0.5 0.5 0.5 

120x 0.001 8.13E-08 0.494404 0.172485 

120x 0.003 2.73E-28 0.478959 0.042327 

120x 0.005 1.26E-62 0.469915 0.014322 

120x 0.007 7.99E-82 0.452151 1.61E-05 

120x 0.01 1.17E-97 0.433203 2.40E-10 

120x 0.03 1.71E-193 0.248487 1.25E-52 

120x 0.05 8.28E-199 0.032637 9.31E-78 

120x 0.07 4.28E-198 5.65E-05 2.55E-96 

120x 0.1 9.17E-217 7.16E-13 3.51E-113 
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Table S4. Pearson’s correlation between the biochemical test results and the corresponding 

tissue fraction in the serial cfDNA of the NSCLC patients under anti-PD-1 immunotherapy. 

Note that the date that the patient took a biochemical test may not be exactly the same as the blood 

collection date. Therefore, we matched the biochemical test result of the nearest date to each 

plasma sample. The Pearson’s correlation was calculated between the tissue fractions from cfSort 

and the matched biochemical test results.  

patient tissue biochemical test 
Pearson 

correlation with 
tissue fraction 

test results 

plasma-304 liver ALP(LDQ) 0.7786278 abnormal 

plasma-317 kidney BUN(LDQ) 0.9993758 abnormal 

plasma-317 kidney CREATININE(LDQ) 0.9993758 abnormal 

plasma-318 liver ALP(LDQ) 0.6909728 abnormal 

plasma-318 liver ALT(LDQ) 0.9869658 abnormal 

plasma-318 liver AST(LDQ) 0.9950926 abnormal 

plasma-319 liver ALP(LDQ) 0.8451881 abnormal 

plasma-304 liver ALT(LDQ) 0.6970593 normal 

plasma-304 liver AST(LDQ) 0.9877352 normal 

plasma-304 liver DIRECT BILIRUBIN(LDQ) -0.5285949 normal 

plasma-304 liver TOTAL BILIRUBIN(LDQ) NA normal 

plasma-304 kidney BUN(LDQ) -0.3750709 normal 

plasma-304 kidney CREATININE(LDQ) NA normal 

plasma-318 liver DIRECT BILIRUBIN(LDQ) 0.99288 normal 

plasma-318 liver TOTAL BILIRUBIN(LDQ) -0.9771741 normal 

plasma-318 kidney BUN(LDQ) NA normal 

plasma-318 kidney CREATININE(LDQ) NA normal 

plasma-319 liver ALT(LDQ) 0.2862293 normal 

plasma-319 liver AST(LDQ) 0.6544237 normal 

plasma-319 liver DIRECT BILIRUBIN(LDQ) 0.5288485 normal 

plasma-319 liver TOTAL BILIRUBIN(LDQ) 0.9553871 normal 

plasma-319 kidney BUN(LDQ) NA normal 

plasma-319 kidney CREATININE(LDQ) NA normal 
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Table S5. Overlap between RRBS and the cell-type specific markers identified in a recent 

study [28].  

cell-type 
markers in [28] 

total number 
of markers 

number of 
overlapped 
markers 

fraction of 
overlapped 
markers 

top25 1246 787 63.2% 

top250 11713 6046 51.6% 

top1000 50286 23548 46.8% 
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Table S6. The source of the orthogonal validation data for the tissue marker atlas. 

consortium data URL number of samples 

Epigenome 
Roadmap WGBS 

https://egg2.wustl.edu/ 
roadmap/data/byDataType/ 
dnamethylation/WGBS/ 

1 adipose tissue, 1 adrenal gland, 
1 blood vessel, 2 colon, 1 
esophagus, 2 heart, 1 kidney, 1 
liver, 1 lung, 1 ovary, 1 pancreas, 
1 small intestine, 1 spleen, 1 
stomach 

ENCODE 
ChIP-
seq https://www.encodeproject.org/ 

1 adipose tissue, 9 adrenal gland, 
1 bladder, 5 blood vessel, 4 colon, 
5 esophagus, 9 heart, 1 kidney, 2 
liver, 6 lung, 1 muscle, 4 nerve, 1 
ovary, 8 pancreas, 1 prostate, 1 
skin, 2 small intestine, 9 spleen, 6 
stomach, 1 testis, 2 thyroid, 2 
uterus, 1 vagina 

GTEx 
RNA-
seq 

https://storage.googleapis.com/ 
gtex_analysis_v8/rna_seq_data/ 

25 adipose tissue, 15 adrenal 
gland, 6 bladder, 32 blood vessel, 
16 breast, 11 cervix uteri, 29 
colon, 45 esophagus, 7 fallopian 
tube, 26 heart, 13 kidney, 14 liver, 
16 lung, 11 muscle, 13 nerve, 17 
ovary, 14 pancreas, 17 pituitary, 
15 prostate, 14 salivary gland, 23 
skin, 16 small intestine, 18 spleen, 
14 stomach, 17 testis, 14 thyroid, 
14 uterus, 17 vagina 
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