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Appendix A 23 

A1. Nonstationary Bias Correction 24 

The daily precipitation and daily temperature (Tmax and Tmin) GCM datasets need to be bias 25 

corrected to obtain more robust and reliable estimates for the future. The present paper used the 26 

non-stationary bias correction technique – updated nonstationary CDF matching (CNCDFm) 27 

method, developed by Miao et al. (2016)1. This method is an improvement over the traditional 28 

quantile mapping approach to correct the GCM outputs. The CNCDFm method, which is a 29 

combination of EDCDFm (Equidistant CDF matching) and equiratio CDFm2, treats temperature 30 

and precipitation data separately, thus avoiding the problem of obtaining unreasonably high 31 

values of daily precipitation values.  32 

The bias-correction for temperature data can be mathematically written as, 33 

𝑥̃𝑚−𝑝.𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑥𝑚−𝑝 + 𝐹𝑜−𝑐
−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝)) − 𝐹𝑚−𝑐

−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝))    (1) 34 

The bias correction for precipitation data is as follows, 35 

𝑥̃𝑚−𝑝.𝑎𝑑𝑗𝑢𝑠𝑡 = {

𝐼(𝑥)   𝑖𝑓 𝐼(𝑥) > 0

𝑔(𝑥)  𝑖𝑓 𝐼(𝑥) < 0
0     𝑖𝑓 𝑥𝑚−𝑝 = 0

         (2) 36 

𝐼(𝑥) = 𝑥𝑚−𝑝 + 𝐹𝑜−𝑐
−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝)) − 𝐹𝑚−𝑐

−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝))      (3) 37 

and, 38 

𝐼(𝑥) = 𝑥𝑚−𝑝 ×
𝐹𝑜−𝑐
−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝))

𝐹𝑚−𝑐
−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝))

        (4) 39 

Where, 𝑥  is the meteorological variable (temperature or precipitation) of interest for observation 40 

(𝑜) or model (𝑚) corresponding to historical observation period or current climate (𝑐), or for 41 



projected future period (𝑝). 𝐹𝑚−𝑝 indicates the CDF of the model for future projection (Socio-42 

economic Pathways), and 𝐹𝑜−𝑐
−1  and 𝐹𝑚−𝑐

−1  indicate the inverse CDF functions (quantile mapping 43 

functions) for observation and model scenarios for the recent observed period (1982-2019)  44 

respectively. 45 

A2. Estimation of CDHW severity 46 

The estimation of CDHW severity in this paper is followed from the previous work by 47 

Mukherjee and Mishra (2020)3. The severity of a particular CDHW day is calculated by taking 48 

the product of the daily standardized values of maximum temperature (standardized w.r.t. the 49 

interquartile range of Tmax for the summer period of that year) and the sc-PDSI value 50 

corresponding to that week (scPDSIw). Then, the severity of a CDHW event is calculated by 51 

taking the cumulative sum of daily severity for each of the CDHW days corresponding to that 52 

CDHW event, which is given in the equation as follows, 53 

𝐶𝐷𝐻𝑊𝑠𝑖 = ∑ ((−1 × 𝑠𝑐𝑃𝐷𝑆𝐼𝑤,𝑖) × (
𝑇𝑚𝑎𝑥𝑑,𝑖−𝑇25𝑝

𝑇75𝑝−𝑇25𝑝
))

𝑑=𝐷𝑖
𝑑=1 ; 𝐷𝑖 ≥ 3, 𝑑 ∈ 𝑤   (5) 54 

Where, 𝐷𝑖is the number of CDHW days in the 𝑖𝑡ℎ CDHW event, 𝑑 indicates the heatwave days 55 

falling inside the drought week (𝑤). 𝑇max𝑑,𝑖 indicates the maximum temperature for that day, 56 

𝑇25𝑝  and 𝑇75𝑝 are the 25th and 75th percentile of daily Tmax during the summer period, 57 

respectively. It is important to know that the CDHW severity is dimensionless as it is the product 58 

of scPDSI (a standardized entity) and standardized maximum temperature.  59 

Then the mean annual CDHW severity (‘severity’ in the main text) is calculated by taking the 60 

average of events within the year. For example – if 3 CDHW events are observed with the 61 

magnitude of severities 30, 40, and 50, then the mean annual CDHW severity is 40.   62 



𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = {
(∑ 𝐶𝐷𝐻𝑊𝑠𝑖

𝑖=𝑁
𝑖=1 )

𝑁
      𝑖𝑓𝑁 ≠ 0

0                                    𝑖𝑓𝑁 = 0
      (6) 63 

Where, N is the total number of CDHW events observed for that particular year. 64 

A3. Calculation of area of grids 65 

The areas of the rectangular grids gradually decreases as we move from the equator to the higher 66 

latitudes in both North and South direction. Therefore, an area correction is applied when 67 

calculations involve the area of grids, for example, in calculating global mean of CDHW 68 

characteristics and areal thresholds in Figure 1 (main manuscript). The present study calculates 69 

the area of each rectangular 2𝑜 × 2𝑜  latitude-longitude grid, surrounded by 70 

[𝑙𝑜𝑛1, 𝑙𝑜𝑛2, 𝑙𝑎𝑡1, 𝑙𝑎𝑡2]  using the following mathematical expression 71 

(https://www.pmel.noaa.gov/maillists/tmap/ferret_users/fu_2004/msg00023.html), 72 

𝐴 = (
𝜋 × 𝑅2

180
) × |sin(𝑙𝑎𝑡1) − sin (𝑙𝑎𝑡2)| × |𝑙𝑜𝑛1 − 𝑙𝑜𝑛2|                        (7) 73 

Where, 𝑅 = 6400 𝑘𝑚𝑠 is the equatorial radius of the earth. 74 

In this paper, we have a total of 3347 global land area grids. After calculating the area of each 75 

grid, the area of equatorial grid is divided to the area of every grid, which gives an area 76 

correction factor (𝛾) such that 𝛾𝜖(0,1]. 𝛾 is equal to one for the equatorial grids since they have 77 

the maximum area and for higher latitudes 𝛾 decreases. 78 

A4. Trend Analysis 79 

The interannual trend present in the different CDHW characteristics are evaluated using Sen’s 80 

slope estimator. Sen’s slope estimate can be easily evaluated using the scipy library 81 



(https://docs.scipy.org/doc/scipy-1.7.0/reference/) of python 3.0. The linear trends present are 82 

tested for significance based on Mann-Kendall’s trend test. The detail descriptions of Sen’s 83 

Slope estimation and Mann-Kendall test for significance are given in the following subsections. 84 

A2.1. Calculation of Sen’s Slope Estimator 85 

Theil-Sen, (1968)4 developed a non-parametric method to find the true slope (change per unit 86 

time) present in univariate time series.  87 

1. Slopes of the trend in a sample of N pairs of data are calculated as follows: 88 

𝑄𝑘 =
𝑦𝑖−𝑦𝑗

𝑥𝑖−𝑥𝑗
 for 𝑘 = 1, 2, … ,𝑁    (8) 89 

Where, (𝑥𝑖 , 𝑦𝑖) 𝑎𝑛𝑑 (𝑥𝑗 , 𝑦𝑗) are the data pairs out of the N pairs of data given that 𝑗 >90 

𝑖. 91 

2. Sen’s slope estimate is calculated as the median of the N values of 𝑄𝑖 as follows: 92 

𝑄𝑚𝑒𝑑 = {

𝑄
[
𝑁+1

2
]
,                          𝑖𝑓    𝑁    𝑖𝑠    𝑜𝑑𝑑

1

2
(𝑄

[
𝑁

2
]
+ 𝑄

[
𝑁+2

2
]
),      𝑖𝑓     𝑁    𝑖𝑠   𝑒𝑣𝑒𝑛

                        (9) 93 

A2.2. Mann-Kendall’s test  94 

Mann-Kendall’s (MK) test5 is a non-parametric test that statistically assesses if there is a 95 

monotonic upward or downward trend in the variable of interest over time. The MK test checks 96 

whether to reject the null hypothesis 𝐻𝑜 and accept the alternative hypothesis 𝐻𝑎,  97 

where, 𝐻𝑜 ∶ 𝑁𝑜 𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 𝑡𝑟𝑒𝑛𝑑 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠    vs. 98 

𝐻𝑎 ∶ 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 𝑡𝑟𝑒𝑛𝑑 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠  99 

The Mann-Kendall’s test statistic to test for significance is given by, 100 



𝑍𝑀𝐾 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
           𝑖𝑓     𝑆 > 0

0                      𝑖𝑓      𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
           𝑖𝑓      𝑆 < 0

                         (10) 101 

𝑍𝑀𝐾  is obtained from standard normal distribution.                                                          102 

𝑆 = ∑ ∑ 𝑠𝑔𝑛( 𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1          (11) 103 

      104 

𝑠𝑔𝑛( 𝑥𝑗 − 𝑥𝑖) = {

+1, 𝑖𝑓𝑥𝑗 − 𝑥𝑖 > 0

0, 𝑖𝑓𝑥𝑗 − 𝑥𝑖 = 0

−1𝑖𝑓𝑥𝑗 − 𝑥𝑖 < 0

        (12) 105 

   106 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑖(𝑡𝑖−1)(2𝑡𝑖+5)

𝑚
𝑡=1

18
        (13) 107 

Where, n is the length of the dataset, m is the number of tied groups, and t indicates the total 108 

number of ties. Positive (or, negative) values of Z indicate increasing (or, decreasing) trends 109 

present in the time series. The null hypothesis (𝐻𝑜 ) of no trend is rejected for of 𝑍𝑀𝐾 ≥110 

𝑧𝑀𝐾(1−𝛼
2
)
. The present study considers a significance level of 𝛼 = 0.01.   111 

A5. Calculation of Areal Thresholds 112 

First, we performed the area corrections of the grids provided in section A3. Before calculating 113 

the areal thresholds, we calculated the yearly time series of CDHW frequency, duration, and 114 

severity from 1982-2099 (118 years) for all the grids over the global land areas. Then, the area-115 

correction factor (𝛾) of each grid is multiplied with the respective CDHW characteristics. For 116 

this study, we have a total of 3347 grid points. Thus, we have a 118-by-3347 matrix; rows 117 

represent the time, and columns represent the grid points. 118 



For the calculation of areal thresholds for any CDHW characteristics, follow these steps: 119 

(1) Calculate the 20th, 40th, 60th, and 80th percentiles for the first row (i.e., for the year 1982). 120 

Here, the 80th percentile value represents that at least 20% of the global land areas are 121 

witnessing CDHW characteristic (frequency, duration, or severity) greater than that 122 

value.  123 

(2) Calculate these values for all 118 years. Now, we get a time series for all the four 124 

percentiles, plotted in Figure 1 (d-f; main text). 125 

 126 

A6. Area vs. frequency curves  127 

1. For a climate division, the return periods for all the grid points are first segregated into N 128 

(a minimum value of 50 is recommended) number of bins. This is done using the 129 

“histcount” command in MATLAB. 130 

2. Then we calculated the number of grid points having RP more than or equal to a 131 

particular RP value by taking the sum of histogram frequency.  132 

3. The percentage of area affected is calculated by dividing the total number of grid points, 133 

and these values are smoothened using a 7- year running mean. 134 

 135 

 136 

 137 

 138 



 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 



Figures 152 

 153 

Figure S1 The spatial boundaries of the twenty-six climate divisions based on IPCC AR5 classification.  154 



 155 

Figure S2 Spatial map showing the frequency CDHW events for (a) recent observed period (1982-2020), 156 

(b) SSP1-2.6 near-future (2021-2057), (c) SSP2-4.5 near-future (2021-2057), (d) SSP5-8.5 near-future 157 

(2021-2057), (e) SSP1-2.6 far-future (2058-2095), (f) SSP2-4.5 far-future (2058-2095), (g) SSP5-8.5 far-158 

future (2058-2095). 159 



 160 

Figure S3 Spatial map showing the duration of CDHW events for (a) recent observed period (1982-161 

2020), (b) SSP1-2.6 near-future (2021-2057), (c) SSP2-4.5 near-future (2021-2057), (d) SSP5-8.5 near-162 

future (2021-2057), (e) SSP1-2.6 far-future (2058-2095), (f) SSP2-4.5 far-future (2058-2095), (g) SSP5-163 

8.5 far-future (2058-2095). 164 



 165 

 166 

Figure S4 Spatial map showing the CDHW severity for (a) recent observed period (1982-2020), (b) 167 

SSP1-2.6 near-future (2021-2057), (c) SSP2-4.5 near-future (2021-2057), (d) SSP5-8.5 near-future 168 

(2021-2057), (e) SSP1-2.6 far-future (2058-2095), (f) SSP2-4.5 far-future (2058-2095), (g) SSP5-8.5 far-169 

future (2058-2095). 170 



 171 

Figure S5. Boxplots indicate the change in different CDHW metrics relative to recent observed period 172 

(top: frequency, middle: duration, and bottom: severity of each 3 by 1 subplot) are shown by SSP1-2.6-173 

NF (light blue), SSP2-4.5-NF (light green), SSP5-8.5-NF (light red), SSP1-2.6-FF (dark blue), SSP2-4.5-174 

FF (dark green), and SSP5-8.5-FF (dark red) for the twenty AR5 climate regions.  Note that on the y-175 

axis, the labels ∆F, ∆D, and ∆S represent the change in frequency, change in duration, and change in 176 

severity, respectively, relative to the recently observed period (1982 to 2019). 177 



 178 

Figure S6: This figure presents the summer mean precipitation trends in East North America and 179 

West North America spanning from 1982 to 2100. Precipitation data for the period 1982-2019 is 180 

derived from the Global Precipitation Climatology Centre (GPCC) records, while data for the 181 

years beyond 2020 is based on the multimodel mean ensemble projections from the Shared 182 

Socioeconomic Pathways 5-8.5 (SSP-5-8.5) scenario of the CMIP6 GCMs.  183 

 184 



 185 

Figure S7. Latitudinal variations of the CDHW characteristics — Frequency (left), Duration 186 

(middle), Severity (right) — are shown for recent observed period (black), SSP5-8.5 near-future 187 

(blue), and SSP5-8.5 far-future (red).  188 

 189 

 190 



 191 

Figure S8. Percentage of area (y-axis) versus return period (x-axis) curves for different climate regions 192 

are shown for the recent observed period (black dotted line), SSP1-2.6 (solid blue line), SSP2-4.5 (solid 193 

green line), SSP5-8.5 (solid red line). The curves are smoothened using a 7- year running mean. 194 

 195 
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 202 

 203 



 204 

Figure S9. Boxplots indicating the return periods (y-axis, left) of the CDHW events corresponding to 205 

different global mean temperature anomalies (x-axis) for 20 climate regions at different global warming 206 

levels. The color patch indicates the regional warming anomaly for a particular global warming 207 

anomaly. The red line specifies the sc-PDSI values (y-axis, right) during these periods. 208 

 209 

 210 

 211 



 212 

Figure S10. This figure presents the daily maximum temperature (left y-axis) and weekly sc-213 

PDSI time series (right y-axis) for a specific grid location (Lon= 25°𝐸 𝑎𝑛𝑑 𝐿𝑎𝑡 = 60°𝑁)  214 

during the summer of 2006. The drought threshold is defined as the 10th percentile of the weekly 215 

sc-PDSI for the recent observed period (1982-2019), while the heatwave threshold corresponds 216 

to the 95th percentile of daily maximum temperature during the same period. In this example, 217 

two compound drought and heatwave events, illustrated by the shaded yellow areas, are 218 

identified when both drought and heatwave conditions simultaneously exceed their respective 219 

thresholds. 220 

 221 
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 224 



Tables 225 

Table S1. List of CMIP6 GCMs considered in the study  226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

Sl No. GCM Name Realization 

Original Resolution 

(Lat X Lon) 

1 ACCESS-CM2 

r1i1p1f1 

1.25 × 1.875 

2 ACCESS-ESM1-5 1.25 × 1.875 

3 CanESM5 2.8 × 2.8 

4 MIROC6 1.4 × 1.4 

5 MPI-ESM1-2-HR 0.9375 × 0.9375 

6 MPI-ESM1-2-LR 1.875 × 1.875 

7 MRI-ESM2-0 1.125 × 1.125 

8 NorESM2-MM 0.9 × 1.25 



Table S2. Mann-Kendall test results with 𝛼 = 0.01 level of significance and Sen’s slope values 235 

for different CDHW characteristics. H=1 (H=0) indicates there is (not) a statistically significant 236 

trends present in the series. 237 

Scenarios 

CDHW Events CDHW Days CDHW Severity 

Slope P-value H Trend P-value H Slope P-value H 

Observation 0.011 <10-9 1 0.05 <10-6 1 0.17 <10-7 1 

SSP126 NF 0.01 <10-9 1 0.021 <10-9 1 0.5 <10-9 1 

SSP245 NF 0.014 <10-10 1 0.151 <10-14 1 0.49 <10-9 1 

SSP585 NF 0.016 <10-14 1 0.155 <10-15 1 0.396 <10-9 1 

SSP126 FF -0.0003 0.18 0 0.03 0.0032 1 0.06 0.16 0 

SSP245 FF 0.013 <10-9 1 0.12 <10-15 1 0.593 <10-10 1 

SSP585 FF 0.028 <10-14 1 0.45 <10-19 1 2.53 <10-14 1 

 238 

 239 
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