

Supporting Information for

EMT activates exocytotic Rabs to coordinate invasion and immunosuppression in lung cancer

Guan-Yu Xiao, Xiaochao Tan, Bertha L. Rodriguez, Don L. Gibbons, Shike Wang, Chao Wu, Xin Liu, Jiang Yu, Mayra E. Vasquez, Hai T. Tran, Jun Xu, William K. Russell, Cara Haymaker, Younghee Lee, Jianjun Zhang, Luisa Solis, Ignacio I. Wistuba, Jonathan M. Kurie

Guan-Yu Xiao, Jonathan M. Kurie Email: <u>Guan-Yu Xiao@uky.edu</u>, <u>JKurie@mdanderson.org</u>

This PDF file includes:

Figures S1 to S8 Tables S1 to S3

Seq_1	2329	gcagaactcagctgttgctctcatgatgcgcagtgctggaa-agggttctggtatgtctt	2387
Seq_2	119	ocagaactcagctottgctctcatgatggggcagtgctggannagggttctggtatgtctt	60

eq_1 eq_2	132	COCCTTCCCTGTTCTTCCCTTTCCAAACAAACAAGACAAG	88
ieq_1	2221	cagocotttgaaattatocatagttttacagacagotocaggotatgagocacaatgtoc	2280
ieq_2	87		88
ieq_1	2281	asaattattettgageactgatatasattaettagacettetttgaggeagaacteage	2340
ieq_2	87		88
ieq_1	2341	tgttgctctcatgatgggcagtgctggaaagggttctggtatgtcttcaaaatgagtcca	2400
ieq_2	87		48
Clo	ne#	44	
eq_1	2161	togoottocotttotootttotoaacaaagagaatggcaaacogcagtotaaco	2220
eq_2	174	TCGCCTTCCCTGTTCTCCATACAAACAAGACATGGCAAACCGCG-G	123
eq_1	2221	cagccctttgsaattatocatagttttacagacagctocaggctatgagccacaatgtcc	2280
eq_2	122		123
ieq_1	2281	asaattattottgagcactgatataaattacttagacottotttgaqqqocagaactcaqo	2340
ieq_2	122		106
ieq_1	2341	tgttgctotoatgatgggcagtgotggaaagggttctggtatgtottcaaaatgagtoca	2400
ieq_2	105	TGTTGCTCTCATGATGGGCAGTGCTGGAAAGGGTTCTGGTATGTCTTCAAAATGAGTCCA	46

Fig. S1. ZEB1 activates exocytotic Rabs. (A) Q-PCR analysis of Rab family member mRNA levels in 393P_vector cells (Vec) and 393P_ZEB1 cells (ZEB1) (n=6 replicates per condition). (B) Western blot (WB) analysis of Rab6A and Rab8A levels in the indicated transfectants. β-actin loading control. Relative densitometric values indicated. (C) WB analysis of Rab6A and Rab8A in cells transfected with miR-148a mimics or non-coding control (NC). (D, E) Luciferase activities in H1299 cells transiently co-transfected with pre-miR-148a and human Rab6A 3'UTR (D) or Rab8A 3'UTR (E) reporters containing wild-type (WT) or mutant 3'-UTRs lacking predicted miR-148a binding sites (MT). Empty reporters (Vec). Results represent means ± SEM (n= 6 replicates per condition). (F) Alignment of Rab6A 3'UTR sequences (top seq-1) and indicated clone sequences (anti-parallel, bottom seq-2). The sgRNA sequences are in yellow. miR148a binding site is in red.

Fig. S2. ZEB1 activates exocytotic Rabs and their GEFs. (A) Confocal micrographs of cells costained with anti-Rab6A (red) and -GM130 (green) antibodies. DAPI (blue). Scale bar: 10 μm. (B) Specificity of assays to detect GTP-bound Rab6A in cell lysates. 393P_vector cell lysates were spiked with (200 μM) GTP or GDP and GST-tagged effector protein (BICD2) or GSH resins alone. Lysates were subjected to GST pull-down (PD) and WB analysis was carried out on GSTassociated proteins or whole cell lysates (WCL) to detect Rab6A. (C) Q-PCR analysis of Rgp1 and Rabin8 mRNA levels (n=6 replicates per condition). (D-F) WB analysis of Rgp1 and Rabin8 levels in ectopic ZEB1-expressing 393P cells (D), ZEB1-deficient or -replete 344SQ cells (E), and ZEB1deficient or -replete H1299 cells (F). Empty vector (Vec). β-actin loading control. Relative densitometric values indicated. (G) WB analysis of Rgp1 and Rabin8 levels in miR mimictransfected 393P_ZEB1 cells. miR-148a (148a). miR-182 (182). non-coding control (NC). Relative densitometric values indicated.

Fig. S3. ZEB1 accelerates exocytotic trafficking by relieving Rab6A and Rab8A from miR-148a-dependent silencing. (A, B) Confocal micrographs of EGFP-tsVSV-G-transfected cells taken 1 h after transfer to permissive temperature. Scale bar, 10 μm.

Fig. S4. ZEB1 accelerates FA disassembly by relieving Rab6A and Rab8A from miR-148adependent silencing. (A) WB analysis of Rab6A and Rab8A levels in 344SQ cells transfected with control (shCTL), Rab6A (shRab6A) or Rab8A (shRab8A) shRNAs. Vinculin loading control. (B) Relative cell density in monolayer culture (n = 8 samples per condition). *P* values were determined using 2-tailed Student's t test. (C-F) Representative TIRF micrographs of KP cells subjected to ectopic ZEB1 expression (C), shRNA-mediated ZEB1 depletion (D), ectopic miR-148a expression (E), or siRNA-mediated Rab6A or Rab8A depletion (F). Disassembling FAs detected by paxillin– mCherry (arrowheads). Scale bars, 10 μm. (G) Confocal micrographs of non-permeabilized cells stained with α-MMP14 antibody to detect surface MMP14. Scale bar: 10 μm. Fluorescence values per cell (dot) normalized to 393P_Vec (scatter plot). (H) Q-PCR analysis of *MMP14* mRNA levels in the indicated cells (n=6 replicates per condition). Control shRNA or siRNA sequences (CTL). (I) Confocal micrographs of cells seeded on Oregon Green-488–gelatin, treated for 16 h with IgG or anti-MMP14 neutralizing antibody, and imaged 90 min later. (J) Representative TIRF micrographs of paxillin–mCherry-transfected cells, treated for 16 h with IgG or anti-MMP14 neutralizing antibody. Disassembling FAs (arrowheads). Scale bars, 10 μm.

Fig. S5. The ZEB1/mR-148a/Rab6A axis promotes cancer cell invasion via a ATX/LPAdependent pathway. (A-D) Bright field micrographs of cells that invaded through Matrigel-coated filters in Boyden chambers. Scale bar, 200 µm. Upper chambers contained CM from the indicated cells. (E) Volcano plot of proteins identified by LC-MS analysis of CM samples. P values (Y axis) and fold-change (X axis). Proteins at significantly different concentrations (red dots, P < 0.05) in Rab8A-deficient and -replete 393P ZEB1 cells. (F) Q-PCR analysis of ATX mRNA levels in the indicated cells (n=6 replicates per condition). Control shRNA or siRNA sequences (CTL). (G) WB analysis shows that ATX levels in whole cell lysates are not altered by ectopic ZEB1 expression or Rab6A depletion. β-actin loading control. (H) WB analysis shows that ATX levels in whole cell lysates do not change following ectopic wild-type or enzyme-dead mutant Rab6A expression. (I-K) ELISA of LPA concentrations in CM samples from the indicated cells (n=4 replicates per condition). (L) Bright field micrographs of cells that invaded through Matrigel-coated filters in Boyden chambers. Scale bar, 200 µm. Upper chambers loaded with 393P_ZEB1 cell-derived CM and ATX inhibitor (ATXi) or vehicle. (M) WB analysis to confirm target gene depletion following transfection of LPAR1 or LPAR2 siRNAs. Relative densitometric values indicated. Vinculin loading control. (N) Bright field micrographs of siRNA-transfected 393P vector cells that invaded through Matrigelcoated filters in Boyden chambers. Scale bar, 200 µm. Cells were transfected with LPAR1 or LPAR2 siRNAs. Upper chambers contained 393P ZEB1 cell-derived CM.

Fig. S6. ZEB1 activates a Rab6A-dependent secretory process. (A-C) Multiplexed antibodybased analysis of cytokine concentrations in CM samples from 393P_vector and 393P_ZEB1 cells (A), Rab6A-deficient or -replete 393P_ZEB1 cells (B), or Rab6A-deficient or -replete 344SQ cells (C) (n=triplicate samples per condition). (D) Flank tumor weights in syngeneic, immunocompetent mice (dots) 3 weeks after injection with Rab6A-deficient (shRab6A#3 and #4) or –replete (shCTL) 344SQ cells. Tumors analyzed by flow cytometric analysis (Fig. 4B).

Fig. S7. ATX inhibition partly recapitulates the effects of Rab6A depletion on CD8+ T cells and macrophages. Flow cytometric analysis of murine splenocytes derived from syngeneic, immunocompetent mice that had been co-cultured with Rab6A-replete 344SQ cells in presence or absence of ATX inhibitor (n = 6 replicates of each condition). As a comparison, splenocytes were co-cultured with Rab6A-deficient 344SQ cells. Percentages of T cells (CD8+ T cells, CD44high/CD62Lhigh naïve CD8+ T cells, PD1+/TIM3+ exhausted CD8+ T cells, CD44high/CD62Llow effector/memory CD8+ T cells) and antigen-presenting cells (dendritic cells, total macrophages, M1 macrophages, and M2 macrophages) were quantified.

Fig. S8. LUAD cells acquire resistance to anti-PD-L1 treatment. (A) Subcutaneous tumor growth curves in syngeneic, immunocompetent mice (dots). Cohorts are color-coded. Mean \pm SEM. ***, P < 0.0005. (B) WB analysis of Rab6A levels in flank tumors generated by 344SQ cells stably transfected with doxycycline (dox)-inducible control (ishCTL) or Rab6A (ishRab6A) shRNAs. Mice were treated with anti-PD-L1 (+) or IgG (-) and doxycycline (+) or vehicle (-). β -Actin loading control. (C) Representative images of tumor sections stained with anti-CD8, -granzyme B, -CD11c, or -F4/80 antibodies. Areas of interest (boxed regions) are illustrated at higher magnification (right column). Positively stained cells (arrows). Scale bars, 3 mm (left), 300 μ m (insets). (D) The percentages of cells that stained positively in control (ishCTL+IgG+veh) and anti-PD-L1 (ishCTL+anti-PD-L1+Dox) cohorts.

Table S1. Characteristics of LUAD cell lines.

Cell line ^a	Species	ZEB1 expression	EMT state	Metastatic potential	References
307P	Mouse	Low	Epithelial	Low	(1)
393P	Mouse	Low	Epithelial	Low	(1)
393P_Vec ^b	Mouse	Low	Epithelial	Low	(2)
393P_ZEB1 ^c	Mouse	High, ectopic	Mesenchymal	Medium	(2)
344SQ	Mouse	High	Mesenchymal	High	(1)
344SQ_shCTL ^d	Mouse	High	Mesenchymal	High	(2)
344SQ_shZEB1 ^e	Mouse	Low, knockdown	Epithelial	Low	(2)
H1299	Human	High	Mesenchymal	High	(3)

^aMurine cell lines designated based on mouse number (e.g., 307) and site of derivation, including primary lung tumor (P) or subcutaneous metastasis (SQ)

^bstably transfected with empty vector

^cstably transfected with ectopic ZEB1

^dstably transfected with control shRNA

^estably transfected with ZEB1 shRNA

Table S2. Target Scan predicted miRNA binding sites.

miRNA	Position in the Rab6A 3'UTR	Seed match	Context++ score percentile
mmu-miR-148a-3p	534-540	7mer-1A	92
mmu-miR-182-3p	951-957	7mer-m8	89
miRNA	Position in the Rab6A 3'UTR	Seed match	Context++ score percentile
hsa-miR-148a-3p	571-577	7mer-1A	92
miRNA	3'UTR	Seed match	Context++ score percentile
mmu-miR-148a-3p	1193-1198	6mer	•
miRNA	Position in the Rab8A 3'UTR	Seed match	Context++ score percentile
hsa-miR-148a-3p	1291-1296	6mer	
miRNA	Position in the Rgp1 3'UTR	Seed match	Context++ score percentile
mmu-miR-148a-5p	2951-2958	8mer	51
mmu-miR-182-3p	406-413	8mer	81
mmu-miR-182-5p	1708-1714	7mer-1A	13
miRNA	Position in the Rabin8	Sood motob	Contovt++ cooro porcontilo
	3'UIR	Seed match	

Table S3. List of qPCR primers.

Gene	Forward (5'-3')	Reverse (5'-3')
Mouse Rab1A	GTCCAGCATGAATCCCGAATA	ATCTGCAAACCTAAGGAGAAGG
Mouse Rab2A	GCAGGAGTCCTTTCGTTCTATC	GTTGAACGTGTCTCTCCTTGT
Mouse Rab5A	GGTCCCTTCATATGAGCTTCTT	CTGTTCCAGACACACCTCTATG
Mouse Rab6A	CTTCCCTGTTCTTCCCTTTCTC	TAGCCTGGAGCTGTCTGTAA
Human Rab6A	CACAGGACAGAAGCAGAGAAG	CATGGGAGATTAGCAGGAACAG
Mouse Rab7	CCTACTCAAAGAGGAAAGGAGAAC	GCTAACCTACAGGTACCACAAC
Mouse Rab8A	GCTCGATGGCAAGAGGATTA	CTGTAGTAGGCTGTCGTGATTG
Human Rab8A	CTGTACTCACAGCCAAGATCAC	GAGGATTCTGGATGCTTCTGTC
Mouse Rab11A	TGTAGAGCGATGGCTGAAAG	CTGCCCTGAGATGACGTAAAT
Mouse Rab14	AACTGCACCGTACAACTACTC	TGTGAGGACAATCAGCCATAAA
Mouse Rab23	TCTCGGCCTAAGAAGGAGATAG	GTCACCTTGAGTGGAGAAGAAA
Mouse Rab25	CCTGCCTTCAGCTTTCAGATA	GATCACATGGTAGGGCATGAT
Mouse Rab37	CAGAGGTCAGAGCCAGATAAAG	AAAGAGAGAGAGGGGAGAGAGAG
Mouse Rab40B	CAAGCTCAAGGCCCATCTAA	GTCTGGAAAGGTCTCTGTCTTC
Mouse Rgp1	GAACTCACCCATCACCTTACTC	GTCCTTCTTCCCACTGTCATC
Human Rgp1	ATTGAGAGCATGGGCTGTAG	GGCTCAGAGAGGTGAAGTAATC
Mouse Rabin8	CTCCTTCCTGTCTGTGTGTATG	CGCGCACTGTTCTTCATTTATT
Human Rabin8	CAGGATGACGACTTGATGTAGAA	AGGGAGTAGGATCAGGAAGATAA
Mouse Mmp14	CATCATTGAGGTGGATGAGGAG	CCATGGCGTCTGAAGAAGAA
Human MMP14	GACTGTCAGGAATGAGGATCTG	CGTGTCCATCCACTGGTAAA
Mouse Atx	GTCCTCTCTGTGTCTTCTTTC	CATGAGTTCCTCTACCCACTTC
Human ATX	GGGCTGCACTTGTGATGATA	GAGGAGGTGTCTCTCTTCTGTA

References

- 1. D. L. Gibbons *et al.*, Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. *Genes Dev* **23**, 2140-2151 (2009).
- 2. X. Tan *et al.*, Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. *J Clin Invest* **127**, 117-131 (2017).
- 3. Y. H. Ahn *et al.*, ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. *J Clin Invest* **122**, 3170-3183 (2012).