
Supplementary information

Drought impacts on the electricity system, emissions,
and air quality in the western US

Minghao Qiu a,b,1, Nathan Ratledge c, Inês M. L. Azevedo d, Noah S. Diffenbaugh a,

Marshall Burke a,e,f,

a Doerr School of Sustainability, Stanford University, Stanford, CA, USA

b Center for Innovation in Global Health, Stanford University, Stanford, CA, USA

c Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA,

USA

d Department of Energy Science and Engineering, Stanford University, Stanford, CA, USA

e Center on Food Security and the Environment, Stanford University, Stanford, CA, USA

f National Bureau of Economic Research, Cambridge, MA, USA

1 To whom correspondence should be addressed. E-mail: mhqiu@stanford.edu



Supplementary methods

Alternative specifications of regression models

To explore the robustness of our estimation results across alternative specifications of regression

models, we conduct three sensitivity analyses to estimate the impacts of runoff on electricity gen-

eration from fossil fuel plants:

1) Estimating regression models using alternative drought indices. Our main analysis

uses the 9-month average runoff anomalies computed from the NLDAS-2 VIC model. We also

estimate the regression models using runoff anomalies averaged over different windows (3, 6, and

12 months), as well as runoff anomalies from the other NLDAS-2 models (Noah and Mosaic). We

find largely consistent results when using alternative drought indices (see Figure S2).

2) Estimating regression models using alternative model specifications. Our main analysis

includes monthly sales of electricity, generation of wind power and solar power, and the monthly

average air temperature at the plant location as covariates. The main specification also includes

linear year trend, month-of-year fixed effects, and unit-level fixed effects to control for the underlying

trend and seasonality in fossil generation and runoff, as well as time-invariant unobserved factors

at the unit level. Coefficients are estimated using the weighted ordinary least square approach,

weighted by the unit-level monthly average generation (i.e. size of the plants). We further estimate

regression models which do not include control variables (‘No ctrl’ in Figure S3), models which

include natural gas as an additional control variable (‘Ctrl+Gas price’), models which estimate

the coefficients with ordinary least square (‘Non-weighted’), models which include year fixed effects

instead of linear year trend (‘Year FE’), and models that specify a quadratic relationship between

runoff anomalies and electricity generation (‘Quadratic’). We find that the estimation results are

largely consistent across alternative specifications of the regression models (see Figure S3 and Table

S1).

3) Estimating distributed lag regression models. In our main analysis, we calculate the

running average of runoff for the previous 9 months and use the anomalies to characterize the

drought conditions. The model ignores potential dynamics within this 9-month window, e.g.,

electricity generation (from hydropower and fossil sources) can respond to runoff changes at the

current month differently from changes in the previous months. To address this issue, we perform

a sensitivity analysis estimating a distributed lag model to account for the potential dynamics.
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Specifically, we estimate the following equation:

yigym =

t=0,...,9∑
k∈{CA,NW,SW}

{βgktQkym−t}+ γgXigym + ηgy + ψgm + θi + ϵigym (1)

where Qkym−t denotes the runoff anomalies of region k and the month that was t months prior to

the current month. βgkt thus measures the effects of runoff anomalies in region k at the month that

was t months before on fossil fuel generation in region g in the current month.

As shown in Figure S5, we find that while the individual estimates on the lagged effects are

somewhat noisy, coefficients are larger close to zero lag and then go to zero as lag length increases.

When we sum the lagged coefficients to get the total (cumulative) effect of a one unit change in

runoff in one month (or, equivalently, the effect in the current month of increasing runoff by one

unit in each of the nine previous months), we get a coefficient that is very similar to our main effect,

which is the effect in the current month of increasing average runoff over the prior nine months

by one unit. This suggests that our main moving-average estimate captures the overall dynamics

of plant operation over time. Because coefficients estimated using the distributed lag models have

larger standard errors and wider confidence intervals due to the larger number of estimated and

summed coefficients, we retain our moving-average results as our main specification.

Sample selections

We conduct two sensitivity analyses to explore the impacts of sample selections on our estimates.

1) Estimating the impacts on plants not included in our main sample. Our main sample

includes fossil fuel power plants in the EPA AMPD dataset. Our sample covers 90% of electricity

generation from fossil fuel plants (including biomass). To understand the impacts of drought on

the rest of the fossil plants not included in the sample, we compile the monthly generation data

from the fossil fuel power plants in EIA-923 reports (1 ), but not in the AMPD sample. We refer

to these plants as “non-AMPD” plants. Similar to our main analysis, we estimate the impacts of

runoff changes on the electricity generation from those non-AMPD plants. The results are shown

in Table S3.

We find a statistically significant effect of runoff changes on these non-AMPD plants in NW,

but not in the other two regions. We do not find a statistically- significant effect of runoff on non-

AMPD plants in CA, possibly because most of the non-AMPD plants in CA are combined heat

and electricity plants that are less responsive to changes in hydropower on the grid. For NW, we
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estimate that a unit increase of runoff anomalies leads to a 34% decline in fossil fuel generation, an

effect size that is comparable to the estimates derived from our main sample. Using this estimate,

we calculate that the drought-induced fossil fuel generation from these non-AMPD plants is 7.3%

of our main estimates. As the emission data of these non-AMPD plants are not consistent with

the emission data of the AMPD sample, we use our main sample and the main estimates for the

consequent impact analysis.

2) Estimating regression models using alternative sample restrictions. In our main anal-

ysis, we only include an observation (i.e. unit-month) if the unit has at least four non-missing

values during the month. Figure S4 shows the estimation results across different samples which

include an observation if the unit has operated or reported for more than X days during the month

(X=1,..,10). As the sample becomes more restricted (i.e. X gets larger), the estimated impacts

are likely less influenced by outliers (due to potential missing values). However, a more restricted

sample might also fail to capture signals from marginal power plants that only operate a few days

a month. Considering this trade-off, our main analysis chooses X=4 as the restriction criterion, as

magnitudes of the estimated coefficients remain largely stable after X≥4.

Alternative definition of regions

In our main analysis, we divide the western US into three regions (CA, NW, SW) following the EIA

classification. However, the NW region includes eight states, and some states differ significantly

from others (in particular, the importance of hydropower in each state). In our main analysis, we

address this issue by calculating the regional runoff anomalies as the weighted average of state-level

runoff anomalies (weighted by the state-level hydropower capacity). To address this issue more

directly, we adopt an alternative definition of the electricity regions. NW is split into two regions

– NW1 which includes four hydro-rich states (WA, OR, ID, MT), and NW2 which includes the

other four states (CO, NV, UT, WY). We then estimate the following regressions to quantify the

impacts of drought from each of the four regions on electricity generation from fossil fuel units:

yigym =
∑

k∈{CA,NW1,NW2,SW}

{βgkQkym}+ γgXigym + ηgy + ψgm + θi + ϵigym (2)

where yigym denotes the log of electricity generation from unit i in electricity region g, year y, and

month-of-year m. Qkym denotes the runoff anomalies of region k (k ∈ {CA,NW1, NW2, SW}) in

year y, and month-of-year m. For comparison purposes, we estimate separate equations for each

of the three originally-defined regions g (g ∈ {CA,NW,SW}). The regression results are shown in
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column (2) in Table S1. We find that the impacts of NW’s runoff on fossil fuel generation mostly

come from runoff changes in the region encompassing the hydro-rich states (NW1), while NW2’s

runoff has a very limited effect on fossil generation. This is consistent with our findings that the

need to substitute for changes in hydropower is the leading mechanism that explains the increases

in fossil fuel generation during drought (as shown in our mediation analysis).

Interregional import and export of electricity

To further understand the trans-boundary impacts of runoff on fossil power plants, we use the

hourly electricity import and export data from EIA to estimate how drought influences the inter-

regional exchange of electricity between the three regions in the western US (2 ). Hourly electricity

production, demand, and exchange between electric electricity regions are available since July 2015.

Using data from 2016 to 2021, we estimate the following regression:

Exporti−>j
ym = βijQjym + γgXiym + θiExport

i−>other
ym + ηiy + ψim + ϵiym

where Exporti−>j
ym denotes the net export from electricity region i to electricity region j on year

y and month-of-year m, Qjym denotes the runoff anomalies of region j on year y and month-of-year

m. Xiym denotes a set of control variables, including the hydro generation, electricity demand,

solar and wind generation of region i. Exporti−>other
ym denotes the export from region i to the

other electricity region (other than j). ηiy and ψim denote year and month-of-year fixed effects.

ϵiym is the normally-distributed error term. Here, the main coefficient of interest is βij , which

quantifies the impacts of runoff changes in region j on the net export of electricity from region i

to j, conditional on the export to the other region and generation of region i. As shown in Figure

S6, we find that neighboring regions that are connected to the drought regions increase their net

export to the drought regions to make up for shortfall in the drought region. This suggests that

the trans-boundary effects of drought on fossil fuel generation are largely driven by the changes in

the import/export of electricity due to drought-induced supply or demand shocks.

Causal mediation analysis

We use causal mediation analysis to identify mechanisms through which runoff changes can influ-

ence electricity generation from fossil fuel plants. We focus on the following four mechanisms

through which runoff changes could influence electricity generation from fossil fuel plants: 1)

through changes in hydropower output (mediator variable: monthly hydropower generation), 2)
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through changes in electricity demand (mediator: monthly electricity demand), 3) through changes

in wind or solar power production (mediator: monthly generation from solar or wind power),

and 4) through changes in cooling efficiency of thermal power plants due to ambient temperature

(mediator: average ambient temperature at the plant locations).

For the mediation analysis, we only focus on the drought impacts on fossil fuel plants in the

same electricity region (i.e. the local effect), and only focus on CA and NW where the estimated

local effects are substantial. We use the R package “mediation” to perform the mediation analysis

(3 ). For each mediator M , we estimate the following outcome model :

ygym = βOg Qgym + γgMgym + λOg Xgym + ηgy + ψgm + ϵgym (3)

and the following mediator model :

Mgym = βMg Qgym + λMg Xgym + ηgy + ψgm + ϵgym (4)

where ygym denotes the log of the total fossil generation in electricity region g, year y, and month-of-

yearm. Mgym denotes the mediator variable. Qgym denotes the runoff anomalies in electricity region

g, year y, and month-of-year m. Xgym denote the control variables including runoff anomalies

of the other two electricity regions and the other mediators (except for Mgym). The outcome

model (equation 3) estimates how runoff and the mediator jointly influence the fossil generation,

conditioned on the other potential mechanisms and runoff in the neighboring regions. The mediator

model (equation 4) estimates the relationship between the mediator and runoff, conditioned on the

other potential mechanisms and runoff in the neighboring regions. The causal mediation effect

(i.e. the causal effect of runoff on fossil fuel generation through mediator M) is then estimated

by evaluating the changes in ygym associated with changes in M due to changes in Q, while not

through the direct impacts of Q on y.

Air quality impacts: determining smoke day

Due to influences of drought on wildfire and associated PM2.5 concentration (4 , 5 ), we only use

observational PM2.5 concentration from monitors on days that are not influenced by wildfire smoke.

Following the method from (6 ), we classify a day as a “smoke day” if the monitor location either

has identified smoke plume overhead, or the monitor location intersects with modeled air particle

trajectories from nearby fires when clouds may obscure plume identification. Smoke plume infor-

mation is derived from the National Oceanic and Atmospheric Administration Hazard Mapping
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System, which provides analyst-identified plume boundaries based on visible bands of satellite im-

agery (7–9 ). Our air quality analysis focuses on the period between 2006 and 2020 due to the

availability of the wildfire smoke plume data.

Back-of-the-envelope analysis on drought impacts on wind and solar power

In our causal mediation analysis, we find that a small fraction of the drought-induced increases

in fossil generation could be due to reductions in wind and solar generation. This is consistent

with evidence of reduction in solar generation due to wildfire smoke (which often coincides with

drought) and the reduction in wind power due to lower wind speed during drought episodes (10–

12 ). To further test this hypothesis, we conduct a back-of-the-envelope analysis. We estimate two

regression equations to quantify: 1) the impacts of runoff changes on the number of smoke days

(as defined in the section above) and 2) the impacts of runoff changes on wind speed. Consistent

with the hypothesis, we find statistically significant effects for both channels. Focusing on CA, we

find that a one unit decline of runoff anomalies leads to 0.35 additional smoke days for a given

month (p<0.01). We also find that a one unit decline of runoff anomalies leads to a decline in

surface wind speed by 2.9% (p<0.05). While it is challenging to calculate the effects on solar and

wind generation due to the difficulty in matching the locations of wind turbines and solar panels to

changes in smoke and wind speed, our back-of-the-envelope result suggests that drought potentially

reduces the availability of solar and wind generation in western US, and as a result, further increases

generation from fossil fuel plants.

Using InMAP to model the air quality impacts

As an alternative strategy to model the air quality impacts, we use the Intervention Model for Air

Pollution (InMAP) to calculate the impacts of drought-induced emissions of SO2 and NOx on PM2.5

concentrations. InMAP is a reduced complexity model that can simulate PM2.5 concentrations

given emissions inputs (13 ) and has been widely used at national scale to identify the levels and

disparities in PM2.5 (14 , 15 ). In this work, we use the InMAP source receptor matrix (ISRM)

archived from (16 ). The ISRM consists of matrices of dimensions 52411×52411 (as the US is

divided into 52411 grid cells) for three heights of emission locations and seven precursor emission

species. For a given height and emission species, ISRM calculates the changes in PM2.5 for any

grid cell in the US due to one unit increase in one of the precursor emissions in any of the 52411

grid cells. We multiply the ISRM of SO2 and NOx by the plant-level drought-induced emission
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changes (emission heights are determined according to the stack heights of the plant) to calculate

the changes in drought-induced surface PM2.5 .

Projecting future impacts in the high RE scenario

Expansions of renewable energy (RE) could shift marginal energy sources from fossil energy to non-

fossil energy. In our high RE scenario, we assume that when non-fossil energy is on the margin, the

drought-induced electricity gap will be provided by the non-fossil energy and thus results in zero

drought-induced emission. Our projection also assumes that if a non-fossil source is on the margin

for a given hour, the source will have enough excess generation to cover the electricity gap during

drought, i.e. the drought region does not need to import electricity from the neighboring region

(regardless of the marginal energy source in the neighboring region).

We use the following illustrative example to demonstrate the projections of drought-induced

emissions under high RE scenario. Our empirical analysis quantifies that an extreme drought

condition in CA (corresponding to the 5th-percentile lowest runoff value from 2001-2021) leads to

an increase in electricity generation by 19% from gas-fired plants in CAISO (the CA region), and by

11% from gas-fired plants in Public Service Company of Colorado (PSCC, part of the NW region).

Suppose fossil energy is at the margin in both CAISO and PSCC, we would estimate a 19% increase

of generation from gas-fired plants in CAISO and an 11% increase from gas-fired plants in PSCC

due to drought in CA, same as the empirical estimates. If fossil energy is on the margin in CAISO

but not in PSCC, we would estimate a 19% increase of gas-fired unit emissions in CAISO, and 0%

increase of gas-fired unit emissions in PSCC (i.e. CA still needs to import electricity from PSCC,

but from the non-fossil source in PSCC). On the other hand, if fossil energy is only on the margin

in PSCC (but not CAISO), then we would estimate an 0% emission increase for both regions (as

the electricity gap in CA is solely provided by the non-fossil source in CAISO and there is no need

to import electricity from PSCC).
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(1) (2) (3) (4)

log(generation) from CA plants

CA -0.143∗∗∗ -0.130∗∗∗ -0.143∗∗∗ -0.120∗∗

(0.022) (0.025) (0.026) (0.045)

NW/NW1 -0.443∗∗∗ -0.414∗∗∗ -0.443∗∗ -0.428∗∗

(0.124) (0.122) (0.126) (0.160)

NW2 -0.047

(0.061)

SW -0.052 -0.033 -0.052 -0.104∗∗

(0.032) (0.028) (0.034) (0.037)

log(generation) from NW plants

CA -0.057∗∗∗ -0.053∗∗ -0.057∗∗∗ -0.047∗

(0.014) (0.016) (0.013) (0.021)

NW/NW1 -0.170∗∗ -0.160∗∗ -0.170∗∗ -0.192∗∗∗

(0.051) (0.049) (0.054) (0.054)

NW2 -0.014

(0.032)

SW -0.005 -0.001 -0.005 -0.025

(0.011) (0.011) (0.011) (0.022)

log(generation) from SW plants

CA 0.002 0.006 0.002 0.009

(0.022) (0.022) (0.022) (0.025)

NW/NW1 -0.199 -0.188 -0.199 -0.108

(0.103) (0.102) (0.124) (0.091)

NW2 -0.020

(0.035)

SW -0.016 -0.009 -0.016∗ -0.0004

(0.012) (0.012) (0.006) (0.022)

3 regions Y Y Y

4 regions Y

SE clustered at plant-level Y Y Y

SE clustered at county-level Y

Year trend + month FE Y Y Y

Year FE + month FE Y

Table S1: Estimated impacts of runoff anomalies on fossil generation under alternative

specifications of the regression models. Column (1) shows our preferred estimates reported

in the main text. Column (2) shows the results estimated using an alternative definition of regions

in the western US. NW is split into two regions – NW1 which includes four hydro-rich states

(WA, OR, ID, MT), and NW2 which includes the other four states (CO, NV, UT, WY). Column

(3) shows the results with standard errors clustered at county level. Column (4) shows results

estimated using year fixed effects. Standard errors are reported in the parenthesis. Significance: ∗

p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001 12



log (generation)

Texas Florida

Runoff anomalies -0.012

(0.012)

-0.008

(0.021)

Table S2: Fossil generation in Texas and Florida are not associated with runoff changes

in each region. The table shows the estimated impacts of runoff anomalies on electricity genera-

tion from fossil fuel plants in Texas or Florida. The impacts are estimated using regressions similar

to equation [1] in the main text (but only considering impacts of runoff on generation in the same

region). Standard errors are clustered at the plant level.

log(generation) from

non-AMPD plants

CA NW SW

Runoff anomalies -0.023 -0.346∗∗∗ 0.003

(-0.016) (0.094) (0.102)

Table S3: Estimated impacts of runoff anomalies on fossil fuel generation from non-

AMPD plants. We estimate the impacts of runoff anomalies on generation from fossil fuel plants

that are not included in our main sample (i.e. not included in the EPA AMPD dataset). The

plant-level generation data is derived from EIA-923 reports (1 ). For simplicity, we only estimate

the effects of runoff anomalies on fossil plants that are from the same region. Significance: ∗

p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001

13



Table S4: Climate models used in this study for future projections. We use projections

from 33 global climate models with available runoff output at the monthly level for the historical

and three climate scenarios from the CMIP6 model ensembles. The spatial resolution of each

model is shown in latitude × longitude (unit: degree). Resolutions are approximated for models

with varying latitudes. Data is downloaded in October, 2022.

Model Ensemble variant Resolution

ACCESS-CM2 r1i1p1f1 1.25 x 1.88

ACCESS-ESM1-5 r1i1p1f1 1.25 x 1.88

BCC-CSM2-MR r1i1p1f1 1.12 x 1.12

CanESM5 r1i1p1f1 2.79 x 2.81

CAS-ESM2-0 r1i1p1f1 1.42 x 1.41

CESM2-WACCM r1i1p1f1 0.94 x 1.25

CMCC-CM2-SR5 r1i1p1f1 0.94 x 1.25

CMCC-ESM2 r1i1p1f1 0.94 x 1.25

CNRM-CM6-1 r1i1p1f2 1.4 x 1.41

CNRM-CM6-1-HR r1i1p1f2 0.5 x 0.5

CNRM-ESM2-1 r1i1p1f2 1.4 x 1.41

EC-Earth3 r1i1p1f1 0.7 x 0.7

EC-Earth3-Veg r1i1p1f1 0.7 x 0.7

EC-Earth3-Veg-LR r1i1p1f1 1.12 x 1.12

FGOALS-f3-L r1i1p1f1 0.94 x 1.25

FGOALS-g3 r1i1p1f1 2.03 x 2

GFDL-ESM4 r1i1p1f1 1 x 1.25

GISS-E2-1-G r1i1p1f2 2 x 2.5

GISS-E2-1-H r1i1p1f2 2 x 2.5

INM-CM4-8 r1i1p1f1 1.5 x 2

INM-CM5-0 r1i1p1f1 1.5 x 2

IPSL-CM6A-LR r1i1p1f1 1.27 x 2.5

KACE-1-0-G r1i1p1f1 1.25 x 1.88

MCM-UA-1-0 r1i1p1f2 2.24 x 3.75

MIROC-ES2L r1i1p1f2 2.79 x 2.81

MIROC6 r1i1p1f1 1.4 x 1.41

MPI-ESM1-2-HR r1i1p1f1 0.94 x 0.94

MPI-ESM1-2-LR r1i1p1f1 1.87 x 1.88

MRI-ESM2-0 r1i1p1f1 1.12 x 1.12

NorESM2-LM r1i1p1f1 1.89 x 2.5

NorESM2-MM r1i1p1f1 0.94 x 1.25

TaiESM1 r1i1p1f1 0.94 x 1.25

UKESM1-0-LL r1i1p1f2 1.25 x 1.88
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Figure S1: Time series of hydropower and fossil fuel generation in the western US.

Figure shows the annual total generation from hydropower (blue) and fossil fuel sources (black) for

each of the three regions in the western US.
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Figure S2: Estimation results using runoff anomalies calculated using alternative meth-

ods. Figure shows the estimated changes in fossil generation in one electricity region (corresponding

to each panel) due to the 5th to 95th percentile change of runoff in each of the three regions (x-

axis of each panel). The error bars show the 95% confidence intervals of the estimated generation

changes. Standard errors are clustered at the plant level. Estimation results using runoff anomalies

calculated with different methods are shown in different colors. Runoff anomalies are calculated

using different averaging windows (3, 6, 9, 12 months) and derived from three different models of

NLDAS-2 (VIC, MOSAIC, Noah). Our main analysis uses 9-month runoff anomalies from the VIC

model (Red color, Runoff-9 (VIC)).
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Figure S3: Estimation results using alternative specifications of the regression model.

Figure shows the estimated changes in fossil generation in one electricity region (corresponding to

each panel) due to the 5th to 95th percentile change of runoff in each of the three regions (x-axis of

each panel). The error bars show the 95% confidence intervals of the estimated generation changes.

Standard errors are clustered at the plant level. Estimation results using alternative specifications

of the regression model are shown in different colors. Descriptions of the alternative specifications

are discussed in SI.
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Figure S4: Estimation results across different sample restrictions. Figure shows the esti-

mated changes in fossil generation in one electricity region (corresponding to each panel) due to the

5th to 95th percentile change of runoff in each of the three regions (x-axis of each panel). The error

bars show the 95% confidence intervals of the estimated generation changes. Standard errors are

clustered at the plant level. Figure shows the estimation results across different sample restriction

thresholds (shown in different colors). For each threshold, the estimation is performed on a sample

that includes an observation only if the unit has operated or reported for at least X days during

the month (X=1,..,10). Our main analysis only includes an observation if the unit has operated or

reported for at least four days during the month (i.e. X=4, shown in the green lines).
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Figure S5: Estimation results of the distributed lag model. Panel A shows the effects of

individual lags of runoff on fossil fuel generation. X-axis shows the lags (e.g. lag=0 denotes the

effects of contemporary runoff anomaly on fossil generation in the current month). Y-axis shows the

changes in fossil generation in one electricity region (each panel) due to the 5th to 95th percentile

change of runoff anomalies (i.e. changes under dry conditions relative to wet conditions) in each

of the three regions (shown by the line colors). In panels B and C, black lines show the results

estimated using our main model (9-month average of runoff anomalies). Purple lines show the

results estimated using the distributed lag model. Black lines show the same results in Figure 2 in

the main text. Panel B: relative changes in monthly fossil generation in each region due to runoff

changes in our study period. X-axis is sorted by the changes in fossil fuel generation, from months

with the lowest runoff on the left to the months with the highest runoff on the right. Panel C:

changes in fossil generation in one electricity region (each panel) due to the 5th to 95th percentile

change of runoff anomalies (i.e. changes under dry conditions relative to wet conditions) in each of

the three regions (x-axis of each panel). The error bars in panels A and C, and shades in panel B

show the 95% confidence intervals of the estimated generation changes.
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Figure S6: Drought increases the net export of electricity from the neighboring regions

to the drought region. Figure shows the estimated changes in the net export of electricity from

one electricity region (the source region, corresponding to each panel) to another electricity region

(the drought region, x-axis of each panel) due to the 5th to 95th percentile change of runoff in the

drought region.
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Figure S7: The need to substitute for changes in hydropower is the leading mechanism

that explains the runoff – fossil generation relationship. Figure shows changes in fossil fuel

generation due to the 5th to 95th percentile change of runoff anomalies (i.e. changes under dry

conditions relative to wet conditions), through different mechanisms. We only focus on the drought

impacts on fossil fuel plants in the same electricity region (i.e. the local effect), and only focus on

California and Northwest where the estimated local effects are substantial. Figure shows the effects

through all possible mechanisms (‘total’), effects through changes in hydropower (‘hydro’), effects

through changes in electricity demand (‘demand’), effects through changes in wind generation

(‘wind’), effects through changes in solar generation (‘solar’), and effects through changes in the

local temperature at the plant locations (‘T’, possibly by influencing the cooling efficiency).
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Figure S8: Increases in surface PM2.5 are more likely to be associated with drought-

induced emissions emitted from upwind plants. Panel A shows the PM2.5 impacts of drought-

induced emissions from fossil fuel plants within 50km radius of the monitor at upwind or downwind

locations of the monitor. As shown in panel B, a plant is determined to be at the upwind location,

if the plant is located in the “upwind quadrant” which is a 90 degree cone centering around the

wind direction. The wind direction is calculated using the zonal and meridional wind components

within 50km of the monitor (wind direction derived from the ERA5 land reanalysis data). Panel A

shows the results estimated using monthly-average wind direction, as well as daily wind direction

(paired with drought-induced emissions calculated at the daily level).
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Figure S9: Estimated impacts of drought-induced emission on surface PM2.5 are largely

consistent across alternative model specifications. In our main specification, we include

the splines of surface temperature, precipitation, dewpoint temperature, boundary layer height, air

pressure, 10m wind direction (U and V components) and wind speed for meteorological controls,

year and month-of-year fixed effects. The figure shows coefficients estimated under alternative

specifications of regression models – coefficients estimated with no meteorology controls (‘No met’),

coefficients estimated using ordinary least square (‘Unweighted’), and coefficients estimated using

state-level year trend (‘State trend’) or monitor-level year trend (‘Monitor trend’) instead of the

year fixed effects.
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Figure S10: Empirical and InMAP estimates of PM2.5 impacts associated with drought-

induced emissions. Panel A shows the empirical estimates of drought-induced emissions of

different distance bins on surface PM2.5 (same as Figure 3C in the main text). Panel B shows the

InMAP estimates of drought-induced emissions on surface PM2.5. To derive the InMAP estimates,

we first use InMAP to simulate PM2.5 changes in the western US associated with one ton of SO2

and NOx emissions emitted from all power plants in our sample. Then for each air quality monitor,

we calculate the ratio between the simulated PM2.5 and the emissions from plants of a certain

distance bin. The box plot in Panel B shows the range of the PM2.5 – emissions sensitivities across

different monitor locations.
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Figure S11: Dramatic declines in the drought-induced PM2.5 damage are driven by

decline in emissions factors after scrubber installations. Results are shown for a power

plant in Washington State (panel A), which includes two units using coal as their main fuel type.

Panel B shows the PM2.5 damage due to drought-induced emissions from this plant. We find that

the predicted drought-induced damages decline after the installation of scrubbers in August 2002

(17 ), driven by declines in NOx (panel C) and SO2 emission factors (panel D) .
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Figure S12: Projected runoff anomalies under future climate. The box plots show the range

of projected runoff anomalies from 33 global climate models in CMIP6, under SSP1-2.6, SSP2-4.5,

and SSP3-7.0 scenarios. Runoff anomalies are calculated relative to the 1980-2014 values from the

historical simulations and then averaged over 2030-2059.
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Figure S13: Modest reductions in drought-induced damages under projected electricity

sector scenarios (projection year 2035). Figure shows the mean values of drought-induced

damages projected by the 33 models under SSP3-7.0. The relative difference in damages under the

three electricity sector scenarios (compared to the reference scenario) is shown in the figure.
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Figure S14: Projected percentages of fossil fuel generation in the electricity grid of

the western US. We calculate the ratio of fossil fuel generation relative to the total electricity

generation (black), and the percentage of time that fossil fuel generators are the marginal generators

of the electric grid (blue). Results are derived from the hourly simulation under the “Low RE cost

scenarios” of the Cambium data sets from 2024 to 2050 (18 ). Figures show the changes in fossil

fuel generation percentage relative to the 2024 projections (i.e., 2024 results normalized to 1), for

the four egrid subregions of western US (19 ).
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Country Hydropower
percentage

Runoff change

Namibia 93% -21%
Bhutan 100% -20%

Honduras 30% -20%
Burma 53% -19%

Guatemala 38% -17%
Uruguay 47% -17%
Kenya 33% -16%

Madagascar 40% -16%
French Guiana 48% -16%

Venezuela 62% -13%
Suriname 52% -13%

Chile 25% -12%
El Salvador 27% -8%
Bosnia and 

Herzegovina
31% -8%

Mali 39% -7%
Papua New Guinea 21% -7%

Portugal 20% -7%
Fiji 50% -7%

The former Yugoslav 
Republic of Macedonia

26% -5%

0% 25% 50% 75% 100%

−30% 0% 30%

0% 25% 50% 75% 100%

−30% 0% 30%

A Hydropower percentage

B Runoff change

C

Figure S15: Many hydro-dependent countries face increasing drought risks due to cli-

mate change. Panel A shows the percentage of electricity provided by hydropower in each country

(averaged over 2015-2021). Panel B shows the projected changes (median changes across 33 models)

in runoff under SSP3-7.0 between 2030 to 2059 (relative to 1980 to 2014). We identify 19 countries

(table C) that could be vulnerable to drought-induced shocks to the electricity system (which has

>20% generation coming from hydropower and is projected to have a >5% decline in runoff under

future climate).
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Figure S16: Estimated impacts on fossil fuel generation are consistent across the es-

timations at the regional level and the BA-fuel level. Changes in electricity generation

estimated using the coefficients derived from regressions at the BA-fuel level are shown in orange.

Changes in electricity generation estimated with adjusted coefficients (for 11 out of 681 units, we

use the pooled regression coefficients at the regional level instead of the highly uncertain coefficients

estimated at the BA-fuel level) are shown in purple. Changes in electricity generation estimated

using the coefficients derived from the pooled regressions are shown in gray.
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Figure S17: Total premature mortalities due to drought-induced fossil generation during

2001 to 2021 under different methods to estimate drought-induced PM2.5. The figure

shows three empirical estimates and one estimate based on InMAP simulations of the drought-

induced PM2.5 mortalities. Mortalities are estimated using the same CRF function from Deryugina

et al. For the empirical estimates of drought-induced PM2.5, we consider impacts of drought-

induced emissions within the radius of 50km, 100km, or 200km, and use the corresponding regression

coefficients. Our main analysis calculates the drought-induced PM2.5 using the empirical approach

that accounts for drought-induced emissions within a 100km radius.
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Figure S18: Total premature mortalities due to drought-induced fossil generation during

2001 to 2021 under different CRFs (20–23). Deryugina et al., (3-day) uses the main estimate

from Deryugina et al. which calculates the total cumulative mortalities in the 3-day window

following a day of exposure. Deryugina et al., (21-day) uses the alternative estimate reported in

Deryugina et al. which calculates the total cumulative mortalities in the 21-day window following

a day of exposure. Mortalities are calculated using the estimated drought-induced PM2.5 from the

empirical approach that accounts for drought-induced emissions within a 100km radius.
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