

Supporting Information for

Genetic robustness control of auxin output in priming organ initiation

Yuqiu Dai^{1, 3}, Linjie Luo^{2, 3} and Zhong Zhao^{1, *}

¹CAS Center for Excellence in Molecular Plant Sciences, MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

²Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.

³These authors contributed equally.

*Correspondence: Zhong Zhao

Email: zhzhao@ustc.edu.cn (Z.Z.)

This PDF file includes: Figures S1 to S22 Table S1

SUPPLEMENTAL FIGURES

Fig. S1. The *drn drnl* and *mp* mutants have severe defects in lateral organ initiation. Top views of the inflorescences of six-week-old Col-0 (*A*), *drn* (*B*), Ler (*C*), *drnl* (*D*), *mp* (*G*) and *drn drnl* (*E*, *F*) plants. The number of *drn drnl* mutants with different phenotypes are indicated (*E*, *F*); $n \ge 12$ shoot apexes per genotype were observed with similar results. Scale bars, 1 mm.

Fig. S2. Measurement of silique numbers in *drn drnl* **double mutants.** The silique numbers of the *drn* and *drnl* single mutants showed no difference from their respective wild-type plants (*drn* vs Col-0 and *drnl* vs L*er*) but were significantly decreased in the *drn drnl* double mutant. N = 37 for each genotype, two-tailed Student's *t* tests, ***P < 0.001; ns, no significant difference. Six-week-old plants were used for the measurement.

Fig. S3. Overexpression of *DRNL* increased the number of siliques in the wild type. (*A*) The inflorescences of six-week-old WT and *UBQ10::DRNL* plants. (*B*) Measurement of silique numbers in WT and *UBQ10::DRNL* plants. N = 17 for each genotype, two-tailed Student's *t* tests, ***P < 0.001.

Fig. S4. Top view of *DRNL* expression patterns in the SAM. *DRNL* expression was detected in the inflorescences of wild-type plants by RNA *in situ* hybridization. $n \ge 13$ shoot apexes were observed with similar results. Scale bars, 50 µm.

Fig. S5. *MP* distribution patterns in the SAM. (*A*) *MP* transcripts were detected by RNA *in situ* hybridization; n = 10 shoot apexes were observed with similar results. Scale bars, 50 µm. (*B*) MP protein distribution patterns in *MP::MP-GFP/mp* rescued plants. n = 29 shoot apexes were observed with similar results. Scale bars, 50 µm.

Fig. S6. The expression levels of *DRNL* with NPA treatment. Detection of *DRNL* expression levels in the SAM under NPA treatment after 1 day (1D), 3 days (3D) and 5 days (5D) using qRT–PCR. The data are shown as the mean \pm s.d. ; n = 3 biological replicates, two-tailed Student's *t* tests, *P < 0.05, **P < 0.01.

Fig. S7. A-type *ARRs* were not under direct control by DRNL. Expression levels of A-type *ARRs* in *drn drnl* double mutants (*A*) and *UBQ10::DRNL-GR* inflorescences with DEX induction in the presence of cycloheximide (*B*) were measured by qRT–PCR. The data are shown as the mean \pm s.d.; n = 3 biological replicates, two-tailed Student's *t* tests, *P < 0.05, **P < 0.01, ***P < 0.001; ns, no significant difference.

Fig. S8. The expression levels of *IPTs* and *LOGs* in *UBQ10::DRNL-GR* plants with DEX induction. Expression levels of *IPTs* (*A*) and *LOGs* (*B*) in the inflorescences of *UBQ10::DRNL-GR* transgenic plants with or without DEX induction in the presence of cycloheximide were measured by qRT–PCR. The data are shown as the mean \pm s.d. ; n ≥ 3 biological replicates, two-tailed Student's *t* tests, ***P < 0.001; ns, no significant difference.

Fig. S9. The expression patterns of *CKX6* in the wild type and *mp* mutant. *CKX6* expression patterns in the SAM of WT (*A*) and *mp* (*B*) were detected by RNA *in situ* hybridization; $n \ge 7$ shoot apexes per genotype were observed with similar results. Scale bars, 50 µm.

Fig. S10. Expression of either *AHP6* **or** *CKX6* **partially rescues the organ initiation defects in** *drn drnl* **mutants.** The proportion of "pin-like" phenotypes in *drn drnl* mutants was partially restored by the expression of *AHP6* or *CKX6* under the control of a 4.1 kb *MP* promoter. *drn drnl*, n = 3 replicates, with each replicate having more than 95 plants. *MP::CKX6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::CKX6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 52 plants. *MP::AHP6/drn drnl*, n = 3 replicates, with each replicate having more than 68 plants. Bars depict SD; Statistics, Chi-square test.

Fig. S11. DRNL and DRN directly activate the expression of AIL6, ANT, FIL and TMO3. Detection of AIL6, ANT, FIL, LFY and TMO3 expression levels in the inflorescences of UBQ10::DRNL-GR (A) and 35S::DRN-GR (B) transgenic plants with or without DEX induction in the presence of cycloheximide. The data are shown as the mean \pm s.d.; $n \ge 6$ biological replicates, two-tailed Student's *t* tests, *P < 0.05, ***P < 0.001; ns, no significant difference.

Α

Fig. S12. Generation of the *drnl* **mutant in the Col-0 background.** (*A*) The *drnl* #9 mutant in the Col-0 background was generated by CRISPR/Cas9 with 82 bp inserted in the first CRISPR/Cas9 target region (upper panel). Arrows indicate the insertion site of 82 bp in *drnl* #9. The two 20-bp sgRNA targets are shown in red. The bottom panel shows the sequencing of the target region in *drnl* #9. (*B*) Comparison of the translated amino acid sequences of the WT and *drnl* #9.

Fig. S13. DRN protein distribution patterns in the *drnl* #9 SAM. Top view of *DRN::DRN-GFP* in WT Col-0 (*A-D*) and *drnl* #9 mutant (*E-H*) inflorescences by the serial optical transverse sections imaged using an Olympus FV3000 confocal microscope; $n \ge 16$ shoot apexes per genotype were observed with similar results. Scale bars, 50 µm.

Fig. S14. Top view of *DRN::mCherry* and *DRNL::3×GFP* in the WT. Separate images from each channel of Fig. 5 E-H are shown, including *DRN::mCherry* (*A-D*), *DRNL::3×GFP* (*E-H*) and merged images (*I-L*); $n \ge 20$ shoot apexes per genotype were observed with similar results Scale bars, 50 µm.

Fig. S15. Top view of *DRN::mCherry* and *DRNL::3×GFP* in the *drnl* #9. Separate images from each channel of Fig. 5 I-L are shown, including *DRN::mCherry* (*A-D*), *DRNL::3×GFP* (*E-H*) and merged images (*I-L*); $n \ge 30$ shoot apexes per genotype were observed with similar results. Scale bars, 50 µm.

Fig. S16. The expression patterns of *DRNL* and *DRN* in the SAM of wild-type and *drnl* #9 plants. *DRNL* (*A*, *D*) and *DRN* (*B*, *E*) expression was detected by *DRNL::* $3 \times GFP$ and *DRN::mCherry* in the WT (*A*-*C*) and *drnl* #9 (*D*-*F*) apexes. (*C*) Merged images of (*A*, *B*). (*F*) Merged images of (*D*, *E*). n ≥ 12 shoot apexes per genotype were observed with similar results. Scale bars, 50 µm.

Fig. S17. DRN directly activates the expression of *AHP6* **and** *CKX6*. Detection of *AHP6* and *CKX6* expression levels in the inflorescences of 35S::DRN-GR transgenic plants with or without DEX induction in the presence of cycloheximide. The data are shown as the mean \pm s.d. ; n = 3 biological replicates, two-tailed Student's *t* tests, ***P < 0.001.

Fig. S18. DRN interacts with MP *in vivo* and *in vitro*. (*A*) BiFC experiments showing that MP interacts with DRN in tobacco leaves. 35S::cYFP-RPK2 and 35S::nYFP-POL were used as negative controls, $n \ge 7$ for each of three independent experiments; Scale bars, 50 µm. (*B*) Pull-down assays show that MP physically interacts with DRN *in vitro*. Two independent experiments were performed with similar results.

Fig. S19. DRN transcription in the *drnl* **mutant was activated by auxin signaling.** (*A*) The expression levels of *DRN* in the SAM of 35S::*DRN-GR* with or without DEX induction. The data are shown as the mean \pm s.d.; n = 3 biological replicates; two-tailed Student's *t* tests, ns, no significant difference. (*B*) The expression levels of *DRN* in the SAM of *RPS5A::GR-bdl/drn drnl* plants with or without DEX induction. The primers were designed upstream of the inserted *dSpm* element in *drn* plants. The data are shown as the mean \pm s.d.; n ≥ 5 biological replicates; two-tailed Student's *t* tests, ***P < 0.001. (*C*, *D*) *DRN* expression patterns in the SAM of *RPS5A::GR-bdl/drn drnl* plants with (*D*) or without (*C*) DEX induction detected by RNA *in situ* hybridization; n ≥ 24 shoot apexes for each treatment with similar results. Scale bars, 50 µm.

Fig. S20. DRN regulates *DRNL* expression indirectly in the SAM. (*A* and *B*) Detection of *DRNL* expression levels in the inflorescences of *drn* mutants (*A*) and *35S::DRN-GR* plants with or without DEX induction in the presence of cycloheximide (*B*). The data are shown as the mean \pm s.d.; $n \ge 3$ biological replicates, two-tailed Student's *t* tests, ***P < 0.001; ns, no significant difference. (*C* and *D*) *DRNL* expression patterns in the SAM of Col-0 (*C*) and *drn* (*D*) using RNA *in situ* hybridization; $n \ge 18$ shoot apexes per genotype were observed with similar results. Scale bars, 50 µm. (*E* and *F*) *DRNL* expression patterns in the SAM using *DRN::*3×*GFP* transgenic plants in the Col-0 (*E*) and *drn* (*F*) backgrounds; $n \ge 14$ shoot apexes per genotype were observed with similar results. Scale bars, 50 µm. (*G* and *H*) DRNL protein distributions in the SAM using *DRNL::DRNL-GFP* transgenic plants in the Col-0 (*G*) and *drn* (*H*) backgrounds; $n \ge 18$ shoot apexes per genotype were observed with similar results. Scale bars, 50 µm.

Fig. S21. The predicted gene ages of *DRN* **and** *DRNL***.** (*A*) Schematic comparison of amino acid sequences between DRN and DRNL with the location of the AP2 domain. (*B* and *C*) The gene ages of *DRN* and *DRNL* (*C*) were predicted by GenOrigin (*B*) (http://genorigin.chenzxlab.cn/).

Fig. S22. Hypothetical evolutionary relationships between *DRN* and *DRNL*. *DRNL* originated from a gene duplication event from the *DRN* and shows redundant functions immediately following the duplication. During evolution, the expression of *DRN* in organ initiation cells is repressed directly by DRNL, which promotes the functional diversity and differentiation of paralogous genes. However, in the case of any disturbance in the DRNL, *DRN* is ectopically activated in the primordia and fully restores the functional deficiency to ensure a robust output of auxin during organ initiation.

Real-time PCR	
Gene	Sequence
IPT1-F	ACGTTAGCGAAGAGACAAGTG
<i>IPT1-</i> R	TCACAATCTTTACGCTTGGCTC
IPT2-F	TGCTTCAGAGATCATCAGGTG
IPT2-R	TTCTGCTTCTTGAACTTCTCTG
IPT3-F	TTGAGTTAGCTTGTAGGCAGAG
IPT3-R	ACACAGTATCTGTGCTTGGTC
IPT4-F	TCACGAAGATCAACAAGCTGAG
IPT4-R	TCCTGACAATCTTCACACACG
IPT5-F	ACGGAGAGACTTCTTGAAACG
IPT5-R	TGGTCATCGCTGTAACTAAGG
IPT6-F	AGGAGTTCGACCGATACTTTAG
IPT6-R	TCTCCCATTCTTTCCTTCTCC
IPT7-F	CGTCTAGGCCCTTGTAAAGTTGA
IPT7-R	GTCTCGCCATCGACCTAGCA
IPT8-F	TATGACGAAGCTGTCCAAGAG
IPT8-R	TCACCAAGAAGCGTTTCACAAC
IPT9-F	TCGTGCCATTGGGTACAGAC
IPT9-R	TATCTCCACCATCTCTGCTTC
LOG1-F	ATGGAGATAGAATCAAAGTTCAAGA
LOG1-R	TCATCTTGAGATTTCACAAGTGGGA
LOG2-F	ATGGAAGAGACAAAATCAAGATTCA
LOG2-R	CTAAAACGAGTCGCCTTCCAAAGTG
LOG3-F	ATGGAAATCAAAGGTGAATCGATGC
LOG3-R	TCACTCTTCAGAGGAGTAACCAATC
LOG4-F	ATGGAGGTCAACAATGAAACCATGC
LOG4-R	TCAGTCTTCAGAAGAGTAGTCAATC

Table S1 | Oligonucleotides used in this study (5' \rightarrow 3').

LOG5-F	ATGGAAATAGTGAAGTCGAGGTTCA
LOG5-R	CTAAAGGGCAATCTCAGTCTGCATG
LOG6-F	ATGGAGAATGAAGAGGGAAAAAGAG
LOG6-R	CTAACCAGCTTTAGACATAACTTGA
LOG7-F	ATGGAAGAGACAAAATCGAGATTCA
LOG7-R	GTTTGGTATATACGCGGTTAGCAGT
LOG8-F	ATGGAAGATAATCAGCGAAGCAGAT
LOG8-R	TTATTGCGGCTTGTTTTCTTGTCCC
LOG9-F	CATATCTGGTGAGACTGTTGGAGAG
LOG9-R	GGCTTGTTCTCATTTAGTAGTGGGT
AHK2-F	GAGCTTTTTGACATCGGG
AHK2-R	TTCTCACTCAACCAGACGAG
AHK3-F	GTGACCAGGCCAAGAACTTA
AHK3-R	CTTCCCTGTCCAAAGCAA
AHK4-F	GGCACTCAACAATCATCAAG
AHK4-R	TCTTTCTCGGCTTTTCTGAC
AHP1-F	TAGGAGCACAGAGAGTTAAGA
AHP1-R	GCACAAAGAAAGAAGTTCAC
AHP2-F	AAAAATCCTCTCCCAATCTCC
AHP2-R	CTTTGTCTTTAACGCCTTGTA
AHP3-F	AGCTGCAAGATGAATGTAGTC
AHP3-R	CACTTGAGGGATTCTACCAC
AHP4-F	TGTTGAAGAAGTTTCCGCATTA
AHP4-R	AAGCATCCTTCCGCATTT
AHP5-F	CAGGTGGATTCAGGTGTTCA
AHP5-R	ATTTTTCACCCTCCTTGCAC
AHP6-F	CCGCAACCTTAGATTATTGTTGAT
AHP6-R	CCCTACGAGCACCAATGC
ARR1-F	TGGCTACGGATACAGCAACAATG

ARR1-R	ATGTTATCGATGGAGTATGCGTC
ARR2-F	TCAGGACGCAGCAACTGCAAC
ARR2-R	TGGAGGACAAGTCACTGTCTC
ARR3-F	TCTCAGCCACATCCTCGATGG
ARR3-R	TCCACAAGCGAAGTTGCAGAC
ARR4-F	TGGAGATCTTTTCCACCTCGC
ARR4-R	TCATCTTCTGCCGTCGAATCG
ARR5-F	AGCTCAAAGATTCACACACATGC
ARR5-R	TCTCCTCTCTAATGAATCCAAGTC
ARR6-F	TCCGATGCAAATTCCGTGACTG
ARR6-R	AACCCACTGAATTCAATCAGCG
ARR7-F	TGAGGTCATGAGGATGGAGATTC
ARR7-R	CAAGATACTGCAAAGCCCTAGTTC
ARR8-F	TCGGTCTGAAGGAGGACTAACG
ARR8-R	TGCAGTCCGTTGTTGTTTGCTTC
ARR9-F	AATGGAGTCCCCACTGCAGTAG
ARR9-R	TTGTTGATACTCAATGTTTGCTCCT
ARR10-F	TGCGTTCTGCGACTCAGCTAG
ARR10-R	TGAGTTGTTTGCAGGCTGCTG
ARR11-F	TCTCCAGCAACAACCATTGCCAAG
<i>ARR11-</i> R	TCTGTGTTGAACTCCTGCAGC
ARR12-F	ACTCCACGATGAAGCAGGTGTG
ARR12-R	TCTCTCATATGCATGTTCTGAGTG
ARR13-F	ATGCAACTACACAGCCAAATCTTG
<i>ARR13</i> -R	TGTTCACGAAGGTCCAGTCACC
ARR14-F	TTCATGGTCTATCTTCCTCAGC
ARR14-R	ACAGTTGCAGAGCCTTCTCTTC
ARR15-F	TCAGCACTCAGAGAAATCCCA
ARR15-R	TTCCTTCTTCAGCTTCACCA

ARR16-F	ATGAACAGTTCAGGAGGTTCTTG
ARR16-R	TGCAACAAGAGATCTTGAGCAAC
ARR17-F	AAGGGCTGTGGAAGTGGAAG
ARR17-R	GCCCGTTTTCTGCAGTTGTC
ARR18-F	TGAGATGATGAAACAGGAGGAG
ARR18-R	TGCAACTGGTAGAGAAAGAG
ARR19-F	ACCAGATCATAACCAATCCTCCG
ARR19-R	AGAGGCTTGAAGAAGTTCTTC
ARR20-F	AGATGTCACTCTTGCAGCCTC
ARR20-R	ACGTGTCTAGATTCTTGCTTGG
ARR21-F	TGGATCTGGATCAAACTTGACGC
ARR21-R	TGTCCAAACCCAAGAACTTGAG
ARR22-F	TCTTGATGCAATGCCTACCTTC
ARR22-R	TCTTCACTTCTATCGACTTGG
CKX1-F	AGCTTCGACGATGTCCACAA
CKX1-R	GTCCTTGAAGCGAGTGACCA
CKX2-F	GGCCAAGGCCACTCCTTAAA
CKX2-R	CCTTTCTCCGCCGTCTTCTT
CKX3-F	GACGAAACTTCTCAATACAC
CKX3-R	GTTGCGATTCATAGGATA
CKX4-F	ATAAAGGCTCAACCAGCCCC
CKX4-R	ACGTCATGTTCACGACGACA
CKX5-F	CGCATCGGAGCCATAGATGT
CKX5-R	TCGGCCGATGATGGATGAAG
CKX6-F	ATGTGTCTGGTGGTGAGCTG
CKX6-R	GGCCGCTTATTCCAGCATTG
CKX7-F	GTTTGTCAACGGTGCTGACC
CKX7-R	GAAGACCGAGTTCGAGGCAA
DRNL-F	CGTTTAGCTGACTTCCATGTC

DRNL-R	CCGTTCTGCTGCATCTTAGC
DRN-F	TGTACGGAACTCAGTTAGGC
DRN-R	ACATTGGGAAAGGTAGCAAC
AHP6-F	CCGCAACCTTAGATTATTGTTGAT
AHP6-R	CCCTACGAGCACCAATGC
AIL6-F	AGCAGCAGCAGCAACAGAACTT
AIL6-R	AGAGGAAGAACTCAGCCGGATTT
ANT-F	AGATCCCAACGGATTCAAACAGC
ANT-R	CTTTAGGAGGATATAGGAGAGGG
FIL-F	CAGCAACCCAACAATCAAGAAG
<i>FIL</i> -R	GATTGATTGATGGGTATTTGAC
LFY-F	ATGGATCCTGAAGGTTTCACGA
LFY-R	CTCTAAACCACCAAGTCGCAT
TMO3-F	CCGAGGAGTGAGACAGCGTCC
TMO3-R	GCTTCTTCCGCCGTGTTGTAAGTACC
DRN-F (3'UTR)	GTACGGAACTCAGTTAGGCT
DRN-R (3'UTR)	CCAACATTGGGAAAGGTAGC
DRN-F (Upstream of	
dSpm element)	
DRN-R (Upstream of	TTTGAAGACAGTTTGCGGTTG
dSpm element)	

in situ hybridization	
Gene	Sequence
AHP6-F	ATGTTGGGGTTGGGTGTGGAC
AHP6-R	GTAATACGACTCACTATAGGGCGACATTGGATATCTGAC
	TCCTG
CKX6-F	GAGCTATCTACATGCAAGCC

CKX6-R	AATTAACCCTCACTAAAGGGACATGGTTGGTGCTGGTTC
	CA
DRN-F	ATGGAAAAAGCCTTGAGAAAC
<i>DRN</i> -R	GTAATACGACTCACTATAGGGCGCTATCCCCACGATCTT
	CGGC
DRNL-F	ATGGAAGAAGCAATCATGAGA
DRNL-R	GTAATACGACTCACTATAGGGCGCTAATAATCATCATGAA
	AGC
MP-F	TATCCGAACCTTCCATCTCAG
<i>MP</i> -R	GTAATACGACTCACTATAGGGCGGCGACAATATCCTTAT
	GCACC
DRN-F (Upstream of	ATGGAAAAAGCCTTGAGAAACTTCACCGAATCTACCCAC
dSpm element)	Т
DRN-F (Upstream of	GTAATACGACTCACTATAGGGCGTGCTCCACGAAAGGCA
dSpm element)	CGA

Plasmid construction	
DRNL promoter-F	TCGTATCCAAGGTTGAATGTTGG
DRNL promoter-R	GGTTGACCTAAGGGAAATTTTTA
MP promoter-F	TAGAGAGAGGACGTGTGTGA
MP promoter-R	CATCATACAGAGAGATTTTT
P16 promoter-F	ACGCGTCGACTGGAACCATCTTTTGGGTTC
P16 promoter-R	CCGGAATTCCCACGCCGTCGTAGATGAGA
DRNL CDS-F	ATGGAAGAAGCAATCATGAG
DRNL CDS-R	ATAATCATCATGAAAGCAAT
DRN CDS-F	ATGGAAAAAGCCTTGAGAAA
DRN CDS-R	CTATCCCCACGATCTTCGGC
MP CDS-F	ATGATGGCTTCATTGTCTTG
MP CDS-R	TTATGAAACAGAAGTCTTAA

AHP6 genome sequence-

ATGTTGGGGTTGGGTGTGGA

F	
AHP6 genome sequence-	ТТАСАТТССАТАТСТСАСТС
R	TACATIGGATATCTGACTC
CKX6 genome sequence-	ATGAGCTATCTACATGCAAG
F	
CKX6 genome sequence-	
R	
POL CDS-F	ATGGGAAACGGGACTTCCCGTG
POL CDS-R	TTATCTATTGAATTTTTG
RPK2 CDS-F	ATGACTTCTTTGCCTTCT
RPK2 CDS-R	CTAACACGACGGAGGTTG

CRISPR-Cas9	
DRNL-CRISPER-DT1-BsF	ATATATGGTCTCGATTGAAGCAATCATGAGACTCGAGTT
DRNL-CRISPER-DT1-F0	TGAAGCAATCATGAGACTCGAGTTTTAGAGCTAGAAATA
	GC
DRNL-CRISPER-DT2-R0	AACCATGGCCTACGCCTCACGCCAATCTCTTAGTCGACT
	CTAC
DRNL-CRISPER-DT2-	ATTATTGGTCTCGAAACCATGGCCTACGCCTCACGCC
BsR	

ChIP	
AHP6 S1-F	TGAATAGGGTACTCGAGCAC
AHP6 S1-R	ACGGAACAAACAACTAGCTAG
AHP6 S2-F	TATACTTTCTGGTTCCAGGAG
AHP6 S2-R	TACCAACACCTCTGGTTACGTG
AHP6 S3-F	ACGTAACCAGAGGTGTTGGTAC
AHP6 S3-R	AAGGCCTTTCTCTCTCGATC

AHP6 S4-F	ACCAGCTGGTCTGACAGGGTAC
AHP6 S4-R	ACATGAGATGAGGTGACCCAC
AHP6 S5-F	TGTGGGTCACCTCATCTCATG
<i>AHP</i> 6 S5-R	CCACAACGGCACACCCGTCTTG
CKX6 S1-F	TCTGTTATCCACCTGCCCGA
<i>CKX6</i> S1-R	TCCCATTGCAGCTAGCTGAC
CKX6 S2-F	GTGGGTGTAACTGTTATC
<i>CKX6</i> S2-R	TATAGTTGAGGCCTCTCCCT
CKX6 S3-F	TGGTTGCCTCGGCCATTCAG
<i>CKX6</i> S3-R	GCTCATAAGGCCTCTTGATTTCT
CKX6 S4-F	TGAACATGTCCATCACGCCT
CKX6 S4-R	TTGAGGCGATGTCGCTTACC
CKX6 S5-F	TCTAACCAAACATGCGAGAGTGA
<i>CKX6</i> S5-R	ACCACAAATGAGCAGCAG
DRN S1-F	AACGCAGGGGTTTTAATTGC
DRN S1-R	CTGGAGTATCTTTCAAAAGC
DRN S2-F	AAACGTAAGCATCGGGCGAT
DRN S2-R	GGAACAAAAGATATGCATAGC
DRN S3-F	CTTCTCGATATCACCGAT
DRN S3-R	CGACCAACAGTCATTTC
DRN S4-F	AGCAATAAGAACGTGGT
DRN S4-R	GGAAACTTTTGAGTTGCAC
DRN S5-F	GTGCAACTCAAAAGTTTCC
DRN S5-R	CCATTTTTGGTTTCTAGGG
DRN S6-F	ATGGAAAAAGCCTTGAGAAACTTCACCG
DRN S6-R	TGCCAGCTCCGGCGATGGTTA

EMSA

	GCAGAGTCACGCGGGGTAACCGGCTGGCGGCTGTAGCC
AHP0-F	GGTCACAGAGTGTATTAA
AHP6-R	TTAATACACTCTGTGACCGGCTACAGCCGCCAGCCGGTT
	ACCCCGCGTGACTCTGC
AHP6-mutant probe-F	GCAGAGTCACGCGGGGTAACCGGCTGGAGGATGTAGCC
	GGTCACAGAGTGTATTAA
AHP6-mutant probe-R	TTAATACACTCTGTGACCGGCTACATCCTCCAGCCGGTT
	ACCCCGCGTGACTCTGC
CKX6-for DRNL binding-F	GAAATCGATACCAGTTGATCCCTTTGGCGGTCTTACATC
	CCAAATCGGTAAGCGA
CKX6-for DRNL binding-R	TCGCTTACCGATTTGGGATGTAAGACCGCCAAAGGGATC
	AACTGGTATCGATTTC
CKX6-probe1-for MP	ATATAAAGCTAATCTTTTATCATAATGTCTGATCAAAAGAA
binding-F	TTTAAGAAAAGAA
CKX6-probe1-for MP	TTCTTTCTTAAATTCTTTTGATCAGACATTATGATAAAAG
binding-R	ATTAGCTTTATAT
CKX6-probe2-for MP	AAAGAAGAGATGATTCATTTAGTTTTGTCAGCTAGCTGCA
binding-F	ATGGGAGGCCTTAA
CKX6-probe2-for MP	TTAAGGCCTCCCATTGCAGCTAGCTGACAAAACTAAATG
binding-R	AATCATCTCTTCTTT
CKX6-probe3-for MP	AAGTAAAAGTGTTATGGTATGATCTTGTCTGCCTTTTCTTT
binding-F	GAAAAAGCCAAGA
CKX6-probe3-for MP	TCTTGGCTTTTTCAAAGAAAAGGCAGACAAGATCATACCA
binding-R	TAACACTTTTACTT
CKX6-mutant probe1-for	ATATAAAGCTAATCTTTTATCATAATGGCTGATCAAAAGAA
MP binding-F	TTTAAGAAAAGAA
CKX6-mutant probe1-for	
	TICTTTCTTAAATICTTTGATCAGCCATTATGATAAAAG

	CKX6-mutant probe2-for	AAAGAAGAGATGATTCATTTAGTTTTGGCAGCTAGCTGCA
	MP binding-F	ATGGGAGGCCTTAA
	CKX6-mutant probe2-for	TTAAGGCCTCCCATTGCAGCTAGCTGCCAAAACTAAATG
	MP binding-R	AATCATCTCTTCTTT
	CKX6-mutant probe3-for	AAGTAAAAGTGTTATGGTATGATCTTGGCTGCCTTTTCTT
	MP binding-F	TGAAAAAGCCAAGA
	CKX6-mutant probe3-for	TCTTGGCTTTTTCAAAGAAAAGGCAGCCAAGATCATACCA
	MP binding-R	TAACACTTTTACTT
	DRN-F	AGAAAAGCATTTATACTCTTCGCCATATATTTCAAACTTCA
		CA
	DRN-R	TGTGAAGTTTGAAATATATGGCGAAGAGTATAAATGCTTT
		тст