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Supporting Information Text 
 
Milk nutrient content analysis 

Briefly, dried samples were combusted in an elemental gas analyzer 
(Model 2400, Perkin Elmer, Norwalk, CT) to determine total nitrogen (TN) 
content. TN was used to estimate protein in each milk sample using a conversion 
factor of 6.38 (3). Fat was assayed using a micro-modification of the Rose-
Gottlieb procedure that involves sequential lipid extraction with ethanol, diethyl 
ether, and petroleum ether (4). Sugar was measured using the phenol-sulphuric 
acid colorimetric procedure with lactose monohydrate standards and was read at 
490 nm on a microplate reader (Model ELX808, Biotek, Winooski, VT) (5, 6). 

Milk gross energy (GE) was calculated for each milk sample as the sum of 
the energy from protein, fat, and sugar using: 5.86 kcal/g for protein, 9.11 kcal/g 
for fat, and 3.95 kcal/g for sugar (7). This method of GE calculation has been 
shown to closely correlate with experimentally measured gross energy using 
adiabatic bomb calorimetry for milk from species as diverse as aardvarks 
(Orycteropus afer) (8), bongos (Tragelaphus eurycerus) (9), and rhesus 
macaques (Macaca mulatta) (10). We calculated the mg/kcal GE for each 
nutrient (protein, sugar, and fat) by dividing the percent nutrient by total GE and 
multiplying by 1,000. We hereon refer to the nutrient mg/kcal GE as protein GE, 
sugar GE and fat GE. In analyses, we were unable to use fat GE as a factor as it 
was confounded with protein GE and sugar GE (linear correlation: fat-protein = -
0.61, far-sugar = -0.66).  

For milk nutrient content, we did not have data for 10 individuals because 
we did not have enough milk to run assays. For individuals for which we had milk 
nutrient content data (n = 73), we conducted k-means cluster analysis on sugar 
GE and protein GE to assign individuals to three clusters (based on scree plot 
analysis); for individuals without data (n = 10), we assigned them their cluster 
based on individuals within their species (n = 7) (11) or based on expert opinion 
(n = 3; M. Power). The three clusters corresponded to high protein, high sugar, 
and high fat (Figure S9) and were the three categories used in categorical 
analyses of milk nutrient content. For quantitative analyses of milk nutrient 
content, sugar GE and protein GE were used.  
 
Null model analysis 

Briefly, we calculated phylogenetic beta diversity for each pairwise sample 
type bacterial community using β-mean-nearest taxon distance (βNTID) (12, 13). 
Then, we calculated βNTI from 1000 random phylogenetic trees. We applied a 
cut-off |βNTI| > 2 to identify pairs of communities that were more similar than 
expected by chance in terms of phylogeny, meaning that observed difference 
between communities could be determined by environmental selection (13). 
Then, we calculated the RCBray between pairs of bacterial communities, and 
combined with βNTI to generate βRCBray. If βRCBray > 0.95 it indicates 
community variation is influenced by dispersal limitation, while if βRCBray < 0.95 
it indicates mass effects. When βRCBray is between -0.95 and +0.95 it indicates 
the variation of the community is determined by ecological drift (13, 14). 
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Figure S1. Stacked bar plot of relative abundance of dominant microbial (A) 
phyla and (B) genera among mammalian species. Full dataset, merged by 
common name. At least 5% relative abundance of phyla and genera. 
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Figure S2. Similar milk microbial (A) richness and (B) composition among 
early and mature lactation stages (LMM p > 0.05; PERMANOVA p > 0.05). 
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Figure S3. Principal coordinate analysis of Bray-Curtis distances for 
independent measures. Dataset identical to Figure 2, but labelled by common 
name of mammal. 
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Figure S4. Topological comparisons between milk microbiome dendrogram 
(Jaccard distances) and host phylogeny (MYA) showing no evidence for 
phylosymbiosis. 
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Figure S5. Individual and collective contributions of host phylogeny, diet, 
and milk nutrient content on milk microbiome structure (Bray-Curtis). 
Individual and shared variance among variables collectively explained 8% of 
variation (shared 2.6%, individual 5.4%). 
  

Diet
3.18%

0.52%

0.59%

0.92%

0.48%0.60%

1.73%
Phylogeny

Bray-Curtis

Unexplained
variance

~ 92%

Milk nutrient 
content



 
 

8 
 

 
 
Figure S6. Constrained analysis of principal coordinates showing the 
relationship of milk microbial composition with host diet and milk nutrient 
content for Jaccard distances (similar results for UniFrac distances not shown). 
Individuals are shown colored based on their diet category as in Figure 2. 
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Figure S7. Relationship between diet and milk sugar GE. (A) Boxplot 
depicting milk sugar GE by dietary categories (herbivores, omnivores, 
insectivores, carnivores). (B) Principal coordinate scores (PC1) from quantitative 
dietary traits (Elton traits) plotted against milk sugar GE. 
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Figure S8. Correlation between microbial ASV abundance and milk sugar 
GE and milk protein GE. Six bacterial ASVs were correlated with milk sugar 
GE, and one with milk protein GE. See Table S5 for full taxonomic assignment. 
Microbial abundances were log transformed and had at least 5% relative 
abundance and occurred at least five times (n = 135 ASVs).  
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Figure S9. Visualization of k-means clusters for milk nutrient content (milk 
sugar GE, milk protein GE, milk fat GE). Plot created using function 
fviz_cluster (factoextra package). Confidence ellipses on euclidean distances 
from the center are shown. ID represents species name, unique ID and early or 
mature milk sample. The three clusters corresponded to high sugar (cluster 1), 
high protein (cluster 2), and high fat (cluster 3). Fat was not included in cluster 
analysis because it was highly negatively correlated with Sugar (Pearson 
correlation coefficient = -0.67) and Protein (Pearson correlation coefficient = -
0.62).  
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Figure S10. Rarefaction curve depicting microbial richness by sequence 
count. Samples were rarified to 3,000 total reads per sample given high variation 
in sequencing depth. Most host species have reached maximum microbial 
diversity by 3,000 reads.  
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Figure S11. Three a priori models used in structural equation modeling 
(SEM). We assessed each model for four measures of microbiome structure (MB 
variable): species richness, Faith’s phylogenetic diversity, Bray-Curtis, and 
unweighted UniFrac. The full model represents all possible relationships between 
variables, model 2 does not include a bidirectional relationship between milk 
sugar GE and milk protein GE, and model 3 assumes there is no direct 
relationship between diet and milk microbiome structure. 
  



 
 

14 
 

Table S1. Sample sizes per species per dataset.  

Species name Common name 

Eco-
evolutionary 

analysis 

Lactation 
stage 

analysis n 
Addax nasomaculatus Addaax Y N 1 
Ailuropoda melanoleuca Giant panda Y N 1 
Ailurus fulgens Red panda Y N 1 
Alouatta palliata Manteled howler monkey Y N 2 
Arctocephalus philippii Juan Fernandez fur seal Y N 3 
Balaena mysticetus Bowhead whale Y N 1 
Callithrix jacchus Common marmoset N Y 1 
Callithrix jacchus Common marmoset Y N 1 
Callithrix jacchus Common marmoset Y Y 1 
Camelus bactrianus Bactrian camel N Y 2 
Camelus bactrianus Bactrian camel Y Y 2 
Canis lupus Great Pyrenees dog N Y 1 
Canis lupus Great Pyrenees dog Y N 2 
Canis lupus Great Pyrenees dog Y Y 1 
Ceratotherium simum White rhinoceros N Y 2 
Ceratotherium simum White rhinoceros Y Y 2 
Choloepus hoffmanni Hoffman’s two-toed sloth Y N 1 
Crocuta crocuta Spotted hyena Y N 1 
Dasypus novemcinctus Nine-banded armadillo Y N 4 
Diceros bicornis Black rhinoceros Y N 1 
Elaphurus davidianus Pere Davids deer Y N 1 
Elephas maximus Asian elephant N Y 2 
Elephas maximus Asian elephant Y Y 2 
Eptesicus fuscus Big brown bat Y N 1 
Equus przewalskii Przewalskii horse N Y 1 
Equus przewalskii Przewalskii horse Y Y 1 
Eumetopias jubatus Stellar sea lion N Y 1 
Eumetopias jubatus Stellar sea lion Y Y 1 
Giraffa camelopardalis Northern giraffe N Y 1 
Giraffa camelopardalis Northern giraffe Y Y 1 
Gorilla gorilla Western lowland gorilla N Y 2 
Gorilla gorilla Western lowland gorilla Y Y 2 
Halichoerus grypus Grey seal Y N 4 
Hippopotamus amphibius Hippopotamus Y N 1 
Homo sapiens Human Y N 3 
Leontopithecus rosalia Golden lion tamarin Y N 1 
Leptonychotes weddellii Weddel seal Y N 3 
Loxodonta africana African elephant N Y 2 
Loxodonta africana African elephant Y Y 2 
Melursus ursinus Sloth bear Y N 1 
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Myrmecophaga tridactyla Giant anteater Y N 1 
Okapia johnstoni Okapi Y N 1 
Orcinus orca Orca N Y 2 
Orcinus orca Orca Y N 1 
Orcinus orca Orca Y Y 2 
Orycteropus afer Aardvark N Y 1 
Orycteropus afer Aardvark Y N 1 
Orycteropus afer Aardvark Y Y 1 
Panthera leo African lion Y N 2 
Phoca groenlandica Harp seal Y N 3 
Pongo abelii Sumatran orangutan Y N 1 
Pongo pygmaeus Bornean orangutan N Y 1 
Pongo pygmaeus Bornean orangutan Y Y 1 
Pteropus vampyrus Large flying fox N N 2 
Pteropus vampyrus Large flying fox Y N 2 
Rangifer tarandus Reindeer Y N 1 
Rhinoceros unicornis Asian rhinoceros Y N 1 
Tapirus indicus Malayan tapir N N 1 
Tapirus indicus Malayan tapir Y N 1 
Tragelaphus eurycerus Bongo N Y 1 
Tragelaphus eurycerus Bongo Y N 1 
Tragelaphus eurycerus Bongo Y Y 1 
Trichechus manatus West Indian manatee Y N 1 
Tupaia tana Large treeshrew Y N 2 
Tursiops truncatus Bottlenose dolphin N Y 1 
Tursiops truncatus Bottlenose dolphin Y N 1 
Tursiops truncatus Bottlenose dolphin Y Y 1 
Ursus americanus Black bear Y N 3 
Ursus maritimus Polar bear Y N 1 
Zalophus californianus California sea lion Y N 4 
      TOTAL = 107 
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Table S2. Sample sizes per factor in repeated measures dataset. 21 
independent females sampled at early and mature lactation stages. 

Superorder Diet type Environment n 
Afrotheria Herbivore Terrestrial Captive 8 
Afrotheria Insectivore Terrestrial Captive 2 
Euarchontoglires Herbivore Terrestrial Captive 6 
Euarchontoglires Omnivore Terrestrial Captive 2 
Laurasiathera Carnivore Marine Captive 8 
Laurasiathera Carnivore Terrestrial Captive 2 
Laurasiathera Herbivore Terrestrial Captive 14 
    TOTAL = 42 
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Table S3. Sample sizes per factor in independent measures dataset. 

Superorder Diet type Environment n 
Afrotheria Herbivore Marine Captive 1 
Afrotheria Herbivore Terrestrial Captive 4 
Afrotheria Insectivore Terrestrial Captive 2 
Euarchontoglires Herbivore Terrestrial Captive 4 
Euarchontoglires Herbivore Terrestrial Wild 2 
Euarchontoglires Omnivore Terrestrial Captive 5 
Euarchontoglires Omnivore Terrestrial Wild 3 
Laurasiathera Carnivore Marine Captive 5 
Laurasiathera Carnivore Marine Wild 19 
Laurasiathera Carnivore Terrestrial Captive 5 
Laurasiathera Carnivore Terrestrial Wild 2 
Laurasiathera Herbivore Terrestrial Captive 20 
Laurasiathera Herbivore Terrestrial Wild 1 
Laurasiathera Omnivore Terrestrial Captive 1 
Laurasiathera Omnivore Terrestrial Wild 3 
Xenarthra Herbivore Terrestrial Captive 1 
Xenarthra Insectivore Terrestrial Captive 1 
Xenarthra Insectivore Terrestrial Wild 4 
    TOTAL =  83 
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Table S4. Summary statistics for variance partitioning performed with 
multiple regression on dissimilarity matrices (MRM). We assessed individual 
and shared variance between host phylogeny, diet, and milk nutrition on milk 
microbiome structure. We included samples with complete nutrient data for milk 
sugar GE and milk protein GE (n = 73). 
 

Variable Bray-Curtis Jaccard Unifrac 
 R2 p-value R2 p-value R2 p-value 

Phylogeny 1.73% 0.001 1.88% 0.001 0.29% 0.213 
Diet 3.18% 0.001 2.86% 0.001 1.31% 0.001 

Nutrition 0.52% 0.001 0.47% 0.001 0.08% 0.339 
Phylogeny, Diet, 

& Nutrition 
0.59% p = 

0.001 
0.57% p = 

0.001 
0.15% p = 

0.157 
Phylogeny & Diet 0.92% 0.91% 0.25% 

Phylogeny & 
Nutrition 

0.48% 0.48% 0.08% 

Diet & Nutrition 0.60% 0.54% 0.16% 
SUM: 8.01% 

 
7.70% 

 
2.32% 
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Table S5. Microbial ASV abundance (log transformed) correlated with milk sugar GE and milk protein GE. 
Microbial abundances were log transformed and had at least 5% relative abundance and occurred at least five times (n = 
135 ASVs). 
 
Bacterial ASV Correlated with Milk Sugar GE 

ASV Phylum Class Order Family Genus Species Adjusted 
p-value 

Coefficient 

ASV154 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Rothia sp. 0.004 4.99E-05 

ASV2 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Rothia sp. 0.004 2.25E-04 

ASV31 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus sp. 0.01 2.51E-04 

ASV259 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter sp. 0.021 3.04E-05 

ASV126 Proteobacteria Gammaproteobacteria Pseudomonadales Pasteurellaceae Actinobacillus sp. 0.034 9.84E-05 

ASV45 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus sp. 0.051 2.17E-04 

Bacterial ASV Correlated with Milk Protein GE 
ASV Phylum Class Order Family Genus Species Adjusted 

p-value 
Coefficient 

ASV347 Firmicutes Bacilli Bacillales Planococcaceae Solibacillus silvestris 0.006 1.41E-04 
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Table S6. Dispersion summary statistics. We tested distances between group 
centroids for each explanatory variable and microbial measure. The least 
dispersion between groups was observed using UniFrac in the balanced dataset. 
 
Independent dataset (n = 83) 

Variable Distance 
metric 

DF F value p value 

Super Order Bray-Curtis 79 59.522 < 0.001 
Jaccard 79 48.687 < 0.001 
UniFrac 79 6.0689 0.0009016 

Environment Bray-Curtis 79 12.184 < 0.001 
Jaccard 79 15.113 < 0.001 
UniFrac 79 4.9714 0.003271 

Diet Type Bray-Curtis 79 26.916 < 0.001 
Jaccard 79 30.463 < 0.001 
UniFrac 79 1.1123 0.3492 

Milk Nutrient 
Content 

Bray-Curtis 80 22.047 < 0.001 
Jaccard 80 19.213 < 0.001 
UniFrac 80 6.1934 0.003156 

Lactation Stage Bray-Curtis 81 < 0.001 0.791 
Jaccard 81 0.2406 0.6251 
UniFrac 81 2.3464 0.1295 

 
 
 Balanced dataset (n = 51) 

Variable Distance 
metric 

DF F value p value 

Super Order Bray-Curtis 47 25.896 < 0.001 
Jaccard 47 17.995 < 0.001 
UniFrac 47 1.7145 0.1768 

Environment Bray-Curtis 47 6.4379 0.0009633 
Jaccard 47 6.8027 0.000667 
UniFrac 47 2.8914 0.04513 

Diet Type Bray-Curtis 47 14.095 < 0.001 
Jaccard 47 11.945 < 0.001 
UniFrac 47 0.5888 0.6254 

Milk Nutrient 
Content 

Bray-Curtis 48 27.55 < 0.001 
Jaccard 48 26.637 < 0.001 
UniFrac 48 2.7015 0.0773 

Lactation Stage Bray-Curtis 49 0.2531 0.6171 
Jaccard 49 0.4823 0.4907 
UniFrac 49 1.29 0.2604 
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Table S7. Comparing mammalian skin, gut, and milk microbiome datasets 
used in null model analysis. We subset Song et al. (1) dataset to the same 
species used in the milk microbiome dataset, while Ross et al. (2) was subset to 
match host order of the milk microbiome dataset. Within the skin dataset (2), we 
chose samples from the inner thigh with no duplicate samples per individual. 
 

 
 

Skin Microbiome 
(Ross et al. 2018) 

Gut microbiome 
(Song et al. 2020) 

Milk Microbiome 
(Keady et al. 2023) 

Bacterial taxa 8,993 20,696 13,413 
No. Samples 106 134 107 

No. Host 
Species 

31 32 47 

No. Super 
Orders 

4 4 4 
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Data set S1 (separate file). Structural equation modeling output. Excel file 
contains model outputs for four measures of microbial structure (microbial 
richness, Faith’s phylogenetic diversity, Bray-Curtis, and unweighted UniFrac). 
We tested three a priori models: a full model with all possible relationships 
between variables, model 2 lacks a bidirectional relationship between milk sugar 
GE and milk protein GE, and model 3 assumes no direct relationship between 
diet and milk microbiome structure.  
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