

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Lower Hemoglobin-to-Red Blood Cell Distribution Width Ratio Is Independently Associated With Frailty in Community-dwelling Older Adults: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069141
Article Type:	Original research
Date Submitted by the Author:	11-Oct-2022
Complete List of Authors:	Zhu, Mengpei; Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wei, Chao; Wuhan Geriatric Hospital Yang, Xiongjun; Huazhong University of Science and Technology Huang, Yumei; Huazhong University of Science and Technology Xu, Yushuang; Huazhong University of Science and Technology; Huazhong University of Science and Technology Xiong, Zhifan; Huazhong University of Science and Technology; Huazhong University of Science and Technology Xiong, Zhifan; Huazhong University of Science and Technology;
Keywords:	GERIATRIC MEDICINE, EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine)
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
2	
0	
7	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
29	
20	
29	
30	
31	
32	
33	
34	
35	
26	
50	
37	
38	
39	
40	
41	
42	
42	
7.J 1.A	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	
27	
60	

1

2

3

4

5

Lower Hemoglobin-to-Red Blood Cell Distribution Width Ratio Is Independently Associated With Frailty in Community-dwelling Older Adults: a cross-sectional study

6 Authors Name : Mengpei Zhu^{1.2}, Chao Wei³, Xiongjun Yang², Yumei Huang², Yushuang Xu^{1.2},

7 Zhifan Xiong^{1.2}

8 Affiliations: 1 Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College,

9 Huazhong University of Science and Technology, Wuhan, China.

10 2 Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University

11 of Science and Technology, Wuhan, China.

12 3 Physical Examination Center, East Lake Hospital & Wuhan Geriatric Hospital, Wuhan,

13 China.

14

- 15 Correspondence: Zhifan Xiong
- 16 Address: Division of Gastroenterology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji
- 17 Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake
- 18 Ecological Scenic, Wuhan 430077, Hubei, China
- 19 Email: xiongzhifan@126.com

20 21

BMJ Open

2		
3		
4	23	Abstract
5		
6	24	Objectives: Frailty becomes an emerging global public health burden, with the rapid growth of
/	2.	
8		
9	25	the global elderly population. We investigated the association between hemoglobin-to-red
10		
11	26	blood cell distribution width ratio (HRR) and frailty in older adults
12	20	
13		
14	27	Design: Cross-sectional analysis of associations of HRR and frailty in older people.
15		
17	28	Setting: Enrolled community-dwelling older adults older than 65 years old in Wuhan during
12	20	Setting. Enrolled community-dwelling older addits older than 05 years old in wuhan during
10		
20	29	September 2021 and December 2021.
20		
27	20	Participante: A total of 1206 community dwalling older adults (age ≥ 65 years) in Wyben
23	30	Participants: A total of 1296 community-dwelling older adults (age \ge 65 years) in wuhan
24		
25	31	were included in the study.
26		
27		
28	32	Main outcome measures: The main outcome measure was frailty, and the Fried Frailty
29		
30	33	Phenotype Scale was used to evaluate the frailty status of the participants
31	55	
32		
33	34	Results: A total of 1296 (564 man) older adults were included in this cross-sectional study.
34		
35	35	Their mean age was 70.89 + 4.85 years ROC analysis showed that HRR is a good predictor.
36	55	
37		
38	36	of frailty in older people, the area under the curve (AUC) was 0.802 (95% CI: 0.755 to 0.849),
39		
40	27	and the highest constituity was 94.5% and the specificity was 61.0% with the entired critical
41	57	and the highest sensitivity was 64.5% and the specificity was 61.9% with the optimal childar
42		
43	38	values 9.97 (P<0.001). Multiple logistic regression analysis indicated that lower HRR (<9.97)
44		
45	20	(OD:2.440, 4.670,6.064, D=0.004) is independently associated with facility in older second
46	39	(OR:3.419, 1.679-6.964, P=0.001) is independently associated with traility in older people,
47		
48	40	even after adjusting confounding factors.
49		
50		
51	41	Conclusion: Lower HRR is closely associated with an increased risk of fraility in the older
52		
53	42	people. Lower HRR may be an independent risk factor for frailty in community-dwelling older
54		p
55		
56	43	adults.
57		
58	44	Keywords: Older people, Frailty, Healthy aging, Risk factor, HRR
59		
60		

45	
46	Strengths and limitations of this study
47	This is the first study reporting an association of HRR with the frailty in community-dwelling
48	older adults.
49	HRR may help clinicians to identify people at high risk of frailty and take effective measures to
50	reduce the occurrence and development of frailty, reduce the rate of disability and mortality
51	related to frailty in the elderly.
52	Our findings should facilitate further research to investigate any causal association of HRR
53	and frailty in older people.
54	This was a cross-sectional study that cannot assess the cause-effect relationship.
55	
56	Introduction
56 57	Introduction As life expectancy increases, human societies are aging globally, in both developed and
56 57 58	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to
56 57 58 59	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of aged over 60 years will increase from 605
56 57 58 59 60	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of aged over 60 years will increase from 605 million to 2.1 billion, including 425 million people aged over 80 in the world. ² Frailty becomes
 56 57 58 59 60 61 	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of aged over 60 years will increase from 605 million to 2.1 billion, including 425 million people aged over 80 in the world. ² Frailty becomes an emerging global public health burden, with the rapid growth of the global aging population.
 56 57 58 59 60 61 62 	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of aged over 60 years will increase from 605 million to 2.1 billion, including 425 million people aged over 80 in the world. ² Frailty becomes an emerging global public health burden, with the rapid growth of the global aging population. Frailty is considered to be a complex age-related clinical condition characterized by a decline
 56 57 58 59 60 61 62 63 	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of aged over 60 years will increase from 605 million to 2.1 billion, including 425 million people aged over 80 in the world. ² Frailty becomes an emerging global public health burden, with the rapid growth of the global aging population. Frailty is considered to be a complex age-related clinical condition characterized by a decline in the physiological function of multiple organs, with a resultant increased vulnerability to
 56 57 58 59 60 61 62 63 64 	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of aged over 60 years will increase from 605 million to 2.1 billion, including 425 million people aged over 80 in the world. ² Frailty becomes an emerging global public health burden, with the rapid growth of the global aging population. Frailty is considered to be a complex age-related clinical condition characterized by a decline in the physiological function of multiple organs, with a resultant increased vulnerability to stressors. ³ It is related to adverse health-related events, including increased mortality,
 56 57 58 59 60 61 62 63 64 65 	Introduction As life expectancy increases, human societies are aging globally, in both developed and developing countries. ¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of aged over 60 years will increase from 605 million to 2.1 billion, including 425 million people aged over 80 in the world. ² Frailty becomes an emerging global public health burden, with the rapid growth of the global aging population. Frailty is considered to be a complex age-related clinical condition characterized by a decline in the physiological function of multiple organs, with a resultant increased vulnerability to stressors. ³ It is related to adverse health-related events, including increased mortality, hospitalization, falls and fractures, cognitive decline, disability, and admission to long-term

Page 5 of 24

BMJ Open

67	crucial for delaying and reversing frailty and its associated adverse events in older persons. ⁵
68	As an important part of CBC, hemoglobin (Hb) is usually used as an indicator of the
69	degree of anemia. However, previous studies showed that low Hb reflect to a decline in the
70	physiological function including the decreased immune response, malnutrition, and the low
71	resistance to external invasion. ⁶ Meanwhile, there are several studies indicated that Hb is
72	related to frailty in older persons.7-10 As an indicator of heterogeneity of the erythrocyte
73	volume, red blood cell distribution width (RDW) is thought to be related to the prognosis of
74	many diseases. Hou et al. indicated that RDW is significantly associated with the risk of frailty
75	in older patients with coronary heart disease (CHD). ¹¹ In addition, studies showed that RDW is
76	associated with frailty both in older inpatients and community-dwelling older people. ^{12,13}
77	RDW can be affected by complex conditions, the effect of RDW on frailty is not only
78	related to inflammatory response, but also association with a decline in the physiological
79	function and oxygen. ¹⁴ RDW alone may not provide definitive predictive information. ^{14,15} The
80	hemoglobin-to-RDW ratio (HRR) is a cheap, rapid and readily available novel prognostic,
81	which combines the prognostic information of Hb and RDW and reflects a more
82	comprehensive health status. ^{14,16} Recently, Qu et al. found that lower HRR is independent
83	related to the risk of frailty in older patients with CHD. ¹⁴ They verified that HRR maybe a more
84	useful biomarker comparing with RDW or Hb alone. ¹⁴
85	Studies have showed a significant association of HRR with frailty in specific
86	populations (patients with coronary heart disease). ¹⁴ However, research on HRR and frailty in
87	the general older persons is still limited, and the significance of evaluating frailty is not yet
88	clear. In the present study, we investigated the relationship between HRR and frailty in

community-dwelling older adults.

Material & Methods

Ethical Approval

The research protocol was approved by the Medical Ethics Committee of Liyuan Hospital,

Tongji Medical College, Huazhong University of Science and Technology (IRB ID: [2020] IEC

(A016)). All the participants gave written informed consent. The study was conducted in

accordance with the tenets of the Declaration of Helsinki.

Sampling size and sampling procedure

e²

A sample size of 1,296 was calculated using 2% error, 95% confidence interval using the

formula below :

 $z^2 \times p(1-p)$ n=

n = minimum sample size.

- z = confidence interval at 95%, 1.96.
- teliez oni p = estimated proportion of frailty, 10%.¹⁷

e = margin of error at 2%.

Then we kept the design effect at 1.5. $n = 864 \times 1.5 = 1,296$

Totally, 1,296 participants were examined.

Since, it was a cluster sampling we kept the design effect at 1.5. n = 864 X 1.5 = 1296

Patient and public involvement

BMJ Open

112 The source population was the community-dwelling adults older than 65 living in communities 113 in Wuhan. The study population consisted of a random sample of older people from each 114 community.

115 Participants and Sociodemographic Characteristics

In this present study, we recruited 1,296 community-dwelling adults older than 65 living in communities in Wuhan between September 2021 and December 2021. Sociodemographic characteristics, including age, gender, education years, marital status, smoking history, alcohol consumption, comorbidities, including hypertension, diabetes, CHD, hyperlipidemia, and cerebrovascular disease were recorded. Then body mass index (BMI), waistline , blood pressure and pulse rate were measured by two professional clinicians.

Peripheral Blood Parameters

Blood samples were collected, and full blood count was measured by automated hematology
analyzer (Mindray, BC7500, China). Other related biochemical indicators were detected by
automatic biochemical analyzer (Beckman, AU680, American). HRR = Hb (g/L)/RDW (%).

126 Fried's frailty phenotype

According to the Fried's frailty phenotype, we evaluated frailty in five criteria, as follows (1) Weight loss: unintentional weight loss >5% or a loss of more than 4.5 kg in the past 1 year. (2) Physical weakness: dynamometer was used for participants for three trials, the maximum value was recorded. Low grip strength was defined according to the standards proposed by Fried et al.¹⁸ (3) Slowness: slowness was defined as when the time required to walk 4.6 meters was more than 7 seconds for males (height \leq 173 cm) and females (height \leq 159 cm) or more than 6 seconds for males (height >173 cm) and females (height >159 cm). (4) Physical activity:

low physical activity was defined as less than 383 kcal/week for males and less than 270 kcal/week for females. (5) Exhaustion: exhaustion was assessed by the following two questions from the CES-D. "In the last week, I felt that everything I did was an effort" and "Could not get going in the last week." If the participant responded "yes" to either of these questions, the participant was considered exhausted. Participants with >3 indicators were defined as frail, 1-2 as prefrail and none as robust.

140 Statistical analysis

Continuous and categorical variables were expressed as the mean \pm standard deviation and numbers with percentages, respectively. The baseline characteristics of the groups were compared using one-way analysis of variance and chi-squared test. The predictive value of HRR for frailty was assessed by receiver operating curve (ROC) analysis. The prognostic value of lower HRR on frailty was assessed using logistic regression model. Variables were selected as candidates for the multivariate analysis when p<0.1 in the univariate analysis. After adjustment for confounding factors including age, gender, marital status, education years, alone living, BMI, diabetes, RBC, albumin, triglyceride, HDL-C and LDL-C, assessing the independent risk factors for frailty in older adults. Kendall's tau-b correlation analysis was used to assessing the correlation between lower Hb, lower RDW, lower HRR, and frailty in older adults. The p-values <0.05 was considered statistically significant. All statistical analysis were conducted using SPSS (ver. 26.0, IBM Corporation, Armonk, NY, USA).

Result

155 Characteristics of the study population

BMJ Open

A total of 1296 (564 man) older adults were included in our study. Their mean age was 70.89 ± 4.85 years. Of the 1296 participants, 582 (44.9%) has hypertension, 183 (14.1%) were diabetes patients, 98 (7.6%) had cardiac diseases, and 43 (3.3%) had cranial vascular disease. The proportions of individuals with a habit of smoking and drinking were 11.1% and 11.7%, respectively. And 149 (11.5%) older adults were living alone. According to Fried's frailty phenotype, there were 55.09% (714) in robust group, 36.81% (477) in pre-frail group, and 8.10% (105) in frail group. Baseline characteristics of three group were shown in Table 1.

Characteristics	Robust	Pre-frail	Frailty	p-value
	(n=714)	(n=477)	(n=105)	
Age, years (SD)	69.81 ± 3.89	71.71 ± 5.34	70.89 ± 4.85	<0.001
Male gender, n (%)	347 (48.60%)	184 (38.57%)	33 (31.43%)	<0.001
Marital status Married, n (%)	622 (87.11%)	408 (85.53)	77 (73.33%)	0.001
Other*, n (%)	92 (12.89%)	69 (14.47%)	28 (26.67%)	
Education years 0-12, n (%)	466(65.27%)	337(70.65%)	85(80.95%)	0.002
>12, n (%)	248(24.73%)	140(29.35%)	20(19.05%)	
Alone living, n (%)	74 (10.36%)	53 (11.11%)	22 (20.95%)	0.006
Smoking, n (%)	90(12.61%)	44(9.22%)	10(9.52%)	0.165
Drinking, n (%)	92(12.89%)	50(10.48%)	10(9.52%)	0.345
Hypertension, n (%)	314(43.98%)	212(44.44%)	56(53.33%)	0.192
Diabetes mellitus, n (%)	81(11.34%)	82(17.19%)	20(19.05%)	0.006
Cardiac diseases, n (%)	46(6.44%)	41(8.60%)	11(10.48%)	0.194
Cranial vascular disease, n (%)	24(2.94%)	15(3.14%)	4(3.80%)	0.938
BMI, kg/m² (SD)	24.69 ± 3.05	24.32 ± 3.14	23.83 ± 3.51	0.011
Waist circumference, cm (SD)	86.99 ± 8.66	86.32 ± 8.57	85.42 ± 9.46	0.143
SBP, mmHg (SD)	141.61 ± 18.53	142.73 ± 17.74	143.01 ± 19.37	0.516
DBP, mmHg (SD)	83.77 ± 10.44	82.87 ± 9.75	80.44 ± 10.91	0.006
Heart rate, beats/min (SD)	79.9 ± 13.4	79.8 ± 13.2	81.1 ± 13.0	0.659
WBC, 10 ⁹ /L (SD)	6.39 ± 1.51	6.36 ± 1.56	6.29 ± 1.69	0.781
Neutrophils, 10 ⁹ /L (SD)	3.89 ± 1.22	3.86 ± 1.26	3.96 ± 1.29	0.699
Lymphocytes, 10 ⁹ /L (SD)	1.95 ± 0.58	1.96 ± 0.64	1.76 ± 0.59	0.007
Eosinophils, 10 ⁹ /L (SD)	0.14 ± 0.12	0.14 ± 0.12	0.15 ± 0.18	0.628
PLT, 10 ⁹ /L (SD)	212.4 ± 52.2	216.3 ± 52.0	207.9 ± 66.1	0.251
RBC, 10 ⁹ /L (SD)	4.73 ± 0.41	4.51 ± 0.42	4.41 ± 0.65	<0.001
Hemoglobin, g/L (SD)	145.51 ± 12.15	137.29 ± 11.79	129.55 ± 13.73	<0.001

Anemia, n (%)	6 (0.84%)	17 (3.56%)	21 (20%)	<0.001
RDW, % (SD)	12.89 ± 0.55	13.15 ± 0.69	13.88 ± 1.39	<0.001
HRR	11.31 ± 1.02	10.47 ± 1.05	9.43 ± 1.41	<0.001
FBG, mmol/L (SD)	6.28 ± 1.59	6.37 ± 1.90	6.56 ± 2.13	0.278
Albumin, g/dL (SD)	46.23 ± 2.19	45.86 ± 2.47	45.13 ± 2.90	<0.001
Globulin, g/dL (SD)	30.26 ± 3.44	30.64 ± 3.65	30.55 ± 5.25	0.194
Triglyceride, mmol/L (SD)	1.49 ± 0.85	1.46 ± 0.90	1.44 ± 0.85	0.883
Total Cholesterol, mmol/L (SD)	5.17 ± 1.04	5.19 ± 1.15	4.96 ± 1.05	0.122
HDL-C, mmol/L (SD)	1.50 ± 0.39	1.54 ± 0.42	1.54 ± 0.38	0.333
LDL-C, mmol/L (SD)	3.03 ± 0.82	3.02 ± 0.90	2.82 ± 0.88	0.060

SBP=systolic blood pressure, DBP=diastolic blood pressure, BMI=body mass index, FBG=fasting blood-glucose,

WBC=white blood cell, PLT=platelets count, RBC=red blood cell, RDW=red blood cell distribution width,
 HRR=hemoglobin-to-RDW ratio.

168 Other* including separated, divorced, never married or widowed

ROC curve analysis

The predictive value of HRR for frailty in older adults was assessed by ROC analysis. The AUC for HRR in the frailty older adults was 0.802 (95% CI: 0.755 to 0.849), and the highest sensitivity was 84.5% and the specificity was 61.9% with the optimal critical values 9.97 (Figure 1). The AUC for Hb was 0.742 (95% CI: 0.691 to 0.793), the highest sensitivity was 81% and the specificity was 57.1% with the optimal critical values 131.5 (Figure 1). The AUC for RDW was 0.712 (95% CI: 0.651 to 0.772), the highest sensitivity was 56.2% and the specificity was 81.1% with the optimal critical values 13.45 (Figure 1). Compared with Hb and RDW alone, HRR was a more strong prognostic biomarker for frailty.

179 Differences in clinical characteristics of the study population

180 stratified by HRR

According to ROC analysis, the optimal critical values of HRR was 9.97. Participants were grouped according to the optimal critical values of HRR, as follows: 1046 (80.71%) in the normal HRR group and 250(19.29%) in the lower HRR group (Table 2). Compared with the

BMJ Open

2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23	
24 25	
25 26	
27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48 40	
49 50	
51	
52	
53	
54	
55	
56	
5/ 50	
50 50	
60	

184	normal HRR group, the lower HRR group had a higher lymphocytes count (P=0.002), and
185	RDW (P<0.001), but a lower hemoglobin (P<0.001), RBC (P<0.001) and albumin (P<0.001).
186	Compared with normal HRR group, the lower HRR group were more likely to have frailty

(P<0.001). 187

188	Table2. Baseline characteristics of the study population stratified by HRR

		- ,	
Characteristics	Normal HRR (n=1046)	Lower HRR (n=250)	P-value
Age, years (SD)	70.50 ± 4.64	72.50 ± 5.40	<0.001
Male gender, n (%)	501 (47.9%)	63 (25.2%)	<0.001
Marital status Married, n (%)	901 (86.14%)	206 (82.4%)	0.133
Other*, n (%)	145 (13.86%)	44 (17.6%)	
Education years 0-12, n (%)	691 (66.06%)	197 (78.8%)	<0.001
>12, n (%)	355 (33.94%)	53 (21.2%)	
Alone living, n (%)	114 (10.90%)	35 (14.0%)	0.167
Smoking, n (%)	129 (12.33%)	15 (6.0%)	0.004
Drinking, n (%)	136 (13.0%)	16 (6.4%)	0.004
Hypertension, n (%)	456 (43.59%)	126 (50.4%)	0.052
Diabetes mellitus, n (%)	140 (13.38%)	43 (17.2%)	0.120
Cardiac diseases, n (%)	82 (7.84%)	16 (6.4%)	0.439
Cranial vascular disease, n (%)	32 (3.06%)	11 (4.4%)	0.288
BMI, kg/m² (SD)	24.56 ± 3.07	24.15 ± 3.36	0.026
Waist circumference, cm (SD)	86.90 ± 8.51	85.45 ± 9.37	0.143
SBP, mmHg (SD)	142.3 ± 18.3	141.3 ± 18.5	0.611
DBP, mmHg (SD)	83.7 ± 10.2	80.9 ± 10.1	0.004
Heart rate, beats/min (SD)	80.2 ± 13.4	79.0 ± 12.7	0.362
WBC, 10 ⁹ /L (SD)	6.39 ± 1.49	6.28 ± 1.75	0.556
Neutrophils, 10 ⁹ /L (SD)	3.89 ± 1.19	3.86 ± 1.43	0.441
Lymphocytes, 10 ⁹ /L (SD)	1.96 ± 0.59	1.86 ± 0.69	0.002
Eosinophils, 10 ⁹ /L (SD)	0.14 ± 0.11	0.15 ± 0.17	0.621
PLT, 10 ⁹ /L (SD)	212.3 ± 50.8	218.3 ± 62.8	0.264
RBC, 10 ⁹ /L (SD)	4.71 ± 0.38	4.27 ± 0.56	<0.001
Hemoglobin, g/L (SD)	145.08 ± 10.98	124.90 ± 8.46	<0.001
RDW, % (IQR)	12.89 ± 0.51	13.79 ± 1.09	<0.001
FBG, mmol/L (SD)	6.36 ± 1.77	6.24 ± 1.70	0.166
Albumin, g/dL (SD)	46.18 ± 2.27	45.30 ± 2.69	<0.001
Globulin, g/dL (SD)	30.35 ± 3.45	30.72 ± 4.58	0.708
Triglyceride, mmol/L (SD)	1.48 ± 0.87	1.42 ± 0.83	0.755
Total Cholesterol, mmol/L (SD)	5.17 ± 1.07	5.10 ± 1.27	0.041
HDL-C, mmol/L (SD)	1.50 ± 0.39	1.58 ± 0.42	0.539
LDL-C, mmol/L (SD)	3.03 ± 0.85	2.91 ± 0.87	0.019
Frailty status Robust, n (%)	669 (63.96%)	45 (18.0%)	<0.001

		Pre-frail, n (%)	337 (32.22%)	140 (56.0%)	
		Frailty, n (%)	40 (3.82%)	65 (26.0%)	
189	SBP=systolic blood	pressure, DBP=diastolic bloo	d pressure, BMI=	body mass index, FBG=fastir	ng blood-glucose,
190	WBC=white blood	cell, PLT=platelets count, F	RBC=red blood o	cell, RDW=red blood cell c	listribution width,
191	HRR=hemoglobin-t	o-RDW ratio.			
92	Normal HRR=HRR	above 9.97, Lower HRR: HRR	below 9.97 (Optima	al cut-off value of the ROC cur	ve)
93	Other* including se	parated, divorced, never married	d or widowed		
194					
95	Logistic re	egression analysi	S		
96	Among 1296 o	lder adults, 105 (8.10%) were conside	ered frail. Multiple logis	tic regression
.97	analysis was	conducted to assessing	the associat	tions of the lower HRI	R with frailty.
98	Unadjusted mo	odel1 showed that lowe	er Hb (OR:2.1)	29,1.133-4.001, p=0.01	9) and lower
99	HRR (OR:3.28	5,1.676-6.440, p=0.001)) were risk fac	ctors related to frailty, w	hereas lower
200	RDW (OR:0.3	10, 0.193-0.497, p<0.00	01) was a pro	otective factor. After a	djustment for
201	confounding fa	ictors (including age, ge	nder, marital s	status, education years	, living alone,
02	BMI, diabetes	, RBC, albumin, triglyc	eride, HDL-C	and LDL-C), there w	as significant
203	association of	lower HRR (OR:3.419, ⁻	1.679-6.964, p	=0.001) and lower RD	W (OR:0.285,
204	0.170-0.477, p	< 0.001) with frailty (Ta	able 3). Lower	· HRR was independer	ntly related to
205	frailty in older a	adults.			
206					
207	Table3. Multiple	e logistic regression analy	sis of blood pa	rameters and frailty in ol	der adults
		Model1		Model2	
		OR (95% CI)	P-value	OR (95% CI)	P-value
	Categorical vari	able			
	Lower Hb	2.129 (1.133-4.001)	0.019	1.163 (0.562-2.409)	0.684
	Lower RDW	0.310(0.193-0.497)	<0.001	0.285 (0.170-0.477)	<0.001
	Lower HRR	3.285 (1.676-6.440)	0.001	3.419 (1.679-6.964)	0.001

Hb=hemoglobin, RDW=red blood cell distribution width, HRR=hemoglobin-to-RDW ratio.

3 4	209	Lower Hb: <131.5g/L, Lower RDW: <13.45%, Lower HRR: <9.97. (Optimal cut-off value of the ROC
5 6	210	curve)
7 8	211	OR: odds ratio, CI: confidence interval, Model 1, unadjusted; Model 2, adjusted for age, gender, marital
9 10	212	status, education years, alone living, BMI, diabetes, RBC, albumin, triglyceride, HDL-C and LDL-C.
11	213	
13	214	Correlation Analysis
14 15	214	Conclution Analysis
16 17 19	215	Correlation analysis indicated that there was an obvious positive correlation between
19 20	216	RDW (Kendall's tau-b=0.173, P<0.001) and frailty. Nevertheless, HRR (Kendall's
21 22	217	tau-b=-0.239, P<0.001) and Hb (Kendall's tau-b=-0.194, P<0.001) were a negative
23 24 25	218	correlation with frailty (Table 4).
26 27	219	
28 29	220	Table4. Correlation analysis of Hb, RDW, HRR, and frailty in older adults
30 31	221	
32		Kendall's tau-b p
34 35		Hb -0.194 <0.001
36 37		RDW 0.173 <0.001
38 39 40		HRR -0.239 <0.001
41	222	**. Correlation is significant at the 0.01 level (2-tailed).
43 44	223	
45 46 47	224	Discussion
48 49 50	225	Frailty, as a geriatric syndrome, has attracted more and more scientific attention in the
50 51 52	226	background of continuously increase global population ageing. ¹⁹ In this cross-sectional study
53 54 55	227	including 1,296 community-dwelling older adults, we found that lower HRR is independently
56 57	228	related to frailty in older people, even after adjusting confounding factors. Multiple logistic
58 59 60	229	regression analysis showed that lower HRR is associated with to a 3-fold more likelihood or

Page 14 of 24

2	
J ⊿	
т 5	
6	
7	
/ Q	
0	
9 10	
10	
11	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
n()	

251

1 2

230 odds of frailty. ROC analysis showed that AUC and highest sensitivity of HRR are higher than 231 RDW. Thus, HRR may be a more powerful marker for frailty than RDW. 232 HRR is cost-effective, common, and accessible laboratory parameter for clinicians. As 233 a novel inflammatory factor, Qu et.al found that HRR is a significant associated with frailty in 234 older patients with CHD.¹⁴ In there study the AUC for HRR in the frailty patients was exceed 235 Hb and RDW, and after adjusting confounding factors lower HRR was a risk factor for frailty in 236 older patients with CHD. These findings are consistent with our results. Now the 237 pathophysiological mechanism has not been fully understood. We try to provide a possible 238 explanation for the association between HRR and frailty in older adults. 239 A decreased in HRR may be due to low Hb, high RDW, or both. As we all know, low Hb indicates a condition of anemia, which is one of the acknowledged risk factors for 240 241 hospitalization, morbidity, and mortality in older people.²⁰ Anemia decreases the 242 oxygen-carrying capacity, leading to tissue hypoxia and even organ failure, especially in older 243 patients, increasing the risk of frailty.²¹ Besides, anemia can cut down submaximal and 244 maximal aerobic capacity, leading to several adverse outcomes including loss of muscle 245 strength, cognitive decline and development of frailty.¹⁰ In addition, chronic conditions and 246 comorbidities leading to a low grade of inflammation reducing hemoglobin level,²² also known as chronic diseases anemia, which is the most common type of anemia in older adults.²¹ And a 247 248 state of chronic inflammation has been suggested as contributors to frailty.²³ Furthermore, 249 anemia caused by malnutrition is also a significance health-affecting factor among older adults.21 250

Anemia reaching a prevalence of 17% in older people, is a threat to healthy aging.²⁴

Page 15 of 24

BMJ Open

Corona et.al found that lower hemoglobin and anemia were related to frailty in Brazilian older adults.8 In their study, anemia was related to low physical activity, weakness(weaker) and walked more slowly. Another study from Spain indicated that anemia is independently associated with frailty in older people.²⁵ Moreover, Xu et.al found that Hb is closely associated with frailty in elder patients in hospital.⁹ A systematic review and meta-analysis including 19 studies indicated that older adults with anemia have more than a two-fold increased odds of frailty.²⁶ Silva et.al suggested that lower Hb level should be considered a significant component of frailty in older persons.²⁷ Similarly, another meta-analysis including 32,934 robust participants and 6864 frail participants found that Hb is a useful biomarker of frailty.7 However, there were no significant association of lower Hb and frailty after adjusting confounding factors in our study. The discrepancy of results may be due to the definition of lower Hb is determined by the optimal cut-off value of the ROC curve in this research. Therefore, further studies are needed to confirm the relationship between Hb and frailty in older people.

A increasing RDW also can lead to low HRR. Studies have proved that increased RDW is related to inflammation. Inflammatory cytokines reduce erythropoietin gene expression and erythropoietin receptor expression, which lead to the release of immature erythrocytes and heterogeneity of the erythrocyte volume increasing.^{28,29} In addition, metabolic abnormalities including shortened telomere length, oxidative stress, and malnutrition may also contribute to increased RDW.^{30,31} What's more, others have suggested that RDW may be a potential biomarker for biological aging.²⁹ Study has indicated that a high RDW was related to a high sarcopenia risks.³² Sarcopenia, which plays a key role in frailty, is a progressive loss of

3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
24
24
25
26
27
28
29
30
31
32
33
34
25
22
36
37
38
39
40
41
42
43
11
44 15
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59
60

1 2

274 skeletal muscle mass and strength.²⁷

275	RDW is a biomarker of inflammation, oxidative stress, poor nutritional status, aging,
276	and sarcopenia, and all of these could be underlying reasons of development of frailty. A study
277	enrolled 3,635 community-dwelling older men indicated that participants with a high RDW are
278	more likely to have functional limitations and frailty. ²⁹ Li et.al indicated that increased RDW
279	may be closely related to frailty through inflammation. ¹³ Hou et.al proved that frailty is closely
280	associated with RDW in elder patients with CHD. ¹¹ Another study including 2,932
281	community-dwelling older adults found RDW is independently associated with high frailty risk
282	even after adjusting for potential confounding factors. ¹²
283	To sum up, a large number of researches have verified the association between frailty
284	and a low Hb and a high RDW among older persons. However, both RDW and Hb are
285	susceptible to many other diseases conditions and sub-health states, HRR may provide a
286	more powerful parameter than a single parameter alone. Moreover, ROC analysis showed that
287	the AUC and highest sensitivity of HRR are higher than RDW and Hb. It may be a more
288	reliable and effective marker than Hb and RDW alone.
289	There were also some limitations of our present study. Firstly, this was a
290	cross-sectional study that cannot assess the cause-effect relationship. Secondly, our
291	participants are limited to local participants, these findings need to be validated in different
292	populations around the world. Finally, we did not assess iron, folic, and vitamin B12, which
293	may affect RDW and Hb level.
294	

295 Conclusion

BMJ Open

296	In conclusion, a low HRR is independent associated with higher frailty risk in
297	community-dwelling older adults. This inexpensive and common laboratory parameter may
298	provide useful information to identify the risk of frailty in older adults. Furthermore, use of the
299	HRR may help clinicians to identify people at high risk of frailty and take effective measures to
300	reduce the occurrence and development of frailty, reduce the rate of disability and mortality
301	related to frailty in the elderly, and reduce the waste of medical resources, and promote
302	healthy ageing. Evidence is needed from cohort studies to verify this conclusions in the future.
303	
304	
305	Author contributions
306	Conceptualization: Zhifan Xiong, Mengpei Zhu
307	Data curation: Mengpei Zhu, Chao Wei, Yushuang Xu
308	Formal analysis: Mengpei Zhu, Chao Wei
309	Visualization: Xiongjun Yang, Yumei Huang
310	Writing – original draft: Mengpei Zhu
311	Writing – review and editing: Zhifan Xiong, Mengpei Zhu, Chao Wei, Xiongjun Yang, Yumei
312	Huang, Yushuang Xu. All authors read and approved the final manuscript.
313	
314	Acknowledgements
315	The authors thank all the volunteers that participated in this study.
316	

317 Funding

318	This study was supported by the National Key Research and Development Program of China
319	(2018YFC2002000).
320	
321	Data availability
322	Data for this study are available from the corresponding author.
323	
324	Declaration The authors report no conflicts of interest in this work.
325	
326	
327	
328	
329	References
330	1. Kameda M. Teruva T. Yanagida M. Kondoh H. Frailty markers comprise blood metabolites
331	involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A.
332	2020;117(17):9483-9489.
333	2. Travers J, Romero-Ortuno R, Bailey J, Cooney M-T. Delaying and reversing frailty: a
334	systematic review of primary care interventions. Br J Gen Pract. 2019;69(678):e61-e69.
335	3. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty:
336	opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376-1386.
337	4. Coelho-Junior HJ, Marzetti E, Picca A, Cesari M, Uchida MC, Calvani R. Protein Intake and
338	Frailty: A Matter of Quantity, Quality, and Timing. Nutrients. 2020;12(10).
339	5. Ward RE, Orkaby AR, Chen J, et al. Association between Diet Quality and Frailty Prevalence in
340	the Physicians' Health Study. J Am Geriatr Soc. 2020;68(4):770-776.
341	6. Zhai Z, Gao J, Zhu Z, et al. The Ratio of the Hemoglobin to Red Cell Distribution Width
342	Combined with the Ratio of Platelets to Lymphocytes Can Predict the Survival of Patients
343	with Gastric Cancer Liver Metastasis. Biomed Res Int. 2021;2021:8729869.
344	7. Mailliez A, Guilbaud A, Puisieux F, Dauchet L, Boulanger É. Circulating biomarkers
345	characterizing physical frailty: CRP, hemoglobin, albumin, 250HD and free testosterone as
346	best biomarkers. Results of a meta-analysis. Exp Gerontol. 2020;139:111014.
347	8. Pires Corona L, Drumond Andrade FC, de Oliveira Duarte YA, Lebrao ML. The Relationship
348	between Anemia, Hemoglobin Concentration and Frailty in Brazilian Older Adults. J Nutr
349	Health Aging. 2015;19(9):935-940.

Page 19 of 24

2			
3	350	9.	Xu L, Zhang J, Shen S, et al. Clinical Frailty Scale and Biomarkers for Assessing Frailty in Elder
4 5	351		Inpatients in China. J Nutr Health Aging. 2021;25(1):77-83.
6	352	10.	Ruan Y, Guo Y, Kowal P, et al. Association between anemia and frailty in 13,175
7	353		community-dwelling adults aged 50 years and older in China. BMC Geriatr. 2019;19(1):327.
8	354	11	Hou P Xue H-P Mao X-F Li Y-N Wu I-F Liu Y-B Inflammation markers are associated with
9 10	355		frailty in elderly nations with coronary heart disease Aging (Albany NY)
10	356		2018:10(10):2636-2645
12	357	12	Li C M Chao C T Chan S L Han D S Huang K C Elevated Red Coll Distribution Width Is
13	250	12.	Li C-W, Chao C-T, Chen 3-1, Han D-3, Huang K-C. Elevated Red Cen Distribution which is
14 15	250		Adulta France Mad (I suspense) 2020 7:470
15	359	4.0	Adults. Front Med (Lausanne). 2020;7:470.
17	360	13.	Li Q, Chen X, Han B. Red blood cell distribution width is associated with frailty in older
18	361		inpatients in China: Sex differences in a cross-sectional study. <i>Exp Gerontol.</i>
19	362		2021;150:111392.
20 21	363	14.	Qu J, Zhou T, Xue M, et al. Correlation Analysis of Hemoglobin-to-Red Blood Cell Distribution
22	364		Width Ratio and Frailty in Elderly Patients With Coronary Heart Disease. Front Cardiovasc
23	365		Med. 2021;8:728800.
24	366	15.	Su Y-C, Wen S-C, Li C-C, et al. Low Hemoglobin-to-Red Cell Distribution Width Ratio Is
25 26	367		Associated with Disease Progression and Poor Prognosis in Upper Tract Urothelial Carcinoma.
20 27	368		Biomedicines. 2021;9(6).
28	369	16.	Sun P, Zhang F, Chen C, et al. The ratio of hemoglobin to red cell distribution width as a novel
29	370		prognostic parameter in esophageal squamous cell carcinoma: a retrospective study from
30	371		southern China, <i>Oncotarget</i> , 2016;7(27);42650-42660.
31	372	17	Mail Tang 7 Zhang I. Sun F. Li Y. Chan P. Prevalence of Frailty and Associated Factors in the
33	373	±/.	Community-Dwelling Population of China 1 Am Gerigtr Soc. 2018;66(3):559-564
34	374	10	Eried LP. Tangen CM. Walston L et al. Erailty in older adults: evidence for a phenotype J
35	375	10.	Carontol A Piol Sci Med Sci 2001/E6/2):M146 M1E6
30 37	276	10	Keime C. Taniguchi V. Iliffe S. Jurgi C. Walters K. Transitions between freilty states among
38	277	19.	Kojima G, Tanigucin F, Inne S, Jiviaj S, Waters K. Transitions between mainty states among
39	3//		community-dwelling older people: A systematic review and meta-analysis. Ageing Res Rev.
40	3/8		2019;50:81-88.
41 42	379	20.	Lee CT, Chen MZ, Yip CYC, Yap ES, Lee SY, Merchant RA. Prevalence of Anemia and Its
43	380		Association with Frailty, Physical Function and Cognition in Community-Dwelling Older
44	381		Adults: Findings from the HOPE Study. <i>J Nutr Health Aging</i> . 2021;25(5):679-687.
45	382	21.	Röhrig G. Anemia in the frail, elderly patient. <i>Clin Interv Aging</i> . 2016;11:319-326.
46 47	383	22.	Steinmeyer Z, Delpierre C, Soriano G, et al. Hemoglobin concentration; a pathway to frailty.
47 48	384		BMC Geriatr. 2020;20(1):202.
49	385	23.	Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged
50	386		immune system. Ageing Res Rev. 2017;36.
51	387	24.	Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and
52 53	388		management. <i>Blood</i> . 2018;131(5):505-514.
54	389	25.	Esquinas-Requena JL, García-Nogueras I, Hernández-Zegarra P, Atienzar-Núñez P,
55	390		Sánchez-Jurado PM, Abizanda P. [Anemia and frailty in older adults from Spain. The FRADFA
56 57	391		Study]. Rev Esp Geriatr Gerontol. 2021:56(3):129-135.
57 58	392	26	Palmer K Vetrano DI Marengoni Δ et al. The Relationship between Δ naemia and Frailty: Δ
59	302	20.	Systematic Review and Meta-Analysis of Observational Studies 1 Nutr Health Aging
60	575		systematic neview and meta-marysis of observational studies. J with meditil Ayiliy.

3	204	
4	394	2018;22(8):965-974.
5	395	27. Silva JC, Moraes ZVd, Silva C, et al. Understanding red blood cell parameters in the context of
6	396	the frailty phenotype: interpretations of the FIBRA (Frailty in Brazilian Seniors) study. Arch
7	397	Gerontol Geriatr. 2014;59(3):636-641.
8	398	28. Pierce CN. Larson DF. Inflammatory cytokine inhibition of erythropoiesis in patients
9	300	implanted with a mechanical circulatory assist dovice. <i>Parfusion</i> 2005;20(2):92.00
10	399	implanted with a mechanical circulatory assist device. <i>Perjusion</i> . 2005,20(2):85-50.
12	400	29. Kim KM, Lui L-Y, Browner WS, et al. Association Between Variation in Red Cell Size and
13	401	Multiple Aging-Related Outcomes. J Gerontol A Biol Sci Med Sci. 2021;76(7):1288-1294.
14	402	30. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis.
15	403	Antioxid Redox Signal. 2008;10(11):1923-1940.
16	404	31. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: A simple
17	405	narameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015:52(2)
18	406	22 Kim L m L C Choi CU at al. The Association between Ded Plead Coll Distribution Width and
19 20	400	32. Kim J, Im J-S, Choi CH, et al. The Association between Red Blood Cell Distribution width and
20	407	Sarcopenia in U.S. Adults. Sci Rep. 2018;8(1):11484.
22	108	
23	400	
24		
25	409	
26		
27	410	
28		
30	411	
31	711	
32		
33	412	
34		
35	413	
36		
3/	414	Figure legends
39	717	i igulo logoliuo
40	417	
41	415	Figure1 ROC curve for HRR (A), HD (B) and RDW (C)
42		
43	416	
44		
45 46	417	Notes:
40 47		
48	110	A POC surve indicated that the best intercent value for HPP was 0.07 (sensitivity 84.5%
49	410	A. NOC curve indicated that the best intercept value for first was 9.97 (sensitivity 64.3%,
50		
51	419	specificity 61.9%, AUC = 0.802, P<0.001)
52		
53	420	B. ROC curve indicated that the best intercept value for Hb was 131.5 (sensitivity 81%,
54		
55 56	421	specificity 57.1% ALIC = 0.742 $P < 0.001$
57	421	specificity 57.170, A00 = 0.742, F > 0.0017
58		
59	422	C. ROC curve indicated that the best intercept value for RDW was 13.45 (sensitivity 56.2% ,
60		

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods		els:	
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	5

Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) If applicable, describe analytical methods taking account of sampling strategy	7
		(e) Describe any sensitivity analyses	7
Results		19×	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7-8
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-11
		(b) Report category boundaries when continuous variables were categorized	9-11

relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
ort other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
marise key results with reference to study objectives	12
uss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and nitude of any potential bias	15
e a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from lar studies, and other relevant evidence	13-15
uss the generalisability (external validity) of the study results	15-16
10.	
the source of funding and the role of the funders for the present study and, if applicable, for the original study on th the present article is based	16
ch the pre	sent article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Lower Hemoglobin-to-Red Blood Cell Distribution Width Ratio Is Independently Associated With Frailty in Community-dwelling Older Adults: a cross-sectional study

lournal:	BM1 Open
Manuscript ID	bmjopen-2022-069141.R1
Article Type:	Original research
Date Submitted by the Author:	26-Apr-2023
Complete List of Authors:	Zhu, Mengpei; Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wei, Chao; Wuhan Geriatric Hospital Yang, Xiongjun; Huazhong University of Science and Technology Huang, Yumei; Huazhong University of Science and Technology Xu, Yushuang; Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology Xiong, Zhifan; Huazhong University of Science and Technology; Huazhong University of Science and Technology
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Global health
Keywords:	GERIATRIC MEDICINE, EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine)

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
50 51	
51	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

1

2

3

4

5

Lower Hemoglobin-to-Red Blood Cell Distribution Width Ratio Is Independently Associated With Frailty in Community-dwelling Older Adults: a cross-sectional study

6 Authors Name : Mengpei Zhu^{1.2}, Chao Wei³, Xiongjun Yang², Yumei Huang², Yushuang Xu^{1.2},

7 Zhifan Xiong^{1.2}

8 Affiliations: 1 Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College,

9 Huazhong University of Science and Technology, Wuhan, China.

10 2 Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University

11 of Science and Technology, Wuhan, China.

12 3 Physical Examination Center, East Lake Hospital & Wuhan Geriatric Hospital, Wuhan,

13 China.

14

- 15 Correspondence: Zhifan Xiong
- 16 Address: Division of Gastroenterology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji
- 17 Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake
- 18 Ecological Scenic, Wuhan 430077, Hubei, China
- 19 Email: xiongzhifan@126.com

20 21

2 3		
4	23	Abstract
5		
6 7	24	Objectives: The importance of blood cell markers in frailty has been studied. However,
8 9	25	research on hemoglobin-to-red blood cell distribution width ratio (HRR) and frailty in older
10 11	26	persons is still limited. We investigated the association between HRR and frailty in older
12 13	27	adults.
14 15 16	28	Design: Cross-sectional population-based study.
17 18	29	Setting: Community-dwelling older adults older than 65 years old were recruited from
19 20 21	30	September 2021 to December 2021.
22 23	31	Participants: A total of 1296 community-dwelling older adults (age \geq 65 years) in Wuhan
24 25 26	32	were included in the study.
27 28 20	33	Main outcome measures: The main outcome was the presence of frailty. The Fried Frailty
29 30 31	34	Phenotype Scale was used to evaluate the frailty status of the participants. Multivariable
32 33 34	35	logistic regression analysis was performed to determine the relationship between HRR and
35 36	36	frailty.
37 38 39	37	Results: A total of 1296 (564 man) older adults were included in this cross-sectional study.
40 41 42	38	Their mean age was 70.89 \pm 4.85 years. ROC analysis showed that HRR is a good predictor
43 44	39	of frailty in older people, the area under the curve (AUC) was 0.802 (95% CI: 0.755 to 0.849),
45 46 47	40	and the highest sensitivity was 84.5% and the specificity was 61.9% with the optimal critical
48 49	41	values 9.97 (P<0.001). Multiple logistic regression analysis indicated that lower HRR (<9.97)
50 51 52	42	(OR:3.419, 1.679-6.964, P=0.001) is independently associated with frailty in older people,
53 54	43	even after adjusting confounding factors.
56 57	44	Conclusion: Lower HRR is closely associated with an increased risk of frailty in the older
58 59	45	people. Lower HRR may be an independent risk factor for frailty in community-dwelling older

3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
25
33
36
37
38
39
40
41
42
12
-+-) / /
44
45
46
47
48
49
50
51
51
5Z
53
54
55
56
57
58
50
22
60

46 adults.

- 47 **Keywords**: Older people, Frailty, Healthy aging, Risk factor, HRR
- 48

1 2

49 Strengths and limitations of this study

- 50 Frailty was diagnosed in accordance with the Fried's frailty phenotype.
- 51 This cross-sectional analysis was performed in a medium volume population.
- 52 Some variables were self-reported, but best available measures were used.
- 53 The study reflects the situation of older adults in Wuhan, China, and the generalizability needs
- 54 to be further verified.
- 55 This was a cross-sectional study that cannot assess the cause-effect relationship.

56

57 Introduction

As life expectancy increases, human societies are aging globally, in both developed and 58 59 developing countries.¹ By 2050, the proportion of people aged over 60 years is projected to 60 increase from 11% to 22%, and the number of aged over 60 years will increase from 605 61 million to 2.1 billion, including 425 million people aged over 80 in the world.² Frailty becomes 62 an emerging global public health burden, with the rapid growth of the global aging population. Frailty is considered to be a complex age-related clinical condition characterized by a decline 63 64 in the physiological function of multiple organs, with a resultant increased vulnerability to stressors.³ It is related to adverse health-related events, including increased mortality, 65 66 hospitalization, falls and fractures, cognitive decline, disability, and admission to long-term 67 care.⁴ Therefore, early identifying modifiable risk factors of frailty is becoming increasing Page 5 of 24

BMJ Open

68	crucial for delaying and reversing frailty and its associated adverse events in older persons. ⁵
69	As an important part of CBC, hemoglobin (Hb) is usually used as an indicator of the
70	degree of anemia. However, previous studies showed that low Hb reflect to a decline in the
71	physiological function including the decreased immune response, malnutrition, and the low
72	resistance to external invasion. ⁶ Meanwhile, there are several studies indicated that Hb is
73	related to frailty in older persons. ⁷⁻¹⁰ As an indicator of heterogeneity of the erythrocyte
74	volume, red blood cell distribution width (RDW) is thought to be related to the prognosis of
75	many diseases. Hou et al. indicated that RDW is significantly associated with the risk of frailty
76	in older patients with coronary heart disease (CHD). ¹¹ In addition, studies showed that RDW is
77	associated with frailty both in older inpatients and community-dwelling older people. ^{12,13}
78	RDW can be affected by complex conditions, the effect of RDW on frailty is not only
79	related to inflammatory response, but also association with a decline in the physiological
80	function and oxygen. ¹⁴ RDW alone may not provide definitive predictive information. ^{14,15} The
81	hemoglobin-to-RDW ratio (HRR) is a cheap, rapid and readily available novel prognostic,
82	which combines the prognostic information of Hb and RDW and reflects a more
83	comprehensive health status. ^{14,16} Recently, Qu et al. found that lower HRR is independent
84	related to the risk of frailty in older patients with CHD. ¹⁴ They verified that HRR maybe a more
85	useful biomarker comparing with RDW or Hb alone. ¹⁴
86	Studies have showed a significant association of HRR with frailty in specific
87	populations (patients with coronary heart disease). ¹⁴ However, research on HRR and frailty in
88	the general older persons is still limited, and the significance of evaluating frailty is not yet
89	clear. In the present study, we investigated the relationship between HRR and frailty in

90 community-dwelling older adults.

Material & Methods

93 Patient and public involvement

The source population was the community-dwelling adults older than 65 living in communities in Wuhan. The study population consisted of a random sample of older people from each community. Inclusion criteria were the community-dwelling adults older than 65 living in communities in Wuhan. Exclusion criteria were malignant disease or advanced organic diseases, hematologic diseases, acute stage of disease, and participants with missing the key

99 parameters.

100 Participants and Sociodemographic Characteristics

In this present study, we recruited 1,296 community-dwelling adults older than 65 living in communities in Wuhan between September 2021 and December 2021. Sociodemographic characteristics, including age, gender, education years, marital status, smoking history, alcohol consumption, comorbidities, including hypertension, diabetes, CHD, hyperlipidemia, and cerebrovascular disease were recorded. Then body mass index (BMI), waistline , blood pressure and pulse rate were measured by two professional clinicians.

Peripheral Blood Parameters

Blood samples were collected, and full blood count was measured by automated hematology
analyzer (Mindray, BC7500, China). Other related biochemical indicators were detected by
automatic biochemical analyzer (Beckman, AU680, American). HRR = Hb (g/L)/RDW (%).

111 Fried's frailty phenotype

BMJ Open

According to the Fried's frailty phenotype, we evaluated frailty in five criteria, as follows (1) Weight loss: unintentional weight loss >5% or a loss of more than 4.5 kg in the past 1 year. (2) Physical weakness: dynamometer was used for participants for three trials, the maximum value was recorded. Low grip strength was defined according to the standards proposed by Fried et al.¹⁷ (3) Slowness: slowness was defined as when the time required to walk 4.6 meters was more than 7 seconds for males (height \leq 173 cm) and females (height \leq 159 cm) or more than 6 seconds for males (height >173 cm) and females (height >159 cm). (4) Physical activity: low physical activity was defined as less than 383 kcal/week for males and less than 270 kcal/week for females. (5) Exhaustion: exhaustion was assessed by the following two questions from the CES-D. "In the last week, I felt that everything I did was an effort" and "Could not get going in the last week." If the participant responded "yes" to either of these questions, the participant was considered exhausted. Participants with >3 indicators were defined as frail, 1-2 as prefrail and none as robust.

Patient and public involvement statement

Patients and/or the public were not involved in the design, conduct, reporting or disseminationof this research.

128 Statistical analysis

Continuous and categorical variables were expressed as the mean ± standard deviation and numbers with percentages, respectively. The baseline characteristics of the groups were compared using one-way analysis of variance and chi-squared test. The predictive value of HRR for frailty was assessed by receiver operating curve (ROC) analysis. The prognostic value of lower HRR on frailty was assessed using logistic regression model. Variables were

> selected as candidates for the multivariate analysis when p<0.1 in the univariate analysis. After adjustment for confounding factors including age, gender, marital status, education years, alone living, BMI, diabetes, RBC, albumin, triglyceride, HDL-C and LDL-C, assessing the independent risk factors for frailty in older adults. Kendall's tau-b correlation analysis was used to assessing the correlation between lower Hb, lower RDW, lower HRR, and frailty in older adults. The p-values <0.05 was considered statistically significant. All statistical analysis were conducted using SPSS (ver. 26.0, IBM Corporation, Armonk, NY, USA).

Result

143 Characteristics of the study population

A total of 1296 (564 man) older adults were included in our study. Their mean age was 70.89 ± 4.85 years. Of the 1296 participants, 582 (44.9%) has hypertension, 183 (14.1%) were diabetes patients, 98 (7.6%) had cardiac diseases, and 43 (3.3%) had cranial vascular disease. The proportions of individuals with a habit of smoking and drinking were 11.1% and 11.7%, respectively. And 149 (11.5%) older adults were living alone. According to Fried's frailty phenotype, there were 55.09% (714) in robust group, 36.81% (477) in pre-frail group, and 8.10% (105) in frail group. Baseline characteristics of three group were shown in Table 1.

152	Table1. Baseline	characteristics of	f the study	population	stratified by frailty	'

Characteristics	Robust	Pre-frail	Frailty	p-value	
	(n=714)	(n=477)	(n=105)		
Age, years (SD)	69.81 ± 3.89	71.71 ± 5.34	70.89 ± 4.85	<0.001	
Male gender, n (%)	347 (48.60%)	184 (38.57%)	33 (31.43%)	<0.001	
Marital status Married, n (%)	622 (87.11%)	408 (85.53)	77 (73.33%)	0.001	
Other*, n (%)	92 (12.89%)	69 (14.47%)	28 (26.67%)		
Education years 0-12, n (%) 466(65.27%)	337(70.65%)	85(80.95%)	0.002	
3	>12, n (%)	248(24.73%)	140(29.35%)	20(19.05%)	
----------	--------------------------------------	----------------	-----------------------	--------------------	--------
4	Alone living, n (%)	74 (10.36%)	53 (11.11%)	22 (20.95%)	0.006
6	Smoking, n (%)	90(12.61%)	44(9.22%)	10(9.52%)	0.165
7	Drinking n (%)	92(12,89%)	50(10.48%)	10(9.52%)	0.345
8	Hypertension, n (%)	314(43,98%)	212(44.44%)	56(53,33%)	0.192
9	Diabetes mellitus n (%)	81(11 34%)	82(17 19%)	20(19.05%)	0.006
10	Cardiac discassos $n (\%)$	46(6.44%)	41(8 60%)	11(10.48%)	0.000
12		40(0.44 %)	41(0.00%)	11(10.4876)	0.194
13	Cranial vascular disease, n (%)	24(2.94%)	15(3.14%)	4(3.80%)	0.938
14	BMI, kg/m² (SD)	24.69 ± 3.05	24.32 ± 3.14	23.83 ± 3.51	0.011
15	Waist circumference, cm (SD)	86.99 ± 8.66	86.32 ± 8.57	85.42 ± 9.46	0.143
16 17	SBP, mmHg (SD)	141.61 ± 18.53	142.73 ± 17.74	143.01 ± 19.37	0.516
17	DBP, mmHg (SD)	83.77 ± 10.44	82.87 ± 9.75	80.44 ± 10.91	0.006
19	Heart rate, beats/min (SD)	79.9 ± 13.4	79.8 ± 13.2	81.1 ± 13.0	0.659
20	WBC, 10 ⁹ /L (SD)	6.39 ± 1.51	6.36 ± 1.56	6.29 ± 1.69	0.781
21	Neutrophils, 10 ⁹ /L (SD)	3.89 ± 1.22	3.86 ± 1.26	3.96 ± 1.29	0.699
22	Lymphocytes, 10 ⁹ /L (SD)	1.95 ± 0.58	1.96 ± 0.64	1.76 ± 0.59	0.007
24	Eosinophils, 10 ⁹ /L (SD)	0.14 ± 0.12	0.14 ± 0.12	0.15 ± 0.18	0.628
25	$PI T 10^{9/l} (SD)$	212 4 + 52 2	216 3 + 52 0	207 9 + 66 1	0 251
26	$BBC 10^{9}/L (SD)$	473 ± 0.41	451 ± 0.42	4 41 + 0.65	<0.001
27	Homoglobin $q/L(SD)$	145 51 + 12 15	4.31 ± 0.42	120.55 ± 12.73	<0.001
20		145.51 ± 12.15	137.29 ± 11.79	129.00 ± 13.73	<0.001
30	Anemia, n (%)	6 (0.84%)	17 (3.56%)	21 (20%)	<0.001
31	RDW, % (SD)	12.89 ± 0.55	13.15 ± 0.69	13.88 ± 1.39	<0.001
32	HRR	11.31 ± 1.02	10.47 ± 1.05	9.43 ± 1.41	<0.001
33	FBG, mmol/L (SD)	6.28 ± 1.59	6.37 ± 1.90	6.56 ± 2.13	0.278
34 35	Albumin, g/dL (SD)	46.23 ± 2.19	45.86 ± 2.47	45.13 ± 2.90	<0.001
36	Globulin, g/dL (SD)	30.26 ± 3.44	30.64 ± 3.65	30.55 ± 5.25	0.194
37	Triglyceride, mmol/L (SD)	1.49 ± 0.85	1.46 ± 0.90	1.44 ± 0.85	0.883
38	Total Cholesterol, mmol/L (SD)	5.17 ± 1.04	5.19 ± 1.15	4.96 ± 1.05	0.122
39 40	HDL-C, mmol/L (SD)	1.50 ± 0.39	1.54 ± 0.42	1.54 ± 0.38	0.333
41	LDL-C, mmol/L (SD)	3.03 ± 0.82	3.02 ± 0.90	2.82 ± 0.88	0.060
42	153 SPD=pystolia blood pressure DDD		o DMI-body moon index	EPC-footing blood	aluana

SBP=systolic blood pressure, DBP=diastolic blood pressure, BMI=body mass index, FBG=fasting blood-glucose,

WBC=white blood cell, PLT=platelets count, RBC=red blood cell, RDW=red blood cell distribution width, HRR=hemoglobin-to-RDW ratio.

Other* including separated, divorced, never married or widowed

ROC curve analysis

The predictive value of HRR for frailty in older adults was assessed by ROC analysis. The AUC for HRR in the frailty older adults was 0.802 (95% CI: 0.755 to 0.849), and the highest sensitivity was 84.5% and the specificity was 61.9% with the optimal critical values 9.97

> (Figure 1). The AUC for Hb was 0.742 (95% CI: 0.691 to 0.793), the highest sensitivity was 81% and the specificity was 57.1% with the optimal critical values 131.5 (Figure 1). The AUC for RDW was 0.712 (95% CI: 0.651 to 0.772), the highest sensitivity was 56.2% and the specificity was 81.1% with the optimal critical values 13.45 (Figure 1). Compared with Hb and RDW alone, HRR was a more strong prognostic biomarker for frailty.

Differences in clinical characteristics of the study population stratified by HRR

According to ROC analysis, the optimal critical values of HRR was 9.97. Participants were grouped according to the optimal critical values of HRR, as follows: 1046 (80.71%) in the normal HRR group and 250(19.29%) in the lower HRR group (Table 2). Compared with the normal HRR group, the lower HRR group had a higher lymphocytes count (P=0.002), and RDW (P<0.001), but a lower hemoglobin (P<0.001), RBC (P<0.001) and albumin (P<0.001). Compared with normal HRR group, the lower HRR group were more likely to have frailty (P<0.001).

Table2. Baseline characteristics of the study population stratified by HRR

Characteristics	Normal HRR (n=1046)	Lower HRR (n=250)	P-value
Age, years (SD)	70.50 ± 4.64	72.50 ± 5.40	<0.001
Male gender, n (%)	501 (47.9%)	63 (25.2%)	<0.001
Marital status Married, n (%)	901 (86.14%)	206 (82.4%)	0.133
Other*, n (%)	145 (13.86%)	44 (17.6%)	
Education years 0-12, n (%)	691 (66.06%)	197 (78.8%)	<0.001
>12, n (%)	355 (33.94%)	53 (21.2%)	
Alone living, n (%)	114 (10.90%)	35 (14.0%)	0.167
Smoking, n (%)	129 (12.33%)	15 (6.0%)	0.004
Drinking, n (%)	136 (13.0%)	16 (6.4%)	0.004
Hypertension, n (%)	456 (43.59%)	126 (50.4%)	0.052
Diabetes mellitus, n (%)	140 (13.38%)	43 (17.2%)	0.120
Cardiac diseases, n (%)	82 (7.84%)	16 (6.4%)	0.439
Cranial vascular disease, n (%)	32 (3.06%)	11 (4.4%)	0.288
BMI, kg/m² (SD)	24.56 ± 3.07	24.15 ± 3.36	0.026

_						
3		Waist circumfe	erence, cm (SD)	86.90 ± 8.51	85.45 ± 9.37	0.143
4 5		SBP, mmHg (S	SD)	142.3 ± 18.3	141.3 ± 18.5	0.611
6		DBP, mmHg (SD)	83.7 ± 10.2	80.9 ± 10.1	0.004
7		Heart rate, bea	, ats/min (SD)	80.2 ± 13.4	79.0 ± 12.7	0.362
8		WBC 10%/ (S	ח)	6 39 + 1 49	6 28 + 1 75	0.556
9		Noutrophile 10		0.00 ± 1.40	0.20 ± 1.70	0.000
10)%L (SD)	5.09 ± 1.19	5.00 ± 1.45	0.441
11		Lymphocytes,	10º/L (SD)	1.96 ± 0.59	1.86 ± 0.69	0.002
12		Eosinophils, 10	0º/L (SD)	0.14 ± 0.11	0.15 ± 0.17	0.621
14		PLT, 10 ⁹ /L (SE))	212.3 ± 50.8	218.3 ± 62.8	0.264
15		RBC, 10 ⁹ /L (SI	D)	4.71 ± 0.38	4.27 ± 0.56	<0.001
16		Hemoglobin, g	/L (SD)	145.08 ± 10.98	124.90 ± 8.46	<0.001
1/ 18		RDW, % (IQR)		12.89 ± 0.51	13.79 ± 1.09	<0.001
19		FBG, mmol/L (SD)	6.36 ± 1.77	6.24 ± 1.70	0.166
20		Albumin, g/dL	(SD)	46.18 ± 2.27	45.30 ± 2.69	<0.001
21		Globulin, g/dL	(SD)	30.35 ± 3.45	30.72 ± 4.58	0.708
22		Triglyceride, m	imol/L (SD)	1.48 ± 0.87	1.42 ± 0.83	0.755
24		Total Choleste	rol, mmol/L (SD)	5.17 ± 1.07	5.10 ± 1.27	0.041
25		HDL-C, mmol/	L (SD)	1.50 ± 0.39	1.58 ± 0.42	0.539
20 27		LDL-C, mmol/L	_ (SD)	3.03 ± 0.85	2.91 ± 0.87	0.019
28		Frailty status	Robust, n (%)	669 (63.96%)	45 (18.0%)	<0.001
29			Pre-frail, n (%)	337 (32.22%)	140 (56.0%)	
30 31			Frailty, n (%)	40 (3.82%)	65 (26.0%)	
32	177	SBP=systolic blo	ood pressure, DBP=dias	tolic blood pressure, BMI=body	mass index, FBG=fastin	g blood-glucos

SBP=systolic blood pressure, DBP=diastolic blood pressure, BMI=body mass index, FBG=fasting blood-glucose, WBC=white blood cell, PLT=platelets count, RBC=red blood cell, RDW=red blood cell distribution width,

HRR=hemoglobin-to-RDW ratio.

Normal HRR=HRR above 9.97, Lower HRR: HRR below 9.97 (Optimal cut-off value of the ROC curve)

Other* including separated, divorced, never married or widowed

Logistic regression analysis

Among 1296 older adults, 105 (8.10%) were considered frail. Multiple logistic regression analysis was conducted to assessing the associations of the lower HRR with frailty. Unadjusted model1 showed that lower Hb (OR:2.129,1.133-4.001, p=0.019) and lower HRR (OR:3.285,1.676-6.440, p=0.001) were risk factors related to fraility, whereas lower RDW (OR:0.310, 0.193-0.497, p<0.001) was a protective factor. After adjustment for confounding factors (including age, gender, marital status, education years, living alone, BMI, diabetes, RBC, albumin, triglyceride, HDL-C and LDL-C), there was significant 191 association of lower HRR (OR:3.419, 1.679-6.964, p=0.001) and lower RDW (OR:0.285,

192 0.170-0.477, p< 0.001) with frailty (Table 3). Lower HRR was independently related to

193 frailty in older adults.

195 Table3. Multiple logistic regression analysis of blood parameters and frailty in older adults

	Model1			
	OR (95% CI)	P-value	OR (95% CI)	P-value
Categorical va	riable			
Lower Hb	2.129 (1.133-4.001)	0.019	1.163 (0.562-2.409)	0.684
Lower RDW	0.310(0.193-0.497)	<0.001	0.285 (0.170-0.477)	<0.001
Lower HRR	3.285 (1.676-6.440)	0.001	3.419 (1.679-6.964)	0.001

196 Hb=hemoglobin, RDW=red blood cell distribution width, HRR=hemoglobin-to-RDW ratio.

Lower Hb: <131.5g/L, Lower RDW: <13.45%, Lower HRR: <9.97. (Optimal cut-off value of the ROC
curve)

OR: odds ratio, CI: confidence interval, Model 1, unadjusted; Model 2, adjusted for age, gender, marital
 status, education years, alone living, BMI, diabetes, RBC, albumin, triglyceride, HDL-C and LDL-C.

- 202 Correlation Analysis

203 Correlation analysis indicated that there was an obvious positive correlation between 204 RDW (Kendall's tau-b=0.173, P<0.001) and frailty. Nevertheless, HRR (Kendall's 205 tau-b=-0.239, P<0.001) and Hb (Kendall's tau-b=-0.194, P<0.001) were a negative 206 correlation with frailty (Table 4).

208 Table4. Correlation analysis of Hb, RDW, HRR, and frailty in older adults

209			
	Kendall's tau-b	р	

Page 13 of 24

BMJ Open

	Hb	-0.194	<0.001
	RDW	0.173	<0.001
	HRR	-0.239	<0.001
10	**. Correlation is significant a	at the 0.01 level (2-tailed).	
1			
2	Discussion		
i	Frailty, as a geria	tric syndrome, has attracte	ed more and more scientific attention in the
	background of continuous	sly increase global populat	ion aging. ¹⁸ In this cross-sectional study
5	including 1,296 communi	ty-dwelling older adults, we	e found that lower HRR is independently
5	related to frailty in older p	eople, even after adjusting	confounding factors (P=0.001). Multiple
	logistic regression analys	is showed that lower HRR	is associated with to a 3-fold more
;	likelihood or odds of frailt	y (OR = 3.419, 95%Cl 1.67	79-6.964). ROC analysis showed that the
9	AUC for HRR in the frailty	/ older adults was 0.802, a	nd the highest sensitivity was 84.5% and
	the specificity was 61.9%	with the optimal critical va	lues 9.97. The results of the present study
	confirmed that HRR was	also significantly associate	ed with frailty in the general older people,
2	not only in patients with c	oronary heart disease in p	revious studies.
	HRR is cost-effect	tive, common, and access	ible laboratory parameter for clinicians. As
4	a novel inflammatory fact	or, Qu et.al found that HRI	R is a significant associated with frailty in
5	older patients with CHD. ¹	⁴ In there study the AUC for	or HRR in the frailty patients was exceed
Ĵ	Hb and RDW, and after a	djusting confounding facto	ors lower HRR was a risk factor for frailty ir
7	older patients with CHD.	These findings are consist	ent with our results. Now the
	pathophysiological mecha	anism has not been fully u	nderstood. We try to provide a possible
29	explanation for the assoc	iation between HRR and fr	ailty in older adults.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A decreased in HRR may be due to low Hb, high RDW, or both. As we all know, low Hb indicates a condition of anemia, which is one of the acknowledged risk factors for hospitalization, morbidity, and mortality in older people.¹⁹ Anemia decreases the oxygen-carrying capacity, leading to tissue hypoxia and even organ failure, especially in older patients, increasing the risk of frailty.²⁰ Besides, anemia can cut down submaximal and maximal aerobic capacity, leading to several adverse outcomes including loss of muscle strength, cognitive decline and development of frailty.¹⁰ In addition, chronic conditions and comorbidities leading to a low grade of inflammation reducing hemoglobin level,²¹ also known as chronic diseases anemia, which is the most common type of anemia in older adults.²⁰ And a state of chronic inflammation has been suggested as contributors to frailty.²² Furthermore, anemia caused by malnutrition is also a significance health-affecting factor among older adults.20

Anemia reaching a prevalence of 17% in older people, is a threat to healthy aging.²³ Corona et.al found that lower hemoglobin and anemia were related to frailty in Brazilian older adults.8 In their study, anemia was related to low physical activity, weakness(weaker) and walked more slowly. Another study from Spain indicated that anemia is independently associated with frailty in older people.²⁴ Moreover, Xu et.al found that Hb is closely associated with frailty in elder patients in hospital.⁹ A systematic review and meta-analysis including 19 studies indicated that older adults with anemia have more than a two-fold increased odds of frailty.²⁵ Silva et.al suggested that lower Hb level should be considered a significant component of frailty in older persons.²⁶ Similarly, another meta-analysis including 32,934 robust participants and 6864 frail participants found that Hb is a useful biomarker of frailty.⁷

BMJ Open

2		
3		
4		
5		
6		
-		
/		
8		
9		
1	ი	
1	1	
1	1	
1	2	
1	3	
1	4	
1	5	
1	с С	
I	0	
1	7	
1	8	
1	9	
ר	ĥ	
~	1	
2	1	
2	2	
2	3	
2	4	
ົ	5	
2	2	
2	6	
2	7	
2	8	
2	q	
2	^	
5	U	
3	1	
3	2	
3	3	
3	Δ	
2	-	
2	2	
3	6	
3	7	
3	8	
2	õ	
د م	2	
4	υ	
4	1	
4	2	
4	3	
Л	л	
4	- -	
4	5	
4	6	
4	7	
4	8	
л	õ	
- -	2	
2	U	
5	1	
5	2	
5	3	
5	Λ	
כ ר	+ _	
5	5	
5	6	
5	7	
5	8	
5	á	
-	~	

60

However, there were no significant association of lower Hb and frailty after adjusting confounding factors in our study. The discrepancy of results may be due to the definition of lower Hb is determined by the optimal cut-off value of the ROC curve in this research. Therefore, further studies are needed to confirm the relationship between Hb and frailty in older people.

A increasing RDW also can lead to low HRR. Studies have proved that increased 257 258 RDW is related to inflammation. Inflammatory cytokines reduce erythropoietin gene 259 expression and erythropoietin receptor expression, which lead to the release of immature 260 erythrocytes and heterogeneity of the erythrocyte volume increasing.^{27,28} In addition, metabolic 261 abnormalities including shortened telomere length, oxidative stress, and malnutrition may also contribute to increased RDW.^{29,30} What's more, others have suggested that RDW may be a 262 potential biomarker for biological aging.²⁸ Study has indicated that a high RDW was related to 263 a high sarcopenia risks.³¹ Sarcopenia, which plays a key role in frailty, is a progressive loss of 264

265 skeletal muscle mass and strength.²⁶

266 RDW is a biomarker of inflammation, oxidative stress, poor nutritional status, aging, 267 and sarcopenia, and all of these could be underlying reasons of development of frailty. A study enrolled 3,635 community-dwelling older men indicated that participants with a high RDW are 268 more likely to have functional limitations and frailty.²⁸ Li et.al indicated that increased RDW 269 270 may be closely related to frailty through inflammation.¹³ Hou et.al proved that frailty is closely associated with RDW in elder patients with CHD.¹¹ Another study including 2,932 271 272 community-dwelling older adults found RDW is independently associated with high frailty risk even after adjusting for potential confounding factors.¹² 273

To sum up, a large number of researches have verified the association between frailty and a low Hb and a high RDW among older persons. However, both RDW and Hb are susceptible to many other diseases conditions and sub-health states, HRR may provide a more powerful parameter than a single parameter alone. Moreover, ROC analysis showed that the AUC and highest sensitivity of HRR are higher than RDW and Hb. It may be a more reliable and effective marker than Hb and RDW alone. This inexpensive and common laboratory parameter may provide useful information to

identify the risk of frailty in older adults. Furthermore, use of the HRR may help clinicians to
identify people at high risk of frailty and take effective measures to reduce the occurrence and
development of frailty, reduce the rate of disability and mortality related to frailty in the elderly,
and reduce the waste of medical resources, and promote healthy ageing.

There were also some limitations of our present study. Firstly, because cross-sectional studies measure the outcome and the exposures in the study participants at the same time, it is difficult to assess the cause-effect relationship. Secondly, our participants are limited to local participants, these findings need to be validated in different populations around the world. What is more, we unable to investigate the temporal relation between outcomes and risk factors. In addition, despite the inevitable selection bias and information bias in cross-sectional studies, we improved this problem through more rational statistical methods and interviewer training. Finally, we did not assess iron, folic, and vitamin B12, which may affect RDW and Hb level.

Conclusion

2		
3 4	296	In conclusion, a low HRR is independent associated with higher frailty risk in
5		
7	297	community-dwelling older adults. And this relationship is not affected by confounding factors.
8 9	298	However, the causal relationship and the specific mechanism between the HRR and frailty is
10 11		
12	299	unclear. Evidence is needed from prospective studies to verify this conclusions in the future.
13 14		
15	300	
16 17	201	
17	301	
19	202	Author contributions
20 21	302	Aution contributions
22	303	Conceptualization: Zhifan Xiong, Mengpei Zhu
23	202	
24 25	304	Data curation: Mengpei Zhu, Chao Wei, Yushuang Xu
26		
27	305	Formal analysis: Mengpei Zhu, Chao Wei
28 29		
30	306	Visualization: Xiongjun Yang, Yumei Huang
31		
32 33	307	Writing – original draft: Mengpei Zhu
34		
35	308	Writing – review and editing: Zhifan Xiong, Mengpei Zhu, Chao Wei, Xiongjun Yang, Yumei
30 37		
38	309	Huang, Yushuang Xu. All authors read and approved the final manuscript.
39 40		
40 41	310	
42		
43 44	311	Acknowledgements
45	212	The such and the state of the such under any the transmission sheet in their state.
46	312	The authors thank all the volunteers that participated in this study.
47 48	212	
49	515	
50	214	Funding
51 52	314	T unung
53	315	This study was supported by the National Key Research and Development Program of China
54 55	515	
55 56	316	(2018YFC2002000).
57	_ •	
58 59	317	
60		

318 Data availability

319 Data for this study are available from the corresponding author.

Declaration

322 The authors report no conflicts of interest in this work.

324 Ethics statements

- **Patient consent for publication**
- Not applicable.

327 Ethical approval

- 328 The research protocol was approved by the Medical Ethics Committee of Liyuan Hospital,
- 329 Tongji Medical College, Huazhong University of Science and Technology (IRB ID: [2020] IEC
- 330 (A016)). All the participants gave written informed consent. The study was conducted in
- 331 accordance with the tenets of the Declaration of Helsinki.

332			
333			
334			
335			

References

- 3371.Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty markers comprise blood metabolites338involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A.3392020;117(17):9483-9489.3402
- 3402.Travers J, Romero-Ortuno R, Bailey J, Cooney M-T. Delaying and reversing frailty: a341systematic review of primary care interventions. Br J Gen Pract. 2019;69(678):e61-e69.
- 342 3. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty:

1			
2	2.42		
4	343		opportunities, challenges, and future directions. <i>Lancet</i> . 2019;394(10206):1376-1386.
5	344	4.	Coelho-Junior HJ, Marzetti E, Picca A, Cesari M, Uchida MC, Calvani R. Protein Intake and
6 7	345		Frailty: A Matter of Quantity, Quality, and Timing. <i>Nutrients.</i> 2020;12(10).
8	346	5.	Ward RE, Orkaby AR, Chen J, et al. Association between Diet Quality and Frailty Prevalence in
9	347		the Physicians' Health Study. J Am Geriatr Soc. 2020;68(4):770-776.
10	348	6.	Zhai Z, Gao J, Zhu Z, et al. The Ratio of the Hemoglobin to Red Cell Distribution Width
11 12	349		Combined with the Ratio of Platelets to Lymphocytes Can Predict the Survival of Patients
12	350		with Gastric Cancer Liver Metastasis. Biomed Res Int. 2021;2021:8729869.
14	351	7.	Mailliez A, Guilbaud A, Puisieux F, Dauchet L, Boulanger É. Circulating biomarkers
15	352		characterizing physical frailty: CRP, hemoglobin, albumin, 25OHD and free testosterone as
16 17	353		best biomarkers. Results of a meta-analysis. <i>Exp Gerontol.</i> 2020;139:111014.
18	354	8.	Pires Corona L, Drumond Andrade FC, de Oliveira Duarte YA, Lebrao ML. The Relationship
19	355		between Anemia, Hemoglobin Concentration and Frailty in Brazilian Older Adults. J Nutr
20	356		Health Aging. 2015;19(9):935-940.
21 22	357	9.	Xu L, Zhang J, Shen S, et al. Clinical Frailty Scale and Biomarkers for Assessing Frailty in Elder
23	358		Inpatients in China. J Nutr Health Aging. 2021;25(1):77-83.
24	359	10.	Ruan Y, Guo Y, Kowal P, et al. Association between anemia and frailty in 13,175
25	360		community-dwelling adults aged 50 years and older in China. BMC Geriatr. 2019;19(1):327.
26 27	361	11.	Hou P, Xue H-P, Mao X-E, Li Y-N, Wu L-F, Liu Y-B. Inflammation markers are associated with
28	362		frailty in elderly patients with coronary heart disease. Aging (Albany NY).
29	363		2018;10(10):2636-2645.
30 21	364	12.	Li C-M, Chao C-T, Chen S-I, Han D-S, Huang K-C. Elevated Red Cell Distribution Width Is
31	365		Independently Associated With a Higher Frailty Risk Among 2.932 Community-Dwelling Older
33	366		Adults. Front Med (Lausanne). 2020;7:470.
34	367	13.	Li O. Chen X. Han B. Red blood cell distribution width is associated with frailty in older
35 36	368	-	inpatients in China: Sex differences in a cross-sectional study. Exp Gerontol.
37	369		2021:150:111392.
38	370	14	Qu Zhou T Xue M et al. Correlation Analysis of Hemoglobin-to-Red Blood Cell Distribution
39	371	±	Width Ratio and Frailty in Elderly Patients With Coronary Heart Disease Front Cardiovasc
40 41	372		Med 2021:8:728800
42	372	15	Su V.C. Wen S.C. Li C.C. et al. Low Hemoglobin-to-Red Cell Distribution Width Patio Is
43	374	15.	Associated with Disease Progression and Poor Prognosis in Upper Tract Urothelial Carcinoma
44 45	374		Riomedicines 2021:0(6)
43 46	276	16	Sup D. Zhang E. Chan C. et al. The ratio of homoglobin to red call distribution width as a nevel
47	270	10.	sun P, Zhang P, Chen C, et al. The ratio of hemogrouph to red cen distribution width as a novel
48	270		prognostic parameter in esophageal squamous cell carcinoma: a retrospective study from
49 50	3/8	47	southern China. Oncotarget. 2016;7(27):42650-42660.
50 51	3/9	17.	Fried LP, Tangen CM, Waiston J, et al. Frailty in older adults: evidence for a phenotype. J
52	380		Gerontol A Biol Sci Med Sci. 2001;56(3):M146-M156.
53	381	18.	Kojima G, Taniguchi Y, Iliffe S, Jivraj S, Walters K. Transitions between frailty states among
54 55	382		community-dwelling older people: A systematic review and meta-analysis. Ageing Res Rev.
55	383		2019;50:81-88.
57	384	19.	Lee CT, Chen MZ, Yip CYC, Yap ES, Lee SY, Merchant RA. Prevalence of Anemia and Its
58	385		Association with Frailty, Physical Function and Cognition in Community-Dwelling Older
59 60	386		Adults: Findings from the HOPE Study. J Nutr Health Aging. 2021;25(5):679-687.

2			
3	387	20.	Röhrig G. Anemia in the frail, elderly patient, <i>Clin Intery Aging</i> , 2016:11:319-326.
4	388	21	Steinmeyer 7. Delnierre C. Soriano G. et al. Hemoglohin concentration: a pathway to frailty
5	280	21.	BMC Conjects 2020(2)(1):202
0 7	209		
8	390	22.	Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged
9	391		immune system. Ageing Res Rev. 2017;36.
10	392	23.	Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and
11	393		management. <i>Blood</i> . 2018;131(5):505-514.
12	394	24.	Esquinas-Requena JL, Garc ı́ a-Nogueras I, Hern ı́ ndez-Zegarra P, Atienzar-N ú ñez P, S ı́
13	395		nchez-Jurado PM, Abizanda P. [Anemia and frailty in older adults from Spain. The FRADEA
15	396		Study]. Rev Esp Geriatr Gerontol. 2021;56(3):129-135.
16	397	25.	Palmer K. Vetrano DL. Marengoni A. et al. The Relationship between Anaemia and Frailty: A
17	398	201	Systematic Review and Meta-Analysis of Observational Studies / Nutr Health Aging
18	200		
20	399	26	
21	400	26.	Silva JC, Moraes ZVd, Silva C, et al. Understanding red blood cell parameters in the context of
22	401		the frailty phenotype: interpretations of the FIBRA (Frailty in Brazilian Seniors) study. Arch
23	402		Gerontol Geriatr. 2014;59(3):636-641.
24	403	27.	Pierce CN, Larson DF. Inflammatory cytokine inhibition of erythropoiesis in patients
25 26	404		implanted with a mechanical circulatory assist device. Perfusion. 2005;20(2):83-90.
20	405	28.	Kim KM, Lui L-Y, Browner WS, et al. Association Between Variation in Red Cell Size and
28	406		Multiple Aging-Related Outcomes. J Gerontol A Biol Sci Med Sci. 2021;76(7):1288-1294.
29	407	29.	Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis.
30	408	-	Antioxid Redox Signal 2008-10(11):1923-1940
31	100	30	Salvagno GL Sanchis-Gomar E. Dicanza A. Linni G. Red blood cell distribution width: A simple
33	409	50.	Salvagilo GL, Sanchis-Goniai F, Ficaliza A, Lippi G. Red blood cell distribution width. A simple
34	410		
35	411	31.	kim J, Im J-S, Choi CH, et al. The Association between Red Blood Cell Distribution Width and
36	412		Sarcopenia in U.S. Adults. Sci Rep. 2018;8(1):11484.
3/	413		
39			
40	414		
41	414		
42			
43	415		
44			
46	416		
47			
48	417		
49 50			
50	418		
52			
53	419	Figur	re legends
54	717	90	
55 56	420	Figure	1 ROC curve for HRR (Δ) Hb (R) and RDW (C)
57	420	rigure	
58	40.1		
59	421		
60			

Notes:

specificity 61.9%, AUC = 0.802, P<0.001)

specificity 57.1%, AUC = 0.742, P<0.001)

specificity 81.1%, AUC = 0.712, P<0.001)

1

A. ROC curve indicated that the best intercept value for HRR was 9.97 (sensitivity 84.5%,

B. ROC curve indicated that the best intercept value for Hb was 131.5 (sensitivity 81%,

C. ROC curve indicated that the best intercept value for RDW was 13.45 (sensitivity 56.2%,

uest 2, P<0.001)

2	
3 4 5	422
6 7	423
8 9 10	424
11 12	425
13 14 15	426
16 17	427
18 19 20	428
21 22	
23 24 25	
26 27	
28 29	
30 31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
55 55	
55 56 57	
57 58 50	
60	

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods		els:	
Study design 4 Present key elements of study design early in the paper			5
etting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection		5	
Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants		5	
Variables	/ariables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable		5
Data sources/ measurement	Data sources/8*For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group		5
Bias	9	Describe any efforts to address potential sources of bias	5

Study size	10	Explain how the study size was arrived at	
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why			
Statistical methods	tatistical methods 12 (a) Describe all statistical methods, including those used to control for confounding		7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) If applicable, describe analytical methods taking account of sampling strategy	7
		(e) Describe any sensitivity analyses	7
Results		19×	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7-8
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-11
		(b) Report category boundaries when continuous variables were categorized	9-11

relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
ort other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
marise key results with reference to study objectives	12
uss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and nitude of any potential bias	15
e a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from lar studies, and other relevant evidence	13-15
uss the generalisability (external validity) of the study results	15-16
10.	
the source of funding and the role of the funders for the present study and, if applicable, for the original study on th the present article is based	16
ch the pre	sent article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Lower Hemoglobin-to-Red Blood Cell Distribution Width Ratio Is Independently Associated With Frailty in Community-dwelling Older Adults: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069141.R2
Article Type:	Original research
Date Submitted by the Author:	29-May-2023
Complete List of Authors:	Zhu, Mengpei; Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wei, Chao; Wuhan Geriatric Hospital Yang, Xiongjun; Huazhong University of Science and Technology Huang, Yumei; Huazhong University of Science and Technology Xu, Yushuang; Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology Xiong, Zhifan; Huazhong University of Science and Technology; Huazhong University of Science and Technology
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Global health
Keywords:	GERIATRIC MEDICINE, EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine)

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
50 51	
51	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
-0 47	
4/	
48	
49	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
59	
60	

1

2

3

4

5

Lower Hemoglobin-to-Red Blood Cell Distribution Width Ratio Is Independently Associated With Frailty in Community-dwelling Older Adults: a cross-sectional study

6 Authors Name : Mengpei Zhu^{1.2}, Chao Wei³, Xiongjun Yang², Yumei Huang², Yushuang Xu^{1.2},

7 Zhifan Xiong^{1.2}

8 Affiliations: 1 Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College,

9 Huazhong University of Science and Technology, Wuhan, China.

10 2 Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University

11 of Science and Technology, Wuhan, China.

12 3 Physical Examination Center, East Lake Hospital & Wuhan Geriatric Hospital, Wuhan,

13 China.

14

- 15 Correspondence: Zhifan Xiong
- 16 Address: Division of Gastroenterology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji
- 17 Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake
- 18 Ecological Scenic, Wuhan 430077, Hubei, China
- 19 Email: xiongzhifan@126.com

20 21

2		
4	23	Abstract
5		
6	24	Objectives: The importance of blood cell markers in frailty has been studied. However,
7		
8 9	25	research on hemoglobin-to-red blood cell distribution width ratio (HRR) and frailty in older
10	26	persons is still limited. We investigated the association between HRR and frailty in older
11	-•	
12	27	adults.
13		
14	28	Design: Cross-sectional population-based study.
16		
17	29	Setting: Community-dwelling older adults older than 65 years old were recruited from
18		
19	30	September 2021 to December 2021
20	50	
21	21	Participante: A total of 1206 community dwalling older adulta (ago > 65 years) in Wyben
23	31	Participants: A total of 1296 continuinty-dwelling older adults (age \ge 65 years) in wuhan
24		
25	32	were included in the study.
26		
2/	33	Main outcome measures: The main outcome was the presence of frailty. The Fried Frailty
20		
30	34	Phenotype Scale was used to evaluate the frailty status of the participants. Multivariable
31		
32	35	logistic regression analysis was performed to determine the relationship between HRR and
33	55	logistic regression analysis was performed to determine the relationship between mark and
35	26	froith
36	30	Irany.
37		4
38	37	Results: A total of 1296 (564 men) older adults were included in this cross-sectional study.
39		
40 41	38	Their mean age was 70.89 \pm 4.85 years. ROC analysis showed that HRR is a good predictor
42		
43	39	of frailty in older people, the area under the curve (AUC) was 0.802 (95% CI: 0.755 to 0.849),
44		
45	40	and the highest sensitivity was 84.5% and the specificity was 61.9% with the optimal critical
46	10	
47 48	41	values 0.07 (Dr0.001). Multiple legistic regression analysis indicated that lower LDD (r0.07)
49	41	values 9.97 (P<0.001). Multiple logistic regression analysis indicated that lower HRR (<9.97)
50		
51	42	(OR:3.419, 1.679-6.964, P=0.001) is independently associated with frailty in older people,
52		
53 54	43	even after adjusting confounding factors.
55		
56	44	Conclusion: Lower HRR is closely associated with an increased risk of frailty in older people.
57		
58	45	Lower HRR may be an independent risk factor for frailty in community-dwelling older adults
59 60		

46 Keywords: Older people, Frailty, Healthy aging, Risk factor, HRR

48 Strengths and limitations of this study

- 49 Frailty was diagnosed by following Fried's frailty phenotype.
- 50 This cross-sectional analysis was performed in a medium-volume population.

51 Some variables were self-reported, but the best available measures were used.

52 The study reflects the situation of older adults in Wuhan, China, and the generalizability needs

53 to be further verified.

54 This was a cross-sectional study that cannot assess the cause-effect relationship.

56 Introduction

As life expectancy increases, human societies are aging globally, in both developed and developing countries.¹ By 2050, the proportion of people aged over 60 years is projected to increase from 11% to 22%, and the number of people aged over 60 years will increase from 605 million to 2.1 billion, including 425 million people aged over 80 in the world.² Frailty becomes an emerging global public health burden, with the rapid growth of the global aging population. Frailty is considered to be a complex age-related clinical condition characterized by a decline in the physiological function of multiple organs, with a resultant increased vulnerability to stressors.³ It is related to adverse health-related events, including increased mortality, hospitalization, falls and fractures, cognitive decline, disability, and admission to long-term care.⁴ Therefore, early identifying modifiable risk factors of frailty is becoming increasingly crucial for delaying and reversing frailty and its associated adverse events in older

1 2

BMJ Open

3
4
5
6
7
, פ
0 0
10
10
11 12
12
13
14
15
10
10
10
19 20
∠∪)1
∠ I วว
∠∠ วว
23 24
24
25
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

68	persons. ⁵
69	As an important part of CBC, hemoglobin (Hb) is usually used as an indicator of the
70	degree of anemia. However, previous studies showed that low Hb reflects to a decline in
71	physiological function including decreased immune response, malnutrition, and low resistance
72	to external invasion. ⁶ Meanwhile, there are several studies indicating that Hb is related to
73	frailty in older persons. ⁷⁻¹⁰ Red blood cell distribution width (RDW) is a simple parameter of
74	CBC, which reflects the degree of heterogeneity of the erythrocyte volume, and is traditionally
75	used for the differential diagnosis of anemia. ¹¹ However, with the deepening of the study, it
76	was found to be related to the prognosis of many diseases. Increased RDW reflects
77	dysregulation of erythrocyte homeostasis, which may be attributed to various underlying
78	metabolic abnormalities such as shortened telomere length, oxidative stress, inflammation,
79	malnutrition, dyslipidemia, hypertension, erythrocyte fragmentation, and altered erythropoietin
80	function. ¹¹

Inflammation has been identified as a potential cause of frailty.¹² Inflammation in 81 82 response to elevated RDW may be highly correlated with frailty. Hou et al. indicated that RDW 83 is significantly associated with the risk of frailty in older patients with coronary heart disease (CHD).13 In addition, studies showed that increased RDW is associated with frailty both in 84 85 older inpatients and community-dwelling older people.^{14,15} However, it is still controversial whether RDW alone can predict frailty.^{16,17} The hemoglobin-to-RDW ratio (HRR) is a cheap, 86 87 rapid, and readily available novel prognostic, which combines the prognostic information of Hb and RDW and reflects a more comprehensive health status.^{16,18} Recently, Qu et al. found that 88 89 lower HRR is independently related to the risk of frailty in older patients with CHD.¹⁶ They

90 verified that HRR may be a more useful biomarker compared with RDW or Hb alone.¹⁶

Studies have shown a significant association of HRR with frailty in specific populations (patients with coronary heart disease).¹⁶ However, research on HRR and frailty in general older persons is still limited, and the significance of evaluating frailty is not yet clear. In the present study, we investigated the relationship between HRR and frailty in community-dwelling older adults.

97 Material & Methods

98 Patient and public involvement

99 The source population was the community-dwelling adults older than 65 living in communities 100 in Wuhan. The study population consisted of a random sample of older people from each 101 community. Inclusion criteria were the community-dwelling adults older than 65 living in 102 communities in Wuhan. Exclusion criteria were malignant disease or advanced organic 103 diseases, hematologic diseases, acute stage of disease, and participants with missing the key 104 parameters.

105 Participants and Sociodemographic Characteristics

In this present study, we recruited 1,296 community-dwelling adults older than 65 living in communities in Wuhan between September 2021 and December 2021. Sociodemographic characteristics, including age, gender, education years, marital status, smoking history, alcohol consumption, and comorbidities, including hypertension, diabetes, CHD, hyperlipidemia, and cerebrovascular disease were recorded. The body mass index (BMI), waistline, blood pressure, and pulse rate were measured by two professional clinicians.

2
3
1
4
5
6
7
8
Q
10
10
11
12
13
14
15
15
16
17
18
19
20
20 21
Z I
22
23
24
25
25
20
27
28
29
30
31
21
32
33
34
35
36
20
3/
38
39
40
41
12
-т∠ ∕/ Э
43
44
45
46
47
48
40
49
50
51
52
53
54
55
55
56
57
58
59
60
~~

112 Peripheral Blood Parameters

Blood samples were collected, and full blood count was measured by an automated hematology analyzer (Mindray, BC7500, China). Other related biochemical indicators were detected by an automatic biochemical analyzer (Beckman, AU680, American). HRR = Hb (g/L)/RDW (%).

117

Fried's frailty phenotype

118 According to Fried's frailty phenotype, we evaluated frailty in five criteria, as follows (1) Weight 119 loss: unintentional weight loss >5% or a loss of more than 4.5 kg in the past 1 year. (2) 120 Physical weakness: a dynamometer was used for participants for three trials, and the 121 maximum value was recorded. Low grip strength was defined according to the standards proposed by Fried et al.¹⁹ (3) Slowness: slowness was defined as when the time required to 122 123 walk 4.6 meters was more than 7 seconds for males (height ≤ 173 cm) and females (height ≤ 159 cm) or more than 6 seconds for males (height >173 cm) and females (height >159 cm). (4) 124 125 Physical activity: low physical activity was defined as less than 383 kcal/week for males and 126 less than 270 kcal/week for females. (5) Exhaustion: exhaustion was assessed by the 127 following two questions from the CES-D. "In the last week, I felt that everything I did was an 128 effort" and "Could not get going in the last week." If the participant responded "yes" to either of 129 these questions, the participant was considered exhausted. Participants with >3 indicators 130 were defined as frail, 1-2 as prefrail, and none as robust.

131

Patient and public involvement statement

Patients and/or the public were not involved in the design, conduct, reporting, or disseminationof this research.

134 Statistical analysis

Continuous and categorical variables were expressed as the mean standard deviation and numbers with percentages, respectively. The baseline characteristics of the groups were compared using a one-way analysis of variance and chi-squared test. The predictive value of HRR for frailty was assessed by receiver operating curve (ROC) analysis. The prognostic value of lower HRR on frailty was assessed using the logistic regression model. Variables were selected as candidates for the multivariate analysis when p<0.1 in the univariate analysis. After adjustment for confounding factors including age, gender, marital status, education years, alone living, BMI, diabetes, RBC, albumin, triglyceride, HDL-C, and LDL-C, assessing the independent risk factors for frailty in older adults. Kendall's tau-b correlation analysis was used to assessing the correlation between lower Hb, lower RDW, lower HRR, and frailty in older adults. The p-values <0.05 was considered statistically significant. All statistical analyses were conducted using SPSS (ver. 26.0, IBM Corporation, Armonk, NY, USA).

Result

150 Characteristics of the study population

A total of 1296 (564 men) older adults were included in our study. Their mean age was 70.89 ± 4.85 years. Of the 1296 participants, 582 (44.9%) has hypertension, 183 (14.1%) were diabetes patients, 98 (7.6%) had cardiac diseases, and 43 (3.3%) had cranial vascular disease. The proportions of individuals with a habit of smoking and drinking were 11.1% and 11.7%, respectively. And 149 (11.5%) older adults were living alone. According to Fried's

 156 frailty phenotype, there were 55.09% (714) in the robust group, 36.81% (477) in the pre-frail

157 group, and 8.10% (105) in the frail group. The baseline characteristics of the three groups

158 were shown in Table 1.

159 Table1. Baseline characteristics of the study population stratified by frailty

Characteristics	Robust	Pre-frail	Frailty	p-value
	(n=714)	(n=477)	(n=105)	
Age, years (SD)	69.81 ± 3.89	71.71 ± 5.34	70.89 ± 4.85	<0.001
Male gender, n (%)	347 (48.60%)	184 (38.57%)	33 (31.43%)	<0.001
Marital status Married, n (%)	622 (87.11%)	408 (85.53)	77 (73.33%)	0.001
Other*, n (%)	92 (12.89%)	69 (14.47%)	28 (26.67%)	
Education years 0-12, n (%)	466(65.27%)	337(70.65%)	85(80.95%)	0.002
>12, n (%)	248(24.73%)	140(29.35%)	20(19.05%)	
Alone living, n (%)	74 (10.36%)	53 (11.11%)	22 (20.95%)	0.006
Smoking, n (%)	90(12.61%)	44(9.22%)	10(9.52%)	0.165
Drinking, n (%)	92(12.89%)	50(10.48%)	10(9.52%)	0.345
Hypertension, n (%)	314(43.98%)	212(44.44%)	56(53.33%)	0.192
Diabetes mellitus, n (%)	81(11.34%)	82(17.19%)	20(19.05%)	0.006
Cardiac diseases, n (%)	46(6.44%)	41(8.60%)	11(10.48%)	0.194
Cranial vascular disease, n (%)	24(2.94%)	15(3.14%)	4(3.80%)	0.938
BMI, kg/m² (SD)	24.69 ± 3.05	24.32 ± 3.14	23.83 ± 3.51	0.011
Waist circumference, cm (SD)	86.99 ± 8.66 🧹	86.32 ± 8.57	85.42 ± 9.46	0.143
SBP, mmHg (SD)	141.61 ± 18.53	142.73 ± 17.74	143.01 ± 19.37	0.516
DBP, mmHg (SD)	83.77 ± 10.44	82.87 ± 9.75	80.44 ± 10.91	0.006
Heart rate, beats/min (SD)	79.9 ± 13.4	79.8 ± 13.2	81.1 ± 13.0	0.659
WBC, 10 ⁹ /L (SD)	6.39 ± 1.51	6.36 ± 1.56	6.29 ± 1.69	0.781
Neutrophils, 10 ⁹ /L (SD)	3.89 ± 1.22	3.86 ± 1.26	3.96 ± 1.29	0.699
Lymphocytes, 10 ⁹ /L (SD)	1.95 ± 0.58	1.96 ± 0.64	1.76 ± 0.59	0.007
Eosinophils, 10 ⁹ /L (SD)	0.14 ± 0.12	0.14 ± 0.12	0.15 ± 0.18	0.628
PLT, 10 ⁹ /L (SD)	212.4 ± 52.2	216.3 ± 52.0	207.9 ± 66.1	0.251
RBC, 10 ⁹ /L (SD)	4.73 ± 0.41	4.51 ± 0.42	4.41 ± 0.65	<0.001
Hemoglobin, g/L (SD)	145.51 ± 12.15	137.29 ± 11.79	129.55 ± 13.73	<0.001
Anemia, n (%)	6 (0.84%)	17 (3.56%)	21 (20%)	<0.001
RDW, % (SD)	12.89 ± 0.55	13.15 ± 0.69	13.88 ± 1.39	<0.001
HRR	11.31 ± 1.02	10.47 ± 1.05	9.43 ± 1.41	<0.001
FBG, mmol/L (SD)	6.28 ± 1.59	6.37 ± 1.90	6.56 ± 2.13	0.278
Albumin, g/dL (SD)	46.23 ± 2.19	45.86 ± 2.47	45.13 ± 2.90	<0.001
Globulin, g/dL (SD)	30.26 ± 3.44	30.64 ± 3.65	30.55 ± 5.25	0.194
Triglyceride, mmol/L (SD)	1.49 ± 0.85	1.46 ± 0.90	1.44 ± 0.85	0.883
Total Cholesterol, mmol/L (SD)	5.17 ± 1.04	5.19 ± 1.15	4.96 ± 1.05	0.122
HDL-C, mmol/L (SD)	1.50 ± 0.39	1.54 ± 0.42	1.54 ± 0.38	0.333
LDL-C, mmol/L (SD)	3.03 ± 0.82	3.02 ± 0.90	2.82 ± 0.88	0.060

160 SBP=systolic blood pressure, DBP=diastolic blood pressure, BMI=body mass index, FBG=fasting blood-glucose,

- WBC=white blood cell, PLT=platelets count, RBC=red blood cell, RDW=red blood cell distribution width,
 HRR=hemoglobin-to-RDW ratio.
- 163 Other* including separated, divorced, never married or widowed

ROC curve analysis

The predictive value of HRR for frailty in older adults was assessed by ROC analysis. The AUC for HRR in the frailty older adults was 0.802 (95% CI: 0.755 to 0.849), the highest sensitivity was 84.5% and the specificity was 61.9% with the optimal critical value of 9.97 (Figure 1). The AUC for Hb was 0.742 (95% CI: 0.691 to 0.793), the highest sensitivity was 81% and the specificity was 57.1% with the optimal critical value of 131.5 (Figure 1). The AUC for RDW was 0.712 (95% CI: 0.651 to 0.772), the highest sensitivity was 56.2% and the specificity was 81.1% with the optimal critical values 13.45 (Figure 1). Compared with Hb and RDW alone, HRR was a more strong prognostic biomarker for frailty.

173 Differences in clinical characteristics of the study population

174 stratified by HRR

According to ROC analysis, the optimal critical value of HRR was 9.97. Participants were grouped according to the optimal critical values of HRR, as follows: 1046 (80.71%) in the normal HRR group and 250(19.29%) in the lower HRR group (Table 2). Compared with the normal HRR group, the lower HRR group had a higher lymphocytes count (P=0.002), and RDW (P<0.001), but lower hemoglobin (P<0.001), RBC (P<0.001), and albumin (P<0.001). Compared with the normal HRR group, the lower HRR group was more likely to have frailty (P<0.001).

1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
4	0
4	0
4	0 0
4	9 0
5	1
5	י כ
5	∠ २
5	4
5	5
5	6
5	7
5	8
5	a

	Characteristics	Normal HRR (n=1046)	Lower HRR (n=250)	P-value
	Age, years (SD)	70.50 ± 4.64	72.50 ± 5.40	<0.001
	Male gender, n (%)	501 (47.9%)	63 (25.2%)	<0.001
	Marital status Married, n (%)	901 (86.14%)	206 (82.4%)	0.133
	Other*, n (%)	145 (13.86%)	44 (17.6%)	
	Education years 0-12, n (%)	691 (66.06%)	197 (78.8%)	<0.001
	>12, n (%)	355 (33.94%)	53 (21.2%)	
	Alone living, n (%)	114 (10.90%)	35 (14.0%)	0.167
	Smoking, n (%)	129 (12.33%)	15 (6.0%)	0.004
	Drinking, n (%)	136 (13.0%)	16 (6.4%)	0.004
	Hypertension, n (%)	456 (43.59%)	126 (50.4%)	0.052
	Diabetes mellitus, n (%)	140 (13.38%)	43 (17.2%)	0.120
	Cardiac diseases, n (%)	82 (7.84%)	16 (6.4%)	0.439
	Cranial vascular disease, n (%)	32 (3.06%)	11 (4.4%)	0.288
	BMI, kg/m² (SD)	24.56 ± 3.07	24.15 ± 3.36	0.026
	Waist circumference, cm (SD)	86.90 ± 8.51	85.45 ± 9.37	0.143
	SBP, mmHg (SD)	142.3 ± 18.3	141.3 ± 18.5	0.611
	DBP, mmHg (SD)	83.7 ± 10.2	80.9 ± 10.1	0.004
	Heart rate, beats/min (SD)	80.2 ± 13.4	79.0 ± 12.7	0.362
	WBC, 10 ⁹ /L (SD)	6.39 ± 1.49	6.28 ± 1.75	0.556
	Neutrophils, 10 ⁹ /L (SD)	3.89 ± 1.19	3.86 ± 1.43	0.441
	Lymphocytes, 10 ⁹ /L (SD)	1.96 ± 0.59	1.86 ± 0.69	0.002
	Eosinophils, 10 ⁹ /L (SD)	0.14 ± 0.11	0.15 ± 0.17	0.621
	PLT, 10 ⁹ /L (SD)	212.3 ± 50.8	218.3 ± 62.8	0.264
	RBC, 10 ⁹ /L (SD)	4.71 ± 0.38	4.27 ± 0.56	<0.001
	Hemoglobin, g/L (SD)	145.08 ± 10.98	124.90 ± 8.46	<0.001
	RDW, % (IQR)	12.89 ± 0.51	13.79 ± 1.09	<0.001
	FBG, mmol/L (SD)	6.36 ± 1.77	6.24 ± 1.70	0.166
	Albumin, g/dL (SD)	46.18 ± 2.27	45.30 ± 2.69	<0.001
	Globulin, g/dL (SD)	30.35 ± 3.45	30.72 ± 4.58	0.708
	Triglyceride, mmol/L (SD)	1.48 ± 0.87	1.42 ± 0.83	0.755
	Total Cholesterol, mmol/L (SD)	5.17 ± 1.07	5.10 ± 1.27	0.041
	HDL-C, mmol/L (SD)	1.50 ± 0.39	1.58 ± 0.42	0.539
	LDL-C, mmol/L (SD)	3.03 ± 0.85	2.91 ± 0.87	0.019
	Frailty status Robust, n (%)	669 (63.96%)	45 (18.0%)	<0.001
	Pre-frail, n (%)	337 (32.22%)	140 (56.0%)	
	Frailty n (%)	40 (3.82%)	65 (26 0%)	

188 WBC=white blood cell, PLT=platelets count, RBC=red blood cell, RDW=red blood cell distribution width,

189	HRR=hemoglobin-to-RDW ratio.
190	Normal HRR=HRR above 9.97, Lower HRR: HRR below 9.97 (Optimal cut-off value of the ROC curve)
191	Other* including separated, divorced, never married or widowed
192	
193	Logistic regression analysis
194	Among 1296 older adults, 105 (8.10%) were considered frail. Multiple logistic regression
195	analysis was conducted to assess the associations of the lower HRR with frailty.
196	Unadjusted model1 showed that lower Hb (OR:2.129,1.133-4.001, p=0.019) and lower
197	HRR (OR:3.285,1.676-6.440, p=0.001) were risk factors related to frailty, whereas lower
198	RDW (OR:0.310, 0.193-0.497, p<0.001) was a protective factor. After adjustment for
199	confounding factors (including age, gender, marital status, education years, living alone,
200	BMI, diabetes, RBC, albumin, triglyceride, HDL-C, and LDL-C), there was a significant
201	association of lower HRR (OR:3.419, 1.679-6.964, p=0.001) and lower RDW (OR:0.285,
202	0.170-0.477, p< 0.001) with frailty (Table 3). Lower HRR was independently related to
203	frailty in older adults.

205 Table3. Multiple logistic regression analysis of blood parameters and frailty in older adults

	Model1		Model2	
	OR (95% CI)	P-value	OR (95% CI)	P-value
Categorical varia	able			
Lower Hb	2.129 (1.133-4.001)	0.019	1.163 (0.562-2.409)	0.684
Lower RDW	0.310(0.193-0.497)	<0.001	0.285 (0.170-0.477)	<0.001
Lower HRR	3.285 (1.676-6.440)	0.001	3.419 (1.679-6.964)	0.001
Hb=hemoglobin, RDW=red blood cell distribution width, HRR=hemoglobin-to-RDW ratio. Lower Hb: <131.5g/L, Lower RDW: <13.45%, Lower HRR: <9.97. (Optimal cut-off value of the RO				
			e of the ROC	

curve)

3 4	209	OR: odds ratio, CI: confidence interval, Model 1, unadjusted; Model 2, adjusted for age, gender, marital			
5 6	210	status, education years, alone living, BMI, diabetes, RBC, albumin, triglyceride, HDL-C and LDL-C.			
7 8	211				
9 10 11	212	Correlation Analysis			
12 13	213	Correlation analysis indicated that the	nere was an obvious p	positive correlation between	
14 15 16	214	RDW (Kendall's tau-b=0.173, P<0.	001) and frailty. Nev	vertheless, HRR (Kendall's	
17 18 19	215	tau-b=-0.239, P<0.001) and Hb (Kendall's tau-b=-0.194, P<0.001) were a negative			
20 21	216 correlation with frailty (Table 4).				
22 23	217				
24 25	218	Table4. Correlation analysis of Hb, RDV	V, HRR, and frailty in old	er adults	
26 27	219				
28		Kendall	's tau-b	р	
30 31		Hb -0.19	4	<0.001	
32 33		RDW 0.173	3 2.	<0.001	
34 35 36		HRR -0.23	9	<0.001	
37 38	220	**. Correlation is significant at the 0.01 level	(2-tailed).		
39 40 41	221				
42 43	222	Discussion			
44 45 46	223	Frailty, as a geriatric syndrome,	has attracted more and	more scientific attention in the	
47 48	224	background of continuously increasing g	global population aging. ²⁰	⁰ In this cross-sectional study	
49 50 51	 including 1,296 community-dwelling older adults, we found that lower HRR is independently related to frailty in older people, even after adjusting confounding factors (P=0.001). Multiple logistic regression analysis showed that lower HRR is associated with a 3-fold more likelihoor 			ower HRR is independently	
52 53				g factors (P=0.001). Multiple	
54 55 56				d with a 3-fold more likelihood	
57 58 59	228	or odds of frailty (OR = 3.419, 95%CI 1.	679-6.964). ROC analys	is showed that the AUC for	
60	229	HRR in the frailty older adults was 0.802	2, the highest sensitivity	was 84.5% and the specificity	

Page 14 of 24

BMJ Open

> was 61.9% with the optimal critical value of 9.97. The results of the present study confirmed that HRR was also significantly associated with frailty in general older people, not only in patients with coronary heart disease in previous studies. HRR is a cost-effective, common, and accessible laboratory parameter for clinicians. As a novel inflammatory factor, Qu et.al found that HRR is significant associated with frailty in older patients with CHD.¹⁶ In their study the AUC for HRR in the frailty patients was exceed Hb and RDW, and after adjusting confounding factors lower HRR was a risk factor for frailty in older patients with CHD. These findings are consistent with our results. Now the pathophysiological mechanism has not been fully understood. We try to provide a possible explanation for the association between HRR and frailty in older adults. A decrease in HRR may be due to low Hb, high RDW, or both. As we all know, low Hb indicates a condition of anemia, which is one of the acknowledged risk factors for hospitalization, morbidity, and mortality in older people.²¹ Anemia decreases the oxygen-carrying capacity, leading to tissue hypoxia and even organ failure, especially in older patients, increasing the risk of frailty.²² Besides, anemia can cut down submaximal and maximal aerobic capacity, leading to several adverse outcomes including loss of muscle strength, cognitive decline, and development of frailty.¹⁰ In addition, chronic conditions and comorbidities leading to a low grade of inflammation-reducing hemoglobin level,²³ also known as chronic diseases anemia, which is the most common type of anemia in older adults.²² And a state of chronic inflammation has been suggested as contributor to frailty.²⁴ Furthermore, anemia caused by malnutrition is also a significant health-affecting factor among older

adults.22

Page 15 of 24

BMJ Open

Anemia reaching a prevalence of 17% in older people, is a threat to healthy aging.²⁵ Corona et.al found that lower hemoglobin and anemia were related to frailty in Brazilian older adults.8 In their study, anemia was related to low physical activity, weakness(weaker), and walking more slowly. Another study from Spain indicated that anemia is independently associated with frailty in older people.²⁶ Moreover, Xu et.al found that Hb is closely associated with frailty in elder patients in the hospital.⁹ A systematic review and meta-analysis including 19 studies indicated that older adults with anemia have more than a two-fold increased odds of frailty.²⁷ Silva et.al suggested that lower Hb levels should be considered a significant component of frailty in older persons.²⁸ Similarly, another meta-analysis including 32,934 robust participants and 6864 frail participants found that Hb is a useful biomarker of frailty.7 However, there were no significant association between lower Hb and frailty after adjusting confounding factors in our study. The discrepancy in results may be due to the definition of lower Hb being determined by the optimal cut-off value of the ROC curve in this research. Therefore, further studies are needed to confirm the relationship between Hb and frailty in older people.

An increasing RDW also can lead to low HRR. Studies have proved that increased RDW is related to inflammation. Inflammatory cytokines reduce erythropoietin gene expression and erythropoietin receptor expression, which leads to the release of immature erythrocytes and the heterogeneity of the erythrocyte volume increasing.^{29,30} In addition, metabolic abnormalities including shortened telomere length, oxidative stress, and malnutrition may also contribute to increased RDW.^{11,31} What's more, others have suggested that RDW may be a potential biomarker for biological aging.³⁰ Study has indicated that a high RDW was

3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
~~ 72	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
22	
54	
55	
56	
57	
58	
59	
60	

1 2

274 related to a high sarcopenia risk.³² Sarcopenia, which plays a key role in frailty, is a
275 progressive loss of skeletal muscle mass and strength.²⁸

276 RDW is a biomarker of inflammation, oxidative stress, poor nutritional status, aging, and sarcopenia, and all of these could be underlying reasons for the development of frailty. A 277 278 study that enrolled 3,635 community-dwelling older men indicated that participants with a high RDW are more likely to have functional limitations and frailty.³⁰ Li et.al indicated that increased 279 280 RDW may be closely related to frailty through inflammation.¹⁵ Hou et.al proved that frailty is 281 closely associated with RDW in elder patients with CHD.¹³ Another study including 2,932 282 community-dwelling older adults found RDW is independently associated with high frailty risk even after adjusting for potential confounding factors.¹⁴ 283 Increased RDW combined with anemia is more likely to lead to decreased HRR.

Increased RDW combined with anemia is more likely to lead to decreased HRR. Elevated RDW suggests chronic inflammation, malnutrition, and aging.¹¹ Anemia is the cause of reduced tissue oxygenation and the consequent increase in fatigue, weakness, and functional impairment.³³ Also anemia may affect muscle mass and strength loss through inflammatory pathways.³³ Therefore, decreased HRR may be associated with sarcopenia, slowness, weakness, inflammation, malnutrition, and weight loss in frailty patients.

To sum up, a large number of researchers have verified the association between frailty and a low Hb and a high RDW among older persons. However, both RDW and Hb are susceptible to many other disease conditions and sub-health states, HRR may provide a more powerful parameter than a single parameter alone. Moreover, ROC analysis showed that the AUC and highest sensitivity of HRR are higher than RDW and Hb. It may be a more reliable and effective marker than Hb and RDW alone.

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
56	
50	
50	
20	
59	

This inexpensive and common laboratory parameter may provide useful information to identify the risk of frailty in older adults. Furthermore, the use of the HRR may help clinicians to identify people at high risk of frailty and take effective measures to reduce the occurrence and development of frailty, reduce the rate of disability and mortality related to frailty in the elderly, and reduce the waste of medical resources, and promote healthy aging.

There were also some limitations of our present study. Firstly, because cross-sectional 301 302 studies measure the outcome and the exposures in the study participants at the same time, it 303 is difficult to assess the cause-effect relationship. Secondly, our participants are limited to local 304 participants, these findings need to be validated in different populations around the world. 305 What is more, we are unable to investigate the temporal relation between outcomes and risk factors. In addition, despite the inevitable selection bias and information bias in cross-sectional 306 307 studies, we improved this problem through more rational statistical methods and interviewer training. Finally, we did not assess iron, folic, and vitamin B12, which may affect RDW and Hb 308 309 levels.

310

317

60

311 Conclusion

In conclusion, a low HRR is independently associated with higher frailty risk in community-dwelling older adults. And this relationship is not affected by confounding factors. However, the causal relationship and the specific mechanism between HRR and frailty are unclear. Evidence is needed from prospective studies to verify these conclusions in the future.

318	
319	
320	Author contributions
321	Conceptualization: Zhifan Xiong, Mengpei Zhu
322	Data curation: Mengpei Zhu, Chao Wei, Yushuang Xu
323	Formal analysis: Mengpei Zhu, Chao Wei
324	Visualization: Xiongjun Yang, Yumei Huang
325	Writing – original draft: Mengpei Zhu
326	Writing – review and editing: Zhifan Xiong, Mengpei Zhu, Chao Wei, Xiongjun Yang, Yumei
327	Huang, Yushuang Xu. All authors read and approved the final manuscript.
328	
329	Acknowledgements
330	The authors thank all the volunteers that participated in this study.
331	
332	Funding
333	This study was supported by the National Key Research and Development Program of China
334	(2018YFC2002000).
335	
336	Data availability
337	Data for this study are available from the corresponding author.
338	
339	Declaration
1

2	
ך ג	
- 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
35 36	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

340 The authors report no conflicts of interest in this work.

341

Ethics statements 342

The research protocol was approved by the Medical Ethics Committee of Liyuan Hospital, 343

344 Tongji Medical College, Huazhong University of Science and Technology (IRB ID: [2020] IEC

(A016)). All the participants gave written informed consent. The study was conducted in 345

346 accordance with the tenets of the Declaration of Helsinki.

347

348

349

350

References 351

- 352 Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty markers comprise blood metabolites 1. involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A. 353 354 2020;117(17):9483-9489.
- 355 2. Travers J, Romero-Ortuno R, Bailey J, Cooney M-T. Delaying and reversing frailty: a 356 systematic review of primary care interventions. Br J Gen Pract. 2019;69(678):e61-e69.
- 357 3. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: 358 opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376-1386.
- 359 Coelho-Junior HJ, Marzetti E, Picca A, Cesari M, Uchida MC, Calvani R. Protein Intake and 4. 360 Frailty: A Matter of Quantity, Quality, and Timing. Nutrients. 2020;12(10).
- 361 5. Ward RE, Orkaby AR, Chen J, et al. Association between Diet Quality and Frailty Prevalence in 362 the Physicians' Health Study. J Am Geriatr Soc. 2020;68(4):770-776.
- 363 6. Zhai Z, Gao J, Zhu Z, et al. The Ratio of the Hemoglobin to Red Cell Distribution Width 364 Combined with the Ratio of Platelets to Lymphocytes Can Predict the Survival of Patients 365 with Gastric Cancer Liver Metastasis. Biomed Res Int. 2021;2021:8729869.
- 366 7. Mailliez A, Guilbaud A, Puisieux F, Dauchet L, Boulanger É. Circulating biomarkers 367 characterizing physical frailty: CRP, hemoglobin, albumin, 25OHD and free testosterone as 368 best biomarkers. Results of a meta-analysis. Exp Gerontol. 2020;139:111014.
- 369 8. Pires Corona L, Drumond Andrade FC, de Oliveira Duarte YA, Lebrao ML. The Relationship 370 between Anemia, Hemoglobin Concentration and Frailty in Brazilian Older Adults. J Nutr 371 Health Aging. 2015;19(9):935-940.

BMJ Open

1 2

3	372	9.	Xu L, Zhang J, Shen S, et al. Clinical Frailty Scale and Biomarkers for Assessing Frailty in Elder
4	373		Inpatients in China. J Nutr Health Aging. 2021;25(1):77-83.
6	374	10.	Ruan Y, Guo Y, Kowal P, et al. Association between anemia and frailty in 13,175
7	375		community-dwelling adults aged 50 years and older in China. BMC Geriatr. 2019;19(1):327.
8	376	11.	Salvagno GL, Sanchis-Gomar E, Picanza A, Lippi G, Red blood cell distribution width: A simple
9	377		parameter with multiple clinical applications. <i>Crit Rev Clin Lab Sci</i> 2015;52(2)
10	270	10	Dent E. Lien C. Lim W.C. et al. The Asia Desifie Clinical Practice Cuidelines for the Management
12	270	12.	of Section 1 And And Dis Access 2017 40/7)/504 575
13	3/9		of Frailty. J Am Med Dir Assoc. 2017;18(7):564-575.
14	380	13.	Hou P, Xue H-P, Mao X-E, Li Y-N, Wu L-F, Liu Y-B. Inflammation markers are associated with
15	381		frailty in elderly patients with coronary heart disease. Aging (Albany NY).
10	382		2018;10(10):2636-2645.
18	383	14.	Li C-M, Chao C-T, Chen S-I, Han D-S, Huang K-C. Elevated Red Cell Distribution Width Is
19	384		Independently Associated With a Higher Frailty Risk Among 2,932 Community-Dwelling Older
20	385		Adults. Front Med (Lausanne). 2020;7:470.
21	386	15.	Li Q, Chen X, Han B. Red blood cell distribution width is associated with frailty in older
22	387		inpatients in China: Sex differences in a cross-sectional study. Exp Gerontol.
24	388		2021:150:111392
25	389	16	Ou L Zhou T Xue M et al Correlation Analysis of Hemoglobin-to-Red Blood Cell Distribution
26	300	10.	Width Patio and Erailty in Elderly Pationts With Coronary Heart Disease. Front Cardiovasc
2/	201		Mad 2024 0.720000
28 29	391		
30	392	17.	Su Y-C, Wen S-C, Li C-C, et al. Low Hemoglobin-to-Red Cell Distribution Width Ratio Is
31	393		Associated with Disease Progression and Poor Prognosis in Upper Tract Urothelial Carcinoma.
32	394		Biomedicines. 2021;9(6).
33	395	18.	Sun P, Zhang F, Chen C, et al. The ratio of hemoglobin to red cell distribution width as a novel
35	396		prognostic parameter in esophageal squamous cell carcinoma: a retrospective study from
36	397		southern China. Oncotarget. 2016;7(27):42650-42660.
37	398	19.	Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J
38	399		Gerontol A Biol Sci Med Sci. 2001;56(3):M146-M156.
39 40	400	20.	Kojima G, Taniguchi Y, Iliffe S, Jivraj S, Walters K. Transitions between frailty states among
41	401		community-dwelling older people: A systematic review and meta-analysis. Ageing Res Rev.
42	402		2019/50/81-88
43	403	21	Lee CT. Chen M7. Vin CVC. Van ES. Lee SV. Merchant RA. Prevalence of Anemia and Its
44 45	404	21.	Association with Frailty, Deviced Eurotion and Cognition in Community Dwolling Older
45 46	404		Association with Francy, Physical Function and Cognition in Community-Dwenning Order
47	405		Adults: Findings from the HOPE Study. J Nutr Health Aging. 2021;25(5):679-687.
48	406	22.	Röhrig G. Anemia in the frail, elderly patient. <i>Clin Interv Aging</i> . 2016;11:319-326.
49	407	23.	Steinmeyer Z, Delpierre C, Soriano G, et al. Hemoglobin concentration; a pathway to frailty.
50 51	408		BMC Geriatr. 2020;20(1):202.
52	409	24.	Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged
53	410		immune system. Ageing Res Rev. 2017;36.
54	411	25.	Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and
55	412		management. <i>Blood.</i> 2018;131(5):505-514.
56 57	413	26.	Esquinas-Requena JL, García-Nogueras I, Hernández-Zegarra P, Atienzar-Núñez P. Sá
58	414		nchez-Jurado PM, Abizanda P. [Anemia and frailty in older adults from Spain. The FRADEA
59	415		Study] Rev Esp Geriatr Gerontol 2021:56(3):129-135
60	715		Stary]. Nev Lip Ochati Ocionton. 2021,30(3).123-133.

1		
3	<i>A</i> 16	27 Palmer K. Vetrano DI. Marengoni A. et al. The Relationship between Anaemia and Frailty: A
4	410	27. Fainer R, Verland DE, Marengolin A, et al. The Relationship between Anaerina and Franky. A
5	417 /18	
7	410	2010,22(0).505-574.
8	419	28. Sliva JC, Moraes ZVG, Sliva C, et al. Understanding red blood cell parameters in the context of
9	420	the fraility phenotype: interpretations of the FIBRA (Fraility in Brazilian Seniors) study. Arch
10	421	Gerontol Geriatr. 2014;59(3):636-641.
11	422	29. Pierce CN, Larson DF. Inflammatory cytokine inhibition of erythropoiesis in patients
13	423	implanted with a mechanical circulatory assist device. <i>Perfusion</i> . 2005;20(2):83-90.
14	424	30. Kim KM, Lui L-Y, Browner WS, et al. Association Between Variation in Red Cell Size and
15	425	Multiple Aging-Related Outcomes. J Gerontol A Biol Sci Med Sci. 2021;76(7):1288-1294.
10 17	426	31. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis.
18	427	Antioxid Redox Signal. 2008;10(11):1923-1940.
19	428	32. Kim J, Im J-S, Choi CH, et al. The Association between Red Blood Cell Distribution Width and
20	429	Sarcopenia in U.S. Adults. Sci Rep. 2018;8(1):11484.
21	430	33. Picca A, Coelho-Junior HJ, Calvani R, Marzetti E, Vetrano DL. Biomarkers shared by frailty and
23	431	sarcopenia in older adults: A systematic review and meta-analysis. Ageing Res Rev.
24	432	2022;73:101530.
25		
26	433	
28		
29	434	
30		
31	435	
33		
34	436	
35		
36	437	
38		
39	438	
40		
41	439	Figure legends
42	757	i igale legenae
44	440	Figure 1 ROC curve for HRR (A) Hb (B) and RDW (C)
45	110	
46	441	
47	441	
49	442	Natao
50	442	Notes.
51	4.42	A DOO summer indicated that the bast interest to be for UDD uses 0.07 (see altheits 0.4.5%)
52 53	443	A. ROC curve indicated that the best intercept value for HRR was 9.97 (sensitivity 84.5%,
54		
55	444	specificity 61.9%, AUC = 0.802, P<0.001)
56 57		
57 58	445	B. ROC curve indicated that the best intercept value for Hb was 131.5 (sensitivity 81%,
59		
60	446	specificity 57.1%, AUC = 0.742, P<0.001)
		20

447 C. ROC curve indicated that the best intercept value for RDW was 13.45 (sensitivity 56.2%,

448 specificity 81.1%, AUC = 0.712, P<0.001)

to perteries only

Page 23 of 24

40 41

Figure1. 1 2 3 4 5 6 7 8 9 В С А Hb RDW HRR 1.0 1.0 1.0 10 11 12 0.8 0.8 13 0.8 14 15 0.6 0.6 Sensitivity Sensitivity 0.4 0.4 24 25 26 27 ^{0.2} 0.2 0.2 28 29 30 0.0 31 _{0.0} 2 32 0.0 0.0 ⊾ 0.0 0.2 0.6 0.8 0.4 1.0 0.6 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.8 33 1 - Specificity 1 - Specificity 1 - Specificity 34 35 36 37 38 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 39

BMJ Open

BMJ Open

	1		
Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	5
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5
Quantitative variables	10	Explain how the study size was arrived at Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) If applicable, describe analytical methods taking account of sampling strategy	7
		(e) Describe any sensitivity analyses	7
Results			

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	7-8
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	8
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	9-11
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9-11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	16
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	13-16
Generalisability	21	Discuss the generalisability (external validity) of the study results	15-16
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	17

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.