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Supplementary	results	
	
Unique	immunophenotypic	patterns	of	the	molecular	subtypes	
We	assessed	the	.low	cytometry	patterns	of	CD34	and	CD19	antigens	that	were	used	to	identify	
and	sort	blasts.	Although	clinical	immunophenotyping	reported	positivity	of	CD34	and	CD19	on	
nearly	all	leukemias	in	the	cohort,	we	observed	six	distinct	pro.iles	of	CD34	and	CD19	expressions	
on	blasts	(Fig.	S26a).	Strikingly,	these	six	blast	types	were	unevenly	distributed	across	the	three	
subtypes.	Early-Pro	was	enriched	for	blast	types	2	and	3,	which	expressed	dim	to	low	levels	of	CD19;	
Inter-Pro	was	enriched	for	blast	type	1,	which	expressed	high	levels	of	both	CD34	and	CD19;	and	
Late-Pro	was	enriched	for	blast	types	4	and	5,	which	expressed	dim	to	low	levels	of	CD34	(p=1.8e-
11,	Fisher’s	exact	test;	Fig.	S26b).	Consequently,	we	observed	greater	proportions	of	CD34+CD19−	
cells	 and	 CD34−CD19+	 cells	 in	 Early-Pro	 and	 Late-Pro	 leukemias,	 respectively	 (FDR-adjusted	
p=1.1e-5	and	0.0063,	Kruskal-Wallis	test;	Fig.	S27).	Ph50-D	(C1/Early-Pro)	was	the	only	leukemia	
with	blast	type	6,	which	lacks	CD34	expression	(Fig.	S26a,	bottom	right	panel).	In	summary,	the	
three	molecular	subtypes	of	BCR-ABL1	lymphoblastic	leukemia	display	distinct	patterns	antigen	
expressions.	
	
Rearrangement	patterns	of	the	immunoglobulin	heavy	chain	locus	
We	aimed	to	determine	whether	leukemic	phenotypes	are	maintained	from	the	cell	type	in	which	
they	are	arrested	 in	or	acquired	during	 the	 transformation	process.	To	 tackle	 this	question,	we	
examined	 immunoglobulin	heavy	chain	 locus	 (IGH@)	rearrangements	 in	 the	RNA-seq	and	WGS	
data.	Legitimate	and	illegitimate	rearrangements	of	IGH@	are	almost	invariably	observed	in	BCR-
ABL1	ALL,	B/myeloid	MPAL,	and	CML-LBC92–94.	In	agreement	with	those	reports,	all	leukemias	in	
our	cohort	carried	rearranged	 IGH@	although	most	of	 the	resulting	V(D)J	sequences	were	non-
productive	(Fig.	S10b).	

Since	the	IGH@	contracts	as	B-cells	mature	from	early	to	late	stages	to	promote	utilization	
of	distal	VH	genes26,95,96,	we	hypothesized	that	leukemias	arising	from	an	early	developmental	stage	
would	preferentially	 show	short-range	rearrangements	with	proximal	VH	 segments	while	 those	
arising	from	a	later	stage	would	show	long-range	rearrangements	utilizing	distal	VH	segments	(Fig.	
S28a).	 When	 IGH@	 rearrangements	 were	 compared	 across	 the	 subtypes,	 signi.icantly	 greater	
proportions	of	rightside	breakpoints	in	Inter-Pro	and	Late-Pro	leukemias	were	located	in	the	distal	
VH	region	than	those	 in	Early-Pro	 leukemias	(Fig.	S28a;	p=0.042,	Kruskal-Wallis	test).	Using	the	
mclust	 algorithm97,	 IGH@	 breakpoints	 were	 clustered	 into	 5	 bins	 (Fig.	 S28b),	 and	 similarly,	
breakpoints	in	Inter-Pro	and	Late-Pro	leukemias	were	enriched	in	distal	VH	bins	when	compared	
to	those	in	Early-Pro	leukemias	(Fig.	S28c).	These	data	support	that	the	three	subtypes	are	not	only	
arrested	at	but	also	arise	from	different	stages	of	B-cell	differentiation.	
	
BCR-ABL1	 breakpoint	distributions	are	not	different	between	subtypes	and	do	not	affect	
patient	survival	
We	 analyzed	 the	 distributions	 of	 translocation	 breakpoints	 in	 BCR	 and	 ABL1	 genes.	 Fifty-two	
rearrangements	 from	this	study	were	supplemented	with	78	 from	Score	et	al.98	and	9	 from	the	



 

	
	

EGAD00001000163	 dataset	 (https://ega-archive.org/datasets).	 As	 expected,	 BCR	 breakpoints	
were	located	between	exons	13	and	15	in	p210	isoform	leukemias	(Fig.	S29a)	and	between	exons	
1	and	2	in	p190	isoform	leukemias	(Fig.	S29b).	All	ABL1	breakpoints	were	located	upstream	of	exon	
2,	 with	 a	 subset	 even	 found	 upstream	 of	 the	 transcription	 start	 site	 in	 exon	 1	 (Fig.	 S29c).	
Distribution	 of	 breakpoints	 in	 both	 genes	 were	 not	 in.luenced	 by	 disease	 types	 or	 molecular	
subtypes	(Figs.	S29,	S30).	 In	 four	cases,	BCR-ABL1	 translocations	were	associated	with	complex	
rearrangements	involving	other	chromosomes,	and	in	another	four	cases,	resulted	in	copy	number	
losses	of	.lanking	genomic	regions	(Supplementary	Table	15).	Gain	of	Philadelphia	chromosome	
(i.e.	+der(22)t(9;22)),	 found	 in	9	diagnostic	 samples	 (n=9/53,	17%),	was	not	associated	with	a	
speci.ic	molecular	 subtype	 (p=0.38,	 Fisher’s	 exact	 test).	 Furthermore,	 patient	 survival	was	 not	
in.luenced	 by	 BCR-ABL1	 isoforms	 or	 gain	 of	 Philadelphia	 chromosome	 (Fig.	 S31).	 These	 data	
further	support	that	the	molecular	subtypes	are	independent	of	BCR-ABL1	rearrangements.	
	
Further	evidences	of	hijacked	RAG	activity	
H3K4me3	histone	modi.ication	 is	 the	binding	substrate	 for	RAG2(99).	SVs	related	to	cooperating	
events	with	RSS	motifs	were	signi.icantly	closer	to	H3K4me3	peaks	(transformation	SVs	with	RSS	
vs.	without	RSS:	1	kb	vs.	18.8	kb;	p<1e-16,	Wilcoxon	rank-sum	test;	Fig.	S32a)	and	enriched	for	
promoter	 and	 enhancer	 chromatin	 states	 (Fig.	 S32b)91.	 A	 similar	 enrichment	 pattern	 was	
previously	 observed	 in	 ETV6-RUNX1	 lymphoblastic	 leukemia29.	 SVs	 linked	 to	 the	 BCR-ABL1	
translocation	did	not	harbor	this	pattern,	which	further	supports	that	the	translocation	is	not	RAG-
mediated.	Cooperating	event	SVs	with	RSS	motifs	largely	consisted	of	deletions	(n=384/399,	96.2%;	
Fig.	S32c)	and	were	signi.icantly	smaller	in	size	than	cooperating	event	SVs	without	RSS	motif	(71.5	
kb	vs.	309.5	kb;	p=4.1e-6,	Wilcoxon	rank-sum	test;	Fig.	S32d).	

We	 detected	 one	 RAG-mediated	 rearrangement	 that	 was	 particularly	 unique	 and	
informative.	A	deletion	of	SLX4IP	in	Ph18-D	had	breakpoints	at	similar	locations	as	other	SLX4IP	
deletions,	 but	 at	 the	 junction,	 a	 75	 base-pair	 ‘shard’	 from	 the	 signal	 sequence	 of	 IGKV4-1	 was	
inserted	with	non-template	sequences	at	both	ends	(Fig.	S33a).	Because	such	an	event	is	extremely	
unlikely	to	occur	by	chance,	we	infer	that	this	SLX4IP	deletion	occurred	in	a	spatial	and	temporal	
proximity	to	the	IGKV4-1	recombination	before	the	excised	signal	sequence,	from	which	the	shard	
is	derived,	was	degraded	(Fig.	S33b).	This	may	be	an	example	of	a	recently	proposed	‘cut-and-run’	
reaction,	in	which	RAG	forms	a	complex	with	an	excised	signal	circle	to	instigate	DNA	breaks	in	the	
genome100.	

A	genomic	locus	upstream	of	CBWD2	was	recurrently	deleted	in	36%	(n=19/53)	of	patients	
and	the	leftside	breakpoints	of	the	deletions	were	tightly	clustered	(Fig.	S15d).	Investigating	the	
DNA	 sequence	 near	 the	 leftside	 breakpoint	 cluster	 revealed	 a	 non-functional,	 orphan	
immunoglobulin	gene	IGKV1OR2-108	(ENSG00000231292)	that	provided	a	canonical	RSS	motif.	
Rightside	breakpoints	were	more	varied	but	were	positioned	near	H3K4me3	peaks	in	the	promoter	
region	 of	CBWD2.	 Six	 other	 SVs	 in	 our	 dataset	 also	 had	 breakpoints	 located	 near	 the	RSS	 of	 5	
different	orphan	Ig	genes:	IGKV3OR2-268	(n=2),	IGKV2OR2-1	(n=1),	IGKV1OR-2	(n=1),	IGHV1OR15-
2	(n=1),	and	IGHV3OR16-9	(n=1).	It	can	be	postulated	that	these	SVs	were	generated	by	hijacking	
the	RSS	motifs	of	these	orphan	Ig	genes.	Together,	these	are	strong	evidences	that	SVs	with	cryptic	
RSS	motifs	are	indeed	generated	by	RAG-mediated	recombination.	



 

	
	

High	number	of	RAG-mediated	recombination	is	associated	with	SLX4IP	deletion	
We	 observed	 that	 the	 total	 numbers	 of	 RAG-mediated	 recombinations	 (#RAG)	 in	 individual	
leukemia	genomes	formed	a	bimodal	distribution	(Fig.	S34a).	Amongst	all	the	genetic	and	clinical	
markers,	deletion	status	of	SLX4IP	was	most	strongly	associated	with	#RAG	(FDR-adjusted	p=3.7e-
5,	Wilcoxon	rank-sum	test;	Figs.	S34b,	3g).	A	Poisson	regression	model	using	the	top	nine	markers	
resulted	 in	 the	 best	 predictor	 of	#RAG,	 and	SLX4IP	 status	 accounted	 for	 the	most	 reduction	 in	
residual	deviance	(Fig.	S34c,d).	We	observed	the	association	between	SLX4IP	deletion	and	#RAG	in	
9	 BCR-ABL1	 ALL	 and	 40	 Ph-like	 ALL	 genomes	 from	 the	 European	 Genome-phenome	 Archive	
(EGAD00001000163	and	EGAD00001000976)101.	 There	was	no	association	between	molecular	
subtypes	and	#RAG	when	considering	either	all	cases	or	only	SLX4IP-wildtype	cases	(p=0.10	and	
p=0.43,	Kruskal-Wallis	test;	Fig.	S34e,f).	

The	cause-and-effect	relationship	between	SLX4IP	deletion	and	#RAG	is	currently	uncertain.	
SLX4IP	 protein	was	 originally	 characterized	 by	 its	 interaction	with	 SLX4,	 a	 scaffolding	 protein	
required	 for	 the	 activity	 of	 multiple	 DNA	 repair	 mechanisms,	 including	 Holliday	 junction	
resolution102.	Recently,	 SLX4IP	was	shown	 to	also	 regulate	a	 telomere	maintenance	mechanism	
known	as	alternative	lengthening	of	telomeres103.	Because	canonical	RAG-mediated	recombination	
is	repaired	via	the	non-homologous	end	joining	pathway104,	how	the	loss	of	SLX4IP	may	increase	
#RAG	 is	 not	 clear.	 Our	 study	 identi.ies	 a	 genetic	 defect	 that	 is	 associated	 with	 elevated	 RAG-
mediated	recombination	in	a	lymphoid	malignancy.	
	
Blast	contamination	is	common	in	Llow-sorted	cell	populations	
Our	 .indings	 suggested	 that	 Early-,	 Inter-,	 and	 Late-Pro	 leukemias	 are	 transformed	 at	 different	
stages	of	B-cell	development.	However,	 it	 is	possible	 that	 they	share	a	common	cell-of-origin	 in	
which	the	initiating	lesion,	BCR-ABL1,	arises.	To	tackle	this	question,	we	collected	stem/progenitor	
cell	populations	from	leukemia	samples	using	a	FACS	scheme	previously	established	in	the	lab51.	
Genomic	DNA	from	each	cell	population	was	whole-genome	ampli.ied	and	used	for	leukemia-	and	
SV-speci.ic	nested	PCR.	A	total	of	158	SVs	(3~16	per	patient),	including	the	BCR-ABL1	translocation	
of	 each	patient,	were	 assayed	 for	 22	patients.	 Surprisingly,	most	 cell	 populations	 in	 the	 cohort	
displayed	a	high	degree	of	blast	contamination,	which	was	de.ined	as	a	detection	of	more	than	half	
of	 the	 leukemia-speci.ic	SVs	 in	a	non-blast	 cell	 type	 (Supplementary	Table	16).	For	 instance,	 in	
Ph12-D,	all	14	SVs	tested	were	detected	in	HSC,	MPP,	MLP,	CMP,	and	GMP	and	12	of	the	SVs	were	
also	detected	in	T-cells.	Because	nested	PCR	is	highly	sensitive,	even	a	small	number	of	leukemic	
blasts	 contaminating	 a	 sorted	 population	 could	 result	 in	 a	 false	 positive	 signal.	 Interestingly,	
greater	proportions	of	assayed	cell	 types	were	contaminated	 in	Early-Pro	samples	compared	to	
Inter-Pro	 or	 Late-Pro	 samples	 (median	 80%	 vs.	 50%;	 p=0.0043,	Wilcoxon	 rank-sum	 test).	We	
suspect	that	this	difference	arises	because	Early-Pro	blasts	often	express	high	CD34	and	low	CD19,	
as	stem/progenitor	populations	do,	and	 thus	are	more	prone	 to	contaminate	non-leukemic	cell	
populations.	In	Ph16-D	(Inter-Pro)	and	Ph17-D	(Late-Pro),	BCR-ABL1	translocation	was	the	sole	
abnormality	detected	in	HSC,	CMP,	GMP	(Ph17-D	only),	MEP,	and	mature	B-cells,	suggesting	that	
BCR-ABL1	was	 the	 initiating	 lesion	 that	affected	various	hematopoietic	 lineages.	However,	blast	
contamination	was	suspected	in	the	MLP	populations	of	both	samples	and	the	GMP	population	of	



 

	
	

Ph16-D.	 In	summary,	although	nested	PCR	 is	a	sensitive	and	ef.icient	method	 for	detecting	SVs,	
widespread	blast	contamination	can	hinder	data	interpretation	and	needs	to	be	addressed.	
	
TKI-resistant	mutations	in	BCR-ABL1	develop	more	frequently	in	Early-Pro	patients		
We	 further	 explored	 the	 differential	 sensitivity	 to	 TKIs	 observed	 amongst	 three	 subtypes.	 The	
kinase	domain	mutation	 status	during	 treatment	was	available	on	23	patients.	By	 layering	 this	
information	on	the	residual	disease	plots	(Fig.	5a),	we	observed	a	striking	prevalence	of	resistance	
TKI	mutations	in	Early-Pro	patients	(75%,	n=9/12)	compared	to	Inter-Pro	(40%,	n=2/5)	or	Late-
Pro	patients	(33%,	n=2/6)	(Supplementary	Table	17).	Although	our	sample	size	is	small,	it	helps	
to	explain	why	Early-Pro	patients	 relapse	more	 frequently	and	 speci.ically	bene.it	 from	2nd/3rd	
generation	TKIs	(Fig.	5d).		

The	above	observation	was	partly	unexpected	given	that	TKI	selection	pressure	was	present	
in	 all	 patients.	Kinase	domain	mutations	have	been	 reported	 to	pre-exist	 at	 low	 frequencies	 at	
diagnosis105	and	thus	it	was	possible	that	Early-Pro	patients	harbor	increased	prevalence	of	pre-
existing	kinase	domain	mutant	clones	prior	to	treatment.	To	assess	this,	we	performed	targeted	
deep	 sequencing	 on	 44	 diagnostic	 patient	 samples.	 SimSen-seq	 is	 a	 PCR-based	 approach	 that	
utilizes	molecular	barcodes	to	increase	sensitivity	and	correct	for	PCR	errors81.	This	method	easily	
captured	 a	 clinically	 detected	 TKI-resistant	mutation,	 F317L,	 in	 a	 relapse	 sample,	 Ph12-R	 (see	
Methods).	 We	 detected	 14	 low-frequency	 kinase	 domain	 mutations	 in	 10	 out	 of	 44	 samples	
(0.05~1.16%;	Fig.	S35).	Of	the	14	mutations,	2	were	silent,	1	was	a	stop-gain,	9	were	non-recurrent	
missense	mutations,	and	2	were	missense	mutations	previously	reported	 in	CML	(p.E355G	and	
p.T277A	both	in	Ph40-D)106,107.	Among	these	10	patients,	3	relapsed	later	but	showed	no	evidence	
for	 the	 selection	 of	 pre-existing	mutations.	 Five	 out	 of	 44	 patients	 relapsed	with	 TKI-resistant	
kinase	 domain	 mutations	 after	 230~865	 days	 from	 diagnosis,	 but	 these	 mutations	 were	 not	
detected	by	SimSen-seq	at	diagnosis.	Thus,	within	our	detection	limits,	Early-Pro	patients	do	not	
show	increased	frequency	of	pre-existing	TKI	resistant	mutations	at	diagnosis.	This	suggests	that	
resistance	 mechanisms	 in	 Early-Pro	 patients	 may	 contribute	 to	 a	 predisposition	 towards	
developing	kinase	domain	mutations.		
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a, Comparison of quality measures from the actual data (solid line) and from randomized data 
(dashed line) for numbers of components (k) between 2 and 10. b, Gene expression heatmaps of 
NMF component genes for k values between 2 and 4. Rows represent genes and columns represent 
samples. Genes are grouped into NMF components. 
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Fig. S2 | Identification of RNA-seq subtypes by consensus hierarchical clustering
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Fig. S3 | Three molecular subtypes in an independent cohort of 40 BCR-ABL1 ALL cases identified by 3’-seq
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Fig. S4 | Consensus hierarchical clustering of the second cohort
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Fig. S5 | Clustering of 30 Ph-like ALL
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Fig. S6 | Gene set enrichment analysis (GSEA) of each subtype against the rest
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For each subtype, enriched gene sets with nominal p-value<0.05 and FDR-adjusted p-value<0.25 
from the RNA-seq data are shown. For each gene set, top bars represent normalized enrichment 
score (NES) from the RNA-seq data and bottom bars represent NES from mass spectrometry (MS) 
data. Color of the bar corresponds to the FDR-adjusted p-value. 



Fig. S7 | Proportion of lineage marker-positive blasts
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a-d, Proportions of blasts positive for lineage marker antigens by subtype. a, B-lymphoid, b, 
myeloid/stem, c, T-lymphoid, and d, other markers. Numbers in brackets indicate outliers that are not 
shown to improve visibility of the overall comparison. Counts represent numbers of primary leukemias 
assessed for the antigen. FDR-adjusted p-values from Kruskal-Wallis test are shown. e, Comparison 
of MPO expression by RNA-seq (log2 counts) vs. flow cytometry (% of MPO-positive blasts).
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Fig. S8 | Expression of lineage marker genes
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a-d, Normalized counts of lineage marker genes by subtype in the main cohort (26 C1, 8 C2, 23 C3). 
a, B-lymphoid, b, myeloid/stem, c, T-lymphoid, and d, other marker genes. e, Proportions of 
leukemias in each subtype with and without expression of clonally rearranged immunoglobulin heavy 
chain gene (IGH). p-value is from Fisher’s exact test. f, Frequencies of clonal rearrangements in the 
immunoglobulin (IGH, IGK, IGL) and T-cell receptor (TRB, TRA/D, TRG) loci by subtype. FDR-
adjusted p-values from Fisher’s exact test are shown. g-j, Normalized counts of lineage marker genes 
by subtype in the 3’-seq cohort (13 C1, 13 C2, 14 C3). g, B-lymphoid, h, myeloid/stem, i, T-lymphoid, 
and j, other marker genes. Numbers in brackets indicate outliers that are not shown to improve 
visibility of the overall comparison. 
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Fig. S8 | Expression of lineage marker genes (continued)
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Fig. S9 | Reference dataset of hematopoietic cell compartments from human cord blood
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samples were scored for gene expression signatures specific to cell populations in adult bone marrow14. Mean 
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Fig. S9 | Reference dataset of hematopoietic cell compartments from human cord blood (continued)
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Fig. S9 | Reference dataset of hematopoietic cell compartments from human cord blood (continued)
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Fig. S10 | Rearrangements of antigen receptor loci

a, Proportions of leukemias in each subtype with and without expression of clonally rearranged 
immunoglobulin heavy chain gene (IGH). p-value is from Fisher’s exact test. b, Frequencies of clonal 
rearrangements in the immunoglobulin (IGH, IGK, IGL) and T-cell receptor (TRB, TRA/D, TRG) loci by 
subtype. FDR-adjusted p-values from Fisher’s exact test are shown.
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Fig. S11 | Annotation of single-cell RNA-seq samples using adult bone marrow data
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a, UMAP visualization of 3032 cells from an adult bone marrow spanning HSC to mature B utilizing scRNA-seq and Abseq data 
from Triana et al.19. Single cell clusters are labelled based on prior annotations, RNA marker genes, and protein-level surface 
markers. b, Nine scRNA-seq samples are projected onto the B-cell development trajectory of an adult bone marrow using 
Symphony71. Red dots indicate leukemic cells. Each leukemic cell is assigned a cell type label based on 30 nearest-neighbours 
within the reference dataset. c, Mean proportions of cell type labels for Early-Pro, Inter-Pro and Late-Pro subtypes. d, 
Pseudotime analysis of 4 Early-Pro scRNA-seq samples using Monocle 3(68). Trees and their branches show the trajectory of 
single cells and their cell type annotations. Barplots at the bottom show cell type annotation counts across pseudotime (left to 
right).
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Fig. S11 | Annotation of single-cell RNA-seq samples using adult bone marrow data (continued)



1D 2D

3D

4D

5D

6D

7D
8D

9D

10D

11D

12R

12D

13D

14D
15R

15D

16D

17R

17D

18D

19D

20D

21D

22D23D

24D

25D

26D

28D

29D

30D

31D

32D

33D

34D

35D

36D

37D

38D
39D

40D

41D

42D

43D

44D

45D

46D

47D

48D

49D

50D

51D

52D

53R

53D

−10

0

10

20

−20 −10 0 10 20
PC1: 40.38% variance

PC
2:

 1
3.

94
%

 v
ar

ia
nc

e Subtype
a

a

a

Early−Pro

Inter−Pro

Late−Pro

BCR−ABL1 isoform
p190

p210

1D

2D

3D
4D

5D

6D
7D

8D

9D

10D12R

12D

13D

14D

15R
15D

16D

17R
17D

18D

19D
20D

21D

22D

23D

24D

25D

26D
27D

28D

29D

30D

31D

32D

33D

34D

35D

36D

37D

38D39D

40D

41D
42D

43D

44D

45D

46D

47D

49D

50D

52D

53R

53D

−10

−5

0

5

10

−20 −10 0 10 20
PC1: 40.38% variance

PC
3:

 5
.0

1%
 v

ar
ia

nc
e

Subtype
a

a

a

Early−Pro

Inter−Pro

Late−Pro

BCR−ABL1 isoform
p190

p210

page 1 of 23
Fig. S12 | Leukemias with intermediate gene expression profiles

PCA visualization of BCR-ABL1 lymphoblastic leukemia transcriptomes using 163 NMF component 
genes. Red circle highlights the positions of Ph28-D and Ph50-D, which are classified as Early-Pro 
and positioned between Early-Pro and Late-Pro subtypes. They both harbor concurrent losses of 
genes associated with Early-Pro subtype (RUNX1 and EBF1) as well as with Late-Pro subtype (PAX5
and CDKN2A/B). Green circle highlights Ph36-D, which is classified as Late-Pro and positioned close 
to Inter-Pro subtype. It harbors losses of PAX5 and RB1 and a dominant-negative IKZF1 mutation 
(p.N159T)24.



Fig. S13 | Frequency of large-scale copy number alterations in diagnostic leukemias
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leukemias (n=53). For each alteration, the numbers of leukemias in three subtypes are shown.



Fig. S14 | Recurrent large-scale copy number alterations
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a-e, Recurrent large-scale copy number alterations visualized using the Integrative Genomics Viewer 
(IGV). Blue represents copy number loss and red represents copy number gain relative to the 
reference T-cell genome. Dashed boxes with chromosome positions denote minimal common 
regions. a, Gain of 1q. b, Gain of 8q. c, Loss of 11q (lower panel displays smaller copy number losses 
encompassing UBASH3B in 3 additional cases). d, Loss of 15q. e, Loss of 20q.
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Fig. S15 | RAG-mediated recombination generates recurrent secondary alterations
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Generation of recurrent secondary alterations by RAG-mediated recombination. Deletions (blue lines) 
and insertions (red lines) are visualized using the Integrative Genomics Viewer (IGV). Exemplar RSS 
motifs are displayed inside breakpoint clusters, which are marked with dashed lines. Bases that 
deviate from the canonical RSS motif (CACAGTG) are in red font. Rightside RSS sequences are 
written in reverse complement and italicized. H3K4me3 ChIP-seq signals for GM12878 (B-
lymphoblast cell line) from ENCODE are shown at the bottom.
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Fig. S15 | RAG-mediated recombination generates recurrent secondary alterations (continued)
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Fig. S15 | RAG-mediated recombination generates recurrent secondary alterations (continued)
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Fig. S15 | RAG-mediated recombination generates recurrent secondary alterations (continued)
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Fig. S16 | Comparison of NTS insertion and microhomology across SV categories

a, Proportions of SV junction types by SV category. b, NTS insertion lengths by SV category (left). 
NTS insertion lengths of transformation related SVs by molecular subtype (right). n represents 
number of SVs with NTS insertion. c, Proportions of G:C and A:T nucleotides in NTS insertions by SV 
category. d, Microhomology lengths by SV category (left). Microhomology lengths of transformation 
related SVs by molecular subtype (right). n represents number of SVs with microhomology. 
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Fig. S17 | Flow cytometry profiles of 4 diagnosis/relapse pairs
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a-d, Immunophenotypic profiles of Ph12 (a), Ph15 (b), Ph17 (c), and Ph53 (d) at diagnosis (-D; top of 
each panel) and relapse (-R; bottom of each panel). Plots on the left display CD34/CD19 profiles of 
live cells with dashed boxes containing blasts. Plots on the right display CD90/CD10 or CD33/CD10 
profiles of blasts.



Fig. S18 | Antigen receptor loci rearrangements in 4 diagnosis/relapse pairs
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a-d, Copy number states across Ig and TCR loci visualized using the Integrative Genomics Viewer 
(IGV) for Ph12 (a), Ph15 (b), Ph17 (c), and Ph53 (d). Loci in germline (unrearranged) states are 
omitted. For each locus, diagnosis (-D) and relapse (-R) copy number states are shown. Blue 
represents copy number loss and red represents copy number gain relative to the reference T-cell 
genome. Ph12, Ph15, and Ph17 show no differences between diagnosis and relapse, whereas Ph53 
shows differences at every locus.
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Fig. S18 | Antigen receptor loci rearrangements in 4 diagnosis/relapse pairs (continued)
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Fig. S19 | Model of disease progression in Ph53
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Fig. S20 | Effect of gene copy number on survival
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Effects of IKZF1, PAX5, CDKN2A/B, EBF1, and MEF2C gene copy number on patient survival. 
Inactivations are partitioned into heterozygous (gene copy=1) and homozygous (gene copy=0). 
Wildtypes have gene copy of 2. Kaplan-Meier estimates of overall survival (left) and event-free 
survival (right) are shown. Only the main cohort (n=43 for survival analysis) is analyzed since these 
patients have corresponding genomic data. 



Fig. S21 | Effect of gene inactivation status on survival
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Effects of IKZF1, PAX5, CDKN2A/B, EBF1, and MEF2C gene inactivation (deletion or mutation) on 
patient survival. Kaplan-Meier estimates of overall survival (left) and event-free survival (right) are 
shown. Only the main cohort (n=43 for survival analysis) is analyzed since these patients have 
corresponding genomic data. wt, wildtype; mut, mutant/deleted.



Fig. S22 | Subtypes display survival differences even when patients with kinase domain mutations are 
excluded

a, Kaplan-Meier estimates of overall survival (left) and event-free survival (right) by KD mutation 
status (n=81). b, Kaplan-Meier estimates of overall survival (left) and event-free survival (right) by 
molecular subtypes for patients who did not develop kinase domain mutations (n=68).
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Fig. S23 | Cell cycle expression from single-cell RNA-seq
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Average log2 expression (score) of G1/S and G2/M phase gene sets in single cells. Six cases (3 Early-
Pro and 3 Late-Pro) not shown in Fig. 6c are shown here. Dashed lines denote the G1/S and G2/M 
cutoffs (one standard deviation greater than mean). Bars represent proportions of cells in G0, G1/S, 
and G2/M phases for each sample.
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test are shown. b, Phosphorylated STAT5 (pSTAT5 at Tyr694) levels normalized by total protein 
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a, Six types of observed CD34/CD19 antigen expression profiles. An exemplar profile is shown for 
each blast type. b, Proportions of the six CD34/CD19 blast types by subtype. p-value from Fisher’s 
exact test is shown. 
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Fig. S27 | Proportion of cells in each quadrant of CD34/CD19 expression

Proportions of live cells in four quadrants of CD34/CD19 profiles by subtype (23 Early-Pro, 8 Inter-
Pro, 22 Late-Pro primary leukemias). FDR-adjusted p-values from Kruskal-Wallis test are shown. 
CD34+ CD19− (Q1) and CD34− CD19+ (Q3) quadrants display statistically significant differences 
between subtypes.
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Fig. S28 | Rearrangement patterns of the IGH locus
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a, Top: Organization of the IGH locus in chr14. Constant region, J segments, D segments, and 
proximal/intermediate/distal V segments are shown in boxes. Early and late stage rearrangements are 
predicted to utilize proximal and distal VH segments, respectively. Bottom: For each subtype, 
histogram of breakpoint positions (left axis) and density curve of rightside breakpoints (right axis) are 
shown. b, Five clusters/bins of all breakpoints from three subtypes. c, Proportions of rightside
breakpoints in the five bins for each subtype.



Fig. S29 | Distribution of BCR-ABL1 translocation breakpoints by disease type
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a-c, Distributions of BCR-ABL1 translocation breakpoints between BCR exons 13 and 15 (p210 breakpoints) 
(a), between BCR exons 1 and 2 (p190 breakpoints) (b), and upstream of ABL1 exon 2 (c). Breakpoint 
density curves are separated by disease types, p210 CML, p210 ALL and p190 ALL. BCR-ABL1
rearrangements with nucleotide-level resolution from 3 datasets are used (n=139): this study (n=52), Score et 
al.98 (n=78), and pediatric BCR-ABL1 ALL samples from the EGAD00001000163 dataset (n=9). Points 
represent the breakpoint positions. p-value and FDR-adjusted p-values from Kolmogorov–Smirnov test are 
shown.



Fig. S30 | Distribution of BCR-ABL1 translocation breakpoints by molecular subtype
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a-c, Distributions of BCR-ABL1 translocation breakpoints between BCR exons 13 and 15 (p210 breakpoints) 
(a), between BCR exons 1 and 2 (p190 breakpoints) (b), and upstream of ABL1 exon 2 (c). Breakpoint 
density curves are separated by molecular subtypes. BCR-ABL1 rearrangements with nucleotide-level 
resolution from this study are used (n=52). Points represent the breakpoint positions. FDR-adjusted p-values 
from pairwise Kolmogorov–Smirnov test are shown.



Fig. S31 | Effect of BCR-ABL1 isoforms or gain of Philadelphia chromosome on survival

a

b

a, b, Effects of BCR-ABL1 isoforms (p190/p210) (a) and gain of Philadelphia chromosome (b) on patient 
survival. Only the main cohort (n=43 for survival analysis) is used in b since patients in the other cohort 
do not have corresponding genomic data. Kaplan-Meier estimates of overall survival (left) and event-free 
survival (right) are shown. Ph, Philadelphia chromosome.
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Fig. S32 | Comparison of SV types and sizes across SV categories

a, Histograms of distances between breakpoints and nearest H3K4me3 peaks for BCR-ABL1 SVs (left), transformation SVs with 
RSS motifs (centre), and transformation SVs without RSS motifs (right). Red lines represent median sizes. b, Fold enrichment of 
15 chromatin states in GM12878 for BCR-ABL1 SVs, transformation SVs with RSS motifs, and transformation SVs without RSS 
motifs. Dashed line denotes fold enrichment of 1. c, Proportions of SV types in each SV category (BCR-ABL1 or transformation 
related SVs with or without RSS motifs). Transformation SVs with RSS motifs are mostly deletions. d, Histograms of SV sizes for 
transformation SVs with RSS motifs (left) and those without RSS motifs (right). Only deletions, insertions, and inversions are 
considered for SV sizes. Red lines represent median sizes. Transformation SVs with RSS motifs are significantly smaller than 
those without RSS motifs.
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Fig. S33 | Insertion of IGK@ shard into SLX4IP deletion in Ph18-D
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RAG-mediated recombinations result in insertion 
of IGKV4-1 shard between SLX4IP breakpoints

CACAGCC

CACCGTG CACTGTG
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b

75bp “shard” from IGK@
CTCTCGGTCA CCCCCCCACG GTGCTTCAGCCTCGAACACAAACCTCCTCCCCATACGCTGGGCCAGTAGGTCTTTGCTGCAGCAGCTGCTTCCTC CAAGGGG  ATCTTCCTTG
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(5’ UTR)

SLX4IP
(intron 2)

chr2:89,185,676
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a, Nucleotide sequence between two breakpoints of SLX4IP deletion in Ph18-D. Green lines 
represent the SLX4IP gene, red lines represent NTS insertions, and a black line represents a 75 bp 
‘shard’ from the IGK locus. b, Concurrence of IGK@ rearrangements and SLX4IP deletion as a 
potential explanation for the insertion of IGKV4-1 shard. When both alleles of IGK@ are rearranged, a 
shard from the excised signal sequence of ‘IGK allele 2’ was inserted into the SLX4IP deletion during 
RAG-mediated recombination. NTS was inserted between the shard and the SLX4IP gene at both 
ends by TdT. White triangles represent canonical RSS motifs, black triangles represent cryptic RSS 
motifs, and dashed lines represent RAG-mediated recombinations. Bases in cryptic RSS that deviate 
from the canonical RSS are highlighted in red font.
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Fig. S34 | Number of RAG-mediated recombinations is strongly associated with SLX4IP deletion
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a, Bimodal distribution of numbers of RAG-mediated recombinations (#RAG) in BCR-ABL1 lymphoblastic 
leukemia. b, Association between genetic and clinical markers and #RAG. Negative log10 of FDR-adjusted p-
values from Wilcoxon rank-sum test are plotted. Dashed line denotes q=0.05. c, Poisson regression model to 
identify the best predictor of #RAG. AIC (Akaike information criterion) values from models fitted via sequential 
addition of 11 genetic markers are shown. A model using the top nine markers resulted in the model with lowest 
AIC. d, Sequential reduction in residual deviance in the nine-marker predictor. e, #RAG by subtype for all 
primary leukemias. f, #RAG by subtype for SLX4IP-wildtype primary leukemias.
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Fig. S35 | Detection of low-frequency mutations in ABL1 kinase domain using SimSen-seq 

a, Histogram of SimSen-seq non-reference mutation frequency after error-correction using a minimum 
molecular barcode family size of 20. A cutoff is set at 0.4% (Methods). b, Exemplar low-frequency 
mutations in the ABL1 kinase domain in Ph40-D (top). Two mutations at chr9:133748401 and 
chr9:133748403 remain after error-correction and are not detected in other samples, such as Ph44-D 
(bottom). c, Error-corrected mutation frequency of 14 variants detected by SimSen-seq. Kruskal-
Wallis test was used to compare mutation frequencies between subtypes. d, Proportions of leukemias 
in each subtype with and without low-frequency mutations in the ABL1 kinase domain. p-value is from 
Fisher’s exact test.

p=0.40, Fisher’s exact test

p=0.30, Kruskal-Wallis test
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