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Supplementary results

Unique immunophenotypic patterns of the molecular subtypes

We assessed the flow cytometry patterns of CD34 and CD19 antigens that were used to identify
and sort blasts. Although clinical immunophenotyping reported positivity of CD34 and CD19 on
nearly all leukemias in the cohort, we observed six distinct profiles of CD34 and CD19 expressions
on blasts (Fig. S26a). Strikingly, these six blast types were unevenly distributed across the three
subtypes. Early-Pro was enriched for blast types 2 and 3, which expressed dim to low levels of CD19;
Inter-Pro was enriched for blast type 1, which expressed high levels of both CD34 and CD19; and
Late-Pro was enriched for blast types 4 and 5, which expressed dim to low levels of CD34 (p=1.8e-
11, Fisher’s exact test; Fig. S26b). Consequently, we observed greater proportions of CD34+CD19-
cells and CD34-CD19* cells in Early-Pro and Late-Pro leukemias, respectively (FDR-adjusted
p=1.1e-5 and 0.0063, Kruskal-Wallis test; Fig. S27). Ph50-D (C1/Early-Pro) was the only leukemia
with blast type 6, which lacks CD34 expression (Fig. S26a, bottom right panel). In summary, the
three molecular subtypes of BCR-ABL1 lymphoblastic leukemia display distinct patterns antigen
expressions.

Rearrangement patterns of the immunoglobulin heavy chain locus

We aimed to determine whether leukemic phenotypes are maintained from the cell type in which
they are arrested in or acquired during the transformation process. To tackle this question, we
examined immunoglobulin heavy chain locus (IGH@) rearrangements in the RNA-seq and WGS
data. Legitimate and illegitimate rearrangements of IGH@ are almost invariably observed in BCR-
ABL1 ALL, B/myeloid MPAL, and CML-LBC?%2-%4, In agreement with those reports, all leukemias in
our cohort carried rearranged IGH@ although most of the resulting V(D)] sequences were non-
productive (Fig. S10b).

Since the IGH@ contracts as B-cells mature from early to late stages to promote utilization
of distal Vu genes26.25.96 we hypothesized that leukemias arising from an early developmental stage
would preferentially show short-range rearrangements with proximal Vy segments while those
arising from a later stage would show long-range rearrangements utilizing distal Vi segments (Fig.
S28a). When IGH@ rearrangements were compared across the subtypes, significantly greater
proportions of rightside breakpoints in Inter-Pro and Late-Pro leukemias were located in the distal
Vi region than those in Early-Pro leukemias (Fig. S28a; p=0.042, Kruskal-Wallis test). Using the
mclust algorithm®’, IGH@ breakpoints were clustered into 5 bins (Fig. S28b), and similarly,
breakpoints in Inter-Pro and Late-Pro leukemias were enriched in distal Vi bins when compared
to those in Early-Pro leukemias (Fig. S28c). These data support that the three subtypes are not only
arrested at but also arise from different stages of B-cell differentiation.

BCR-ABL1 breakpoint distributions are not different between subtypes and do not affect
patient survival

We analyzed the distributions of translocation breakpoints in BCR and ABL1 genes. Fifty-two
rearrangements from this study were supplemented with 78 from Score et al.? and 9 from the



EGAD00001000163 dataset (https://ega-archive.org/datasets). As expected, BCR breakpoints
were located between exons 13 and 15 in p210 isoform leukemias (Fig. S29a) and between exons
1and 2 in p190 isoform leukemias (Fig. S29b). All ABL1 breakpoints were located upstream of exon
2, with a subset even found upstream of the transcription start site in exon 1 (Fig. S29c).
Distribution of breakpoints in both genes were not influenced by disease types or molecular
subtypes (Figs. S29, S30). In four cases, BCR-ABL1 translocations were associated with complex
rearrangements involving other chromosomes, and in another four cases, resulted in copy number
losses of flanking genomic regions (Supplementary Table 15). Gain of Philadelphia chromosome
(i.e. +der(22)t(9;22)), found in 9 diagnostic samples (n=9/53, 17%), was not associated with a
specific molecular subtype (p=0.38, Fisher’s exact test). Furthermore, patient survival was not
influenced by BCR-ABL1 isoforms or gain of Philadelphia chromosome (Fig. S31). These data
further support that the molecular subtypes are independent of BCR-ABL1 rearrangements.

Further evidences of hijacked RAG activity

H3K4me3 histone modification is the binding substrate for RAG2(°9). SVs related to cooperating
events with RSS motifs were significantly closer to H3K4me3 peaks (transformation SVs with RSS
vs. without RSS: 1 kb vs. 18.8 kb; p<le-16, Wilcoxon rank-sum test; Fig. S32a) and enriched for
promoter and enhancer chromatin states (Fig. S32b)°1. A similar enrichment pattern was
previously observed in ETV6-RUNX1 lymphoblastic leukemia?®. SVs linked to the BCR-ABL1
translocation did not harbor this pattern, which further supports that the translocation is not RAG-
mediated. Cooperating event SVs with RSS motifs largely consisted of deletions (n=384/399, 96.2%;
Fig. S32c) and were significantly smaller in size than cooperating event SVs without RSS motif (71.5
kb vs. 309.5 kb; p=4.1e-6, Wilcoxon rank-sum test; Fig. S32d).

We detected one RAG-mediated rearrangement that was particularly unique and
informative. A deletion of SLX4IP in Ph18-D had breakpoints at similar locations as other SLX4IP
deletions, but at the junction, a 75 base-pair ‘shard’ from the signal sequence of IGKV4-1 was
inserted with non-template sequences at both ends (Fig. S33a). Because such an event is extremely
unlikely to occur by chance, we infer that this SLX4IP deletion occurred in a spatial and temporal
proximity to the IGKV4-1 recombination before the excised signal sequence, from which the shard
is derived, was degraded (Fig. S33b). This may be an example of a recently proposed ‘cut-and-run’
reaction, in which RAG forms a complex with an excised signal circle to instigate DNA breaks in the
genome100,

A genomic locus upstream of CBWDZ2 was recurrently deleted in 36% (n=19/53) of patients
and the leftside breakpoints of the deletions were tightly clustered (Fig. S15d). Investigating the
DNA sequence near the leftside breakpoint cluster revealed a non-functional, orphan
immunoglobulin gene IGKVIOR2-108 (ENSG00000231292) that provided a canonical RSS motif.
Rightside breakpoints were more varied but were positioned near H3K4me3 peaks in the promoter
region of CBWDZ. Six other SVs in our dataset also had breakpoints located near the RSS of 5
different orphan Ig genes: IGKV30R2-268 (n=2), IGKV20R2-1 (n=1), IGKV10R-2 (n=1), IGHV10R15-
2 (n=1), and IGHV30R16-9 (n=1). It can be postulated that these SVs were generated by hijacking
the RSS motifs of these orphan Ig genes. Together, these are strong evidences that SVs with cryptic
RSS motifs are indeed generated by RAG-mediated recombination.



High number of RAG-mediated recombination is associated with SLX4IP deletion

We observed that the total numbers of RAG-mediated recombinations (#RAG) in individual
leukemia genomes formed a bimodal distribution (Fig. S34a). Amongst all the genetic and clinical
markers, deletion status of SLX4IP was most strongly associated with #RAG (FDR-adjusted p=3.7e-
5, Wilcoxon rank-sum test; Figs. S34b, 3g). A Poisson regression model using the top nine markers
resulted in the best predictor of #RAG, and SLX4IP status accounted for the most reduction in
residual deviance (Fig. S34c,d). We observed the association between SLX4IP deletion and #RAG in
9 BCR-ABL1 ALL and 40 Ph-like ALL genomes from the European Genome-phenome Archive
(EGAD00001000163 and EGAD00001000976)1°1. There was no association between molecular
subtypes and #RAG when considering either all cases or only SLX4IP-wildtype cases (p=0.10 and
p=0.43, Kruskal-Wallis test; Fig. S34e,f).

The cause-and-effect relationship between SLX4IP deletion and #RAG is currently uncertain.
SLX4IP protein was originally characterized by its interaction with SLX4, a scaffolding protein
required for the activity of multiple DNA repair mechanisms, including Holliday junction
resolution192, Recently, SLX4IP was shown to also regulate a telomere maintenance mechanism
known as alternative lengthening of telomeres!93. Because canonical RAG-mediated recombination
is repaired via the non-homologous end joining pathway1%4, how the loss of SLX4IP may increase
#RAG is not clear. Our study identifies a genetic defect that is associated with elevated RAG-
mediated recombination in a lymphoid malignancy.

Blast contamination is common in flow-sorted cell populations

Our findings suggested that Early-, Inter-, and Late-Pro leukemias are transformed at different
stages of B-cell development. However, it is possible that they share a common cell-of-origin in
which the initiating lesion, BCR-ABL1, arises. To tackle this question, we collected stem/progenitor
cell populations from leukemia samples using a FACS scheme previously established in the lab>1.
Genomic DNA from each cell population was whole-genome amplified and used for leukemia- and
SV-specific nested PCR. A total of 158 SVs (3~16 per patient), including the BCR-ABL1 translocation
of each patient, were assayed for 22 patients. Surprisingly, most cell populations in the cohort
displayed a high degree of blast contamination, which was defined as a detection of more than half
of the leukemia-specific SVs in a non-blast cell type (Supplementary Table 16). For instance, in
Ph12-D, all 14 SVs tested were detected in HSC, MPP, MLP, CMP, and GMP and 12 of the SVs were
also detected in T-cells. Because nested PCR is highly sensitive, even a small number of leukemic
blasts contaminating a sorted population could result in a false positive signal. Interestingly,
greater proportions of assayed cell types were contaminated in Early-Pro samples compared to
Inter-Pro or Late-Pro samples (median 80% vs. 50%; p=0.0043, Wilcoxon rank-sum test). We
suspect that this difference arises because Early-Pro blasts often express high CD34 and low CD19,
as stem/progenitor populations do, and thus are more prone to contaminate non-leukemic cell
populations. In Ph16-D (Inter-Pro) and Ph17-D (Late-Pro), BCR-ABL1 translocation was the sole
abnormality detected in HSC, CMP, GMP (Ph17-D only), MEP, and mature B-cells, suggesting that
BCR-ABL1 was the initiating lesion that affected various hematopoietic lineages. However, blast
contamination was suspected in the MLP populations of both samples and the GMP population of



Ph16-D. In summary, although nested PCR is a sensitive and efficient method for detecting SVs,
widespread blast contamination can hinder data interpretation and needs to be addressed.

TKI-resistant mutations in BCR-ABL1 develop more frequently in Early-Pro patients

We further explored the differential sensitivity to TKIs observed amongst three subtypes. The
kinase domain mutation status during treatment was available on 23 patients. By layering this
information on the residual disease plots (Fig. 5a), we observed a striking prevalence of resistance
TKI mutations in Early-Pro patients (75%, n=9/12) compared to Inter-Pro (40%, n=2/5) or Late-
Pro patients (33%, n=2/6) (Supplementary Table 17). Although our sample size is small, it helps
to explain why Early-Pro patients relapse more frequently and specifically benefit from 2nrd/3rd
generation TKIs (Fig. 5d).

The above observation was partly unexpected given that TKI selection pressure was present
in all patients. Kinase domain mutations have been reported to pre-exist at low frequencies at
diagnosis1% and thus it was possible that Early-Pro patients harbor increased prevalence of pre-
existing kinase domain mutant clones prior to treatment. To assess this, we performed targeted
deep sequencing on 44 diagnostic patient samples. SimSen-seq is a PCR-based approach that
utilizes molecular barcodes to increase sensitivity and correct for PCR errors®l. This method easily
captured a clinically detected TKI-resistant mutation, F317L, in a relapse sample, Ph12-R (see
Methods). We detected 14 low-frequency kinase domain mutations in 10 out of 44 samples
(0.05~1.16%; Fig. S35). Of the 14 mutations, 2 were silent, 1 was a stop-gain, 9 were non-recurrent
missense mutations, and 2 were missense mutations previously reported in CML (p.E355G and
p.T277A both in Ph40-D)106.107 Among these 10 patients, 3 relapsed later but showed no evidence
for the selection of pre-existing mutations. Five out of 44 patients relapsed with TKI-resistant
kinase domain mutations after 230~865 days from diagnosis, but these mutations were not
detected by SimSen-seq at diagnosis. Thus, within our detection limits, Early-Pro patients do not
show increased frequency of pre-existing TKI resistant mutations at diagnosis. This suggests that
resistance mechanisms in Early-Pro patients may contribute to a predisposition towards
developing kinase domain mutations.



Fig. S1 | Non-negative matrix factorization (NMF) of RNA-seq data
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a, Comparison of quality measures from the actual data (solid line) and from randomized data
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Fig. S2 | Identification of RNA-seq subtypes by consensus hierarchical clustering
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Fig. S3 | Three molecular subtypes in an independent cohort of 40 BCR-ABL1 ALL cases identified by 3’-seq
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Fig. S4 | Consensus hierarchical clustering of the second cohort
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Fig. S5 | Clustering of 30 Ph-like ALL
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Fig. S6 | Gene set enrichment analysis (GSEA) of each subtype against the rest
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Fig. S7 | Proportion of lineage marker-positive blasts
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Fig. S8 | Expression of lineage marker genes
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Fig. S8 | Expression of lineage marker genes (continued)
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Fig. S9 | Reference dataset of hematopoietic cell compartments from human cord blood
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a, Flow cytometry scheme used to isolate hematopoietic stem and progenitor cell compartments from human
cord blood. b, Gene expression of EBF1, PAX5, DNTT, RAG1, RAG2, and B-cell receptor signaling across
leukemia subtypes and normal cord blood cell compartments (counts are shown at the top). ¢, Leukemia
samples were scored for gene expression signatures specific to cell populations in adult bone marrow'. Mean
scores for Early-Pro, Inter-Pro and Late-Pro subtypes are shown.



Fig. S9 | Reference dataset of hematopoietic cell compartments from human cord blood (continued)
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Fig. S9 | Reference dataset of hematopoietic cell compartments from human cord blood (continued)
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Fig. S10 | Rearrangements of antigen receptor loci
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a, Proportions of leukemias in each subtype with and without expression of clonally rearranged
immunoglobulin heavy chain gene (/GH). p-value is from Fisher’s exact test. b, Frequencies of clonal
rearrangements in the immunoglobulin (/IGH, IGK, IGL) and T-cell receptor (TRB, TRA/D, TRG) loci by
subtype. FDR-adjusted p-values from Fisher’s exact test are shown.



Fig. S11 | Annotation of single-cell RNA-seq samples using adult bone marrow data
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a, UMAP visualization of 3032 cells from an adult bone marrow spanning HSC to mature B utilizing scRNA-seq and Abseq data
from Triana et al.®. Single cell clusters are labelled based on prior annotations, RNA marker genes, and protein-level surface
markers. b, Nine scRNA-seq samples are projected onto the B-cell development trajectory of an adult bone marrow using
Symphony?!. Red dots indicate leukemic cells. Each leukemic cell is assigned a cell type label based on 30 nearest-neighbours
within the reference dataset. ¢, Mean proportions of cell type labels for Early-Pro, Inter-Pro and Late-Pro subtypes. d,
Pseudotime analysis of 4 Early-Pro scRNA-seq samples using Monocle 3(%8). Trees and their branches show the trajectory of
single cells and their cell type annotations. Barplots at the bottom show cell type annotation counts across pseudotime (left to
right).



Fig. S11 | Annotation of single-cell RNA-seq samples using adult bone marrow data (continued)
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Fig. S12 | Leukemias with intermediate gene expression profiles
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and CDKNZ2A/B). Green circle highlights Ph36-D, which is classified as Late-Pro and positioned close
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Fig. $13 | Frequency of large-scale copy number alterations in diagnostic leukemias
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Frequency of large-scale copy number alterations (i.e. chromosome- or arm-level events) in diagnostic
leukemias (n=53). For each alteration, the numbers of leukemias in three subtypes are shown.



Fig. S14 | Recurrent large-scale copy number alterations
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a-e, Recurrent large-scale copy number alterations visualized using the Integrative Genomics Viewer
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Fig. S15 | RAG-mediated recombination generates recurrent secondary alterations
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Generation of recurrent secondary alterations by RAG-mediated recombination. Deletions (blue lines)
and insertions (red lines) are visualized using the Integrative Genomics Viewer (IGV). Exemplar RSS
motifs are displayed inside breakpoint clusters, which are marked with dashed lines. Bases that
deviate from the canonical RSS motif (CACAGTG) are in red font. Rightside RSS sequences are
written in reverse complement and italicized. H3K4me3 ChlP-seq signals for GM12878 (B-
lymphoblast cell line) from ENCODE are shown at the bottom.



Fig. $15 | RAG-mediated recombination generates recurrent secondary alterations (continued)
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Fig. $15 | RAG-mediated recombination generates recurrent secondary alterations (continued)
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Fig. $15 | RAG-mediated recombination generates recurrent secondary alterations (continued)
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Fig. $16 | Comparison of NTS insertion and microhomology across SV categories
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a, Proportions of SV junction types by SV category. b, NTS insertion lengths by SV category (left).
NTS insertion lengths of transformation related SVs by molecular subtype (right). n represents
number of SVs with NTS insertion. ¢, Proportions of G:C and A:T nucleotides in NTS insertions by SV
category. d, Microhomology lengths by SV category (left). Microhomology lengths of transformation
related SVs by molecular subtype (right). n represents number of SVs with microhomology.



Fig. S17 | Flow cytometry profiles of 4 diagnosis/relapse pairs
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a-d, Immunophenotypic profiles of Ph12 (a), Ph15 (b), Ph17 (¢), and Ph53 (d) at diagnosis (-D; top of
each panel) and relapse (-R; bottom of each panel). Plots on the left display CD34/CD19 profiles of
live cells with dashed boxes containing blasts. Plots on the right display CD90/CD10 or CD33/CD10
profiles of blasts.



Fig. S18 | Antigen receptor loci rearrangements in 4 diagnosis/relapse pairs
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Fig. S18 | Antigen receptor loci rearrangements in 4 diagnosis/relapse pairs (continued)
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Fig. S19 | Model of disease progression in Ph53
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diagnosis to relapse. The diagnostic leukemia develops from acquisition of diagnosis-private
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After 52 months of remission, the relapse leukemia develops independently via acquisition of relapse-
private alterations (orange) in an early pro-B clone.



Fig. S20 | Effect of gene copy number on survival

012345678 9101112131415161718
Years

100% =+ IKZF1 copies=2 (n=9) 100% =+ IKZF1 copies=2 (n=9)
"\ IKZF1 copies=1 (n=27) = IKZF1 copies=1 (n=27)
Tg 75% + IKZF1 copies=0 (n=7) E 75% + |KZF1 copies=0 (n=7)
& 3
2 50% g 50%
I
S 25| i + § ogoe] 0 T mmesesageea e +
p=0.32 w p=0.28
0% 0%
01234567 89101112131415161718 01234567 89101112131415161718
Years Years
100% ‘l,_L ............................ + 100%]  grrrrrrra e +
— = PAXS5 copies=2 (n=24) [ emD (e
§ 75% PAXScoioct (19 g 75% s copes2 120
2 - copies=1 (n=
g “+ PAX5 copies=0 (n=1) H ~+ PAXS5 copies=0 (n=1)
% 50% 3 50%
3 T
2 t
8 25% § 25%
p=0.26 w p=0.44
0% 0%
01234567 89101112131415161718 01234567 89101112131415161718
Years Years
100% 100%
o ]
T 75% -+ CDKNZA“"{“?‘":ZG’ 2 75% =+ CDKN2A copies=2 (n=26)
> CDKN2A copies=1 (n=1) £ CDKN2A copies=1 (n=1)
S *+ CDKN2A copies=0 (n=16) ? + CDKN2A copies=0 (n=16)
® 50% LR N R R B KRERR ] 3 50%
3 = + SR I +et -+
o &
2 T oo
3 25% g 25%
p=0.36 w p=0.34
0% 0%
01234567 89101112131415161718 01234567 89101112131415161718
Years Years
100% -+ EBF1 copies=2 (n=38) 100% -+ EBF1 copies=2 (n=38)
EBF1 copies=1 (n=4) = EBF1 copies=1 (n=4)
T 75% . ~+ EBF1 copies=0 (n=1) E 75% + EBF1 copies=0 (n=1)
@ 50% e N g 50%
© N -
§ : 0
8 25% § 25%
p=0.76 w p=0.79
0% - 0% .
01234567 89101112131415161718 01234567 89101112131415161718
Years Years
100% ) 100% )
-+ MEF2C copies=2 (n=36) _ -~ MEF2C copies=2 (n=36)
- MEF2C copies=1 (n=7) [4 MEF2C copies=1 (n=7)
S 75% £ 75%
g 3
2 50% 3 50%
3 T
3 t
3 25% g 25%
p=0.072 w p=0.17
0% 0%

012345678 9101112131415161718
Years

Effects of IKZF1, PAX5, CDKN2A/B, EBF1, and MEF2C gene copy number on patient survival.
Inactivations are partitioned into heterozygous (gene copy=1) and homozygous (gene copy=0).
Wildtypes have gene copy of 2. Kaplan-Meier estimates of overall survival (left) and event-free
survival (right) are shown. Only the main cohort (n=43 for survival analysis) is analyzed since these
patients have corresponding genomic data.



Fig. S21 | Effect of gene inactivation status on survival
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Effects of IKZF1, PAX5, CDKN2A/B, EBF1, and MEF2C gene inactivation (deletion or mutation) on
patient survival. Kaplan-Meier estimates of overall survival (left) and event-free survival (right) are
shown. Only the main cohort (n=43 for survival analysis) is analyzed since these patients have
corresponding genomic data. wt, wildtype; mut, mutant/deleted.



Fig. S22 | Subtypes display survival differences even when patients with kinase domain mutations are

excluded
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a, Kaplan-Meier estimates of overall survival (left) and event-free survival (right) by KD mutation
status (n=81). b, Kaplan-Meier estimates of overall survival (left) and event-free survival (right) by
molecular subtypes for patients who did not develop kinase domain mutations (n=68).



Fig. S23 | Cell cycle expression from single-cell RNA-seq
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Average log2 expression (score) of G4/S and G,/M phase gene sets in single cells. Six cases (3 Early-
Pro and 3 Late-Pro) not shown in Fig. 6¢ are shown here. Dashed lines denote the G;/S and G,/M
cutoffs (one standard deviation greater than mean). Bars represent proportions of cells in Gy, G4/S,

and G,/M phases for each sample.



Fig. S24 | Increased expression and phosphorylation of STAT5 in Early-Pro
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a, Normalized protein intensities of STAT5A and STAT5B from mass spectrometry (5 Early-Pro, 5
Inter-Pro, 6 Late-Pro leukemias). p-values from pairwise Wilcoxon rank-sum tests and Kruskal-Wallis
test are shown. b, Phosphorylated STATS (pSTATS at Tyr694) levels normalized by total protein
levels using the Wes immunodetection assay (5 Early-Pro, 6 Inter-Pro, 8 Late-Pro leukemias). p-
values from pairwise Wilcoxon rank-sum tests and Kruskal-Wallis test are shown. Number in brackets
indicate an outlier that is not shown to improve visibility of the overall comparison. ¢, Detection of total
proteins (top) and pSTATS (bottom) by Wes. Top track displays the molecular subtype of each
sample. d, Enrichment of unfolded protein response gene set in the Inter-Pro subtype (vs. rest) as
detected by RNA-seq (top) and mass spectrometry (bottom).



Fig. S25 | Responses to 2nd/3rd generation TKI in 4 patients without kinase domain mutations
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dashed line denotes log reduction of 3, and grey area denotes log reduction =23, which corresponds to
major molecular response (MMR). Black circles in the Ph15 plot denote tests for kinase domain
mutation, which were both negative. ND, not detected.



Fig. $S26 | Comparison of CD34/CD19 expression profiles between subtypes
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a, Six types of observed CD34/CD19 antigen expression profiles. An exemplar profile is shown for

each blast type. b, Proportions of the six CD34/CD19 blast types by subtype. p-value from Fisher's
exact test is shown.



Fig. S27 | Proportion of cells in each quadrant of CD34/CD19 expression

CD34+ CD19- (Q1)

100% -

75%

50%

Proportion

25%

0%

q=1.1e-5

= gl

Early)-Pro InterLPro LateLPro

Subtype

CD34- CD19- (Q4)

100%-

75%

50%

Proportion

25%

0%

q=0.39

P e

T T T
Early-Pro Inter-Pro Late-Pro

Subtype

Proportion

Live cells (Ph15-D as example)

Proportion

CD34* CD19+ (Q2)

100%-

75%

50%

25%

0%

q=0.45

EarI))—Pro InterLPro LateLPro
Subtype

CD34- CD19+ (Q3)

100%-

75%

50%

25%

0%

q=0.0063

%= I8

T T T
Early—Pro Inter-Pro Late-Pro

Subtype

Proportions of live cells in four quadrants of CD34/CD19 profiles by subtype (23 Early-Pro, 8 Inter-
Pro, 22 Late-Pro primary leukemias). FDR-adjusted p-values from Kruskal-Wallis test are shown.
CD34*CD19- (Q1) and CD34- CD19* (Q3) quadrants display statistically significant differences
between subtypes.



Fig. S28 | Rearrangement patterns of the /GH locus
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a, Top: Organization of the /GH locus in chr14. Constant region, J segments, D segments, and
proximal/intermediate/distal V segments are shown in boxes. Early and late stage rearrangements are
predicted to utilize proximal and distal V, segments, respectively. Bottom: For each subtype,
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Fig. S29 | Distribution of BCR-ABL1 translocation breakpoints by disease type
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a-c, Distributions of BCR-ABL 1 translocation breakpoints between BCR exons 13 and 15 (p210 breakpoints)
(a), between BCR exons 1 and 2 (p190 breakpoints) (b), and upstream of ABL1 exon 2 (c). Breakpoint
density curves are separated by disease types, p210 CML, p210 ALL and p190 ALL. BCR-ABL1
rearrangements with nucleotide-level resolution from 3 datasets are used (n=139): this study (n=52), Score et
al.®8 (n=78), and pediatric BCR-ABL1 ALL samples from the EGAD00001000163 dataset (n=9). Points
represent the breakpoint positions. p-value and FDR-adjusted p-values from Kolmogorov—Smirnov test are

shown.



Fig. S30 | Distribution of BCR-ABL1 translocation breakpoints by molecular subtype
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a-c, Distributions of BCR-ABL 1 translocation breakpoints between BCR exons 13 and 15 (p210 breakpoints)
(a), between BCR exons 1 and 2 (p190 breakpoints) (b), and upstream of ABL1 exon 2 (c). Breakpoint
density curves are separated by molecular subtypes. BCR-ABL1 rearrangements with nucleotide-level
resolution from this study are used (n=52). Points represent the breakpoint positions. FDR-adjusted p-values
from pairwise Kolmogorov—-Smirnov test are shown.



Fig.

S31 | Effect of BCR-ABL1 isoforms or gain of Philadelphia chromosome on survival
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a, b, Effects of BCR-ABL1 isoforms (p190/p210) (a) and gain of Philadelphia chromosome (b) on patient
survival. Only the main cohort (n=43 for survival analysis) is used in b since patients in the other cohort
do not have corresponding genomic data. Kaplan-Meier estimates of overall survival (left) and event-free
survival (right) are shown. Ph, Philadelphia chromosome.



Fig. S32 | Comparison of SV types and sizes across SV categories
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a, Histograms of distances between breakpoints and nearest H3K4me3 peaks for BCR-ABL1 SVs (left), transformation SVs with
RSS motifs (centre), and transformation SVs without RSS motifs (right). Red lines represent median sizes. b, Fold enrichment of
15 chromatin states in GM12878 for BCR-ABL1 SVs, transformation SVs with RSS motifs, and transformation SVs without RSS
motifs. Dashed line denotes fold enrichment of 1. ¢, Proportions of SV types in each SV category (BCR-ABL1 or transformation
related SVs with or without RSS motifs). Transformation SVs with RSS motifs are mostly deletions. d, Histograms of SV sizes for
transformation SVs with RSS motifs (left) and those without RSS motifs (right). Only deletions, insertions, and inversions are
considered for SV sizes. Red lines represent median sizes. Transformation SVs with RSS motifs are significantly smaller than
those without RSS motifs.



Fig. S33 | Insertion of IGK@ shard into SLX4IP deletion in Ph18-D
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a, Nucleotide sequence between two breakpoints of SLX4/P deletion in Ph18-D. Green lines
represent the SLX4IP gene, red lines represent NTS insertions, and a black line represents a 75 bp
‘shard’ from the /GK locus. b, Concurrence of IGK@ rearrangements and SLX4IP deletion as a
potential explanation for the insertion of IGKV4-1 shard. When both alleles of IGK@ are rearranged, a
shard from the excised signal sequence of ‘/GK allele 2’ was inserted into the SLX4/P deletion during
RAG-mediated recombination. NTS was inserted between the shard and the SLX4/P gene at both
ends by TdT. White triangles represent canonical RSS motifs, black triangles represent cryptic RSS

motifs, and dashed lines represent RAG-mediated recombinations. Bases in cryptic RSS that deviate
from the canonical RSS are highlighted in red font.



Fig. S34 | Number of RAG-mediated recombinations is strongly associated with SLX4IP deletion
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a, Bimodal distribution of numbers of RAG-mediated recombinations (#RAG) in BCR-ABL1 lymphoblastic
leukemia. b, Association between genetic and clinical markers and #RAG. Negative log10 of FDR-adjusted p-
values from Wilcoxon rank-sum test are plotted. Dashed line denotes q=0.05. ¢, Poisson regression model to
identify the best predictor of #RAG. AIC (Akaike information criterion) values from models fitted via sequential
addition of 11 genetic markers are shown. A model using the top nine markers resulted in the model with lowest
AIC. d, Sequential reduction in residual deviance in the nine-marker predictor. e, #RAG by subtype for all
primary leukemias. f, #RAG by subtype for SLX4IP-wildtype primary leukemias.



Fig. S35 | Detection of low-frequency mutations in ABL1 kinase domain using SimSen-seq
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a, Histogram of SimSen-seq non-reference mutation frequency after error-correction using a minimum
molecular barcode family size of 20. A cutoff is set at 0.4% (Methods). b, Exemplar low-frequency
mutations in the ABL1 kinase domain in Ph40-D (top). Two mutations at chr9:133748401 and
chr9:133748403 remain after error-correction and are not detected in other samples, such as Ph44-D
(bottom). ¢, Error-corrected mutation frequency of 14 variants detected by SimSen-seq. Kruskal-
Wallis test was used to compare mutation frequencies between subtypes. d, Proportions of leukemias
in each subtype with and without low-frequency mutations in the ABL7 kinase domain. p-value is from

Fisher's exact test.
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