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Appendix

Notations used in the appendix

Let X ∈ Rnx×px be the data matrix of the first modality and Y ∈ Rny×py the one of the second
modality. nx (resp. ny) is the number of cells in the first (resp. second) modality and px (resp. py)
is the number of features in the first (resp. second) modality. We denote by Kx = XX⊤ ∈ Rnx×nx

and Ky = Y Y ⊤ ∈ Rny×ny the linear kernel matrices corresponding to both datasets.

A Description of MMD-MA with the dual formulation

MMD-MA [1] is a method for analyzing multimodal data that relies on mapping the observed cell
samples to embeddings, using functions belonging to a reproducing kernel Hilbert space (RKHS). The
authors build linear kernels for both domains and learn the coefficients of the embedding functions
in the RKHS dual representation. In practice, the MMD-MA loss is composed of a) the squared MMD,
a matching term, b) two non-collapsing penalties and c) two distortion penalties, one for each
modality.

Using the notations described in the previous section, the loss of MMD-MA can be written as follows:

min
αx,αy

Ldual(αx, αy) = min
αx,αy

[MMD(Kxαx,Kyαy)
2

+ λ1(pen(Kx, αx) + pen(Ky, αy)) + λ2(dis(Kx, αx) + dis(Ky, αy))]

where αx ∈ Rnx×d and αy ∈ Rny×d are the learned coefficients of the RKHS functions used to
build the embeddings Kxαx and Kyαy of dimension d, λ1 and λ2 are two hyperparameters weighing
the non-collapsing penalty (pen(K,α) = ||αTKα − Id||2) and the distortion penalty, ensuring that
the geometries in the low- and high-dimensional representations are comparable (dis(K,α) = ||K −
KTαTαK||2). The RBF kernel is used to calculate MMD, introducing non-linearity in the matching
term. One downside of the dual formulation is that the linear and gaussian kernel matrices require
memory and runtime that scale quadratically as a function of the number of cells in terms of memory
and runtime, which is prohibitive for large datasets.

B Primal (LSMMD-MA) and dual (MMD-MA) formulations side-by-
side

In the dual, the mappings between original and latent spaces are parameterized with the dual
variables αx ∈ Rnx×d and αy ∈ Rny×d, such that the embedding of the first (resp. second) modality
is XX⊤αx (resp. Y Y ⊤αy). Instead, in the primal, we equivalently parameterize the mappings by
primal variables Wx ∈ Rpx×d and Wy ∈ Rpy×d, such that the embedding of the first (resp. second)
modality is XWx (resp. YWy). The relationship between the two formulations can be given by
Wx = X⊤αx and Wy = Y ⊤αy. Given this relationship, we can rewrite all the terms of MMD-MA in
the primal as a function of (X,Y,Wx,Wy) instead of (Kx,Ky, αx, αy):

• MMD term: MMD(XWx, Y Wy)
2 = MMD(Kxαx,Kyαy)
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• penalty term: ||α⊤Kα− Id||2 = ||W⊤W ||2

• distortion term: ||K −K⊤α⊤αK||2 = ||XX⊤ −XWW⊤X⊤||2

We observe that LSMMD-MA and MMD-MA obtain similar FOSCTTM scores on 12 synthetic datasets.
We considered only datasets with a maximum number of samples of 10, 000 because MMD-MA runs
out of memory for more than 14, 000 samples (see Table A1). For this comparison, we chose
the multi-start experimental setting presented in [1], where the algorithm is run for several seeds
and the best seed is chosen according to the smallest loss in the training set. We simulated our
own synthetic dataset with a branch-like latent space with the generate data function in lsm-
mdma/data/data pipeline.py. We fixed the number of seeds to 15. For both algorithms, we stopped
training at 50, 000 epochs. We observed that the losses do not decrease significantly anymore at
this point. The scaling parameter of the Gaussian RBF kernel in the MMD term was set to 30, and
the regularisation parameters were fixed (λ1, λ2) = ( 0.01√

p , 0.0001
n
√
p ), where n and p are the numbers

of samples and features in each modality. We set the learning rate to 5.0 ∗ 10−4 for LSMMD-MA and
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to 1.0 ∗ 10−6 for MMD-MA. Initialisation of the parameters was uniform in both cases, from 0 to 1
for LSMMD-MA and 0 to 0.1 for MMD-MA as in [2] and [1]. We add amsgrad=True to the optimizer
of MMD-MA as suggested in [2]. We found that in practice this set of hyperparameters, selected
according to [1], works well for a variety of datasets; however, most results are robust to changes of
one to two orders of magnitude of the hyperparameters.

n = 1000 n = 5000 n = 10000

p = 100 0.0001 vs. 0.0002 0.0002 vs. 0.0007 0.0015 vs. 0.0011

p = 1000 0.0031 vs. 0.0004 0.0009 vs. 0.001 0.0031 vs. 0.0033

p = 2000 0.0002 vs. 0.0003 8e-05 vs. 0.0006 0.0009 vs. 0.0015

p = 6000 5e-06 vs. 0.0002 0.0002 vs. 0.0006 6e-05 vs. 0.0005

Table A1: Comparison of FOSCTTM between LSMMD-MA (left) and MMD-MA (right). MMD-MA ran out
of memory for a number of samples larger than 14, 000 (see Appendix Section E for further results
for LSMMD-MA).

C Runtime and memory requirements of LSMMD-MA and MMD-MA

Model MMD-MA dual MMD-MA primal

input MMD pen. dis. input MMD pen. dis.

Runtime O(n2p) O(n2d) O(n2d+ nd2) O(n2d) - O(n2d+ pnd) O(d2p+ d2)
if n > p: O(p2n+ p3 + p2d)

else: O(n2p+ nd))

Memory O(n2) O(n2) O(nd+ d2) O(nd) O(np+ pd) O(n2 + nd) O(d2) O(min(p, n) ∗ (p+ n+ d))

Table A2: Runtime and memory requirements for MMD-MA in the primal and dual forms without using
KeOps. n is the number of cells, p the number of features and d the dimension of the embeddings.
We remove the subscripts x and y for readability but the O notations of the table hold for each
modality. Typically, n >> p >> d for each modality.

We compute the distortion term in two different ways, depending on the number of samples and
features. If the number of samples is smaller than the number of features (n < p), we compute the
distortion as: dis = ||XX⊤ −XWW⊤X⊤||2. If the number of samples is larger than the number
of features (n > p), we want to avoid computing XX⊤ which scales quadratically in n, in terms of
memory and runtime. We therefore take advantage of the relationship between the trace of a matrix
and the Frobenius norm and compute instead: dis =

√
Tr((I −WW⊤)X⊤X(I −WW⊤)X⊤X).

D Brief introduction to KeOps and its Map-Reduce compu-
tations

KeOps [3] is a package that allows to compute efficiently, on GPUs, operations of the form a)
calculation of a vector valued function based on input vectors (in our case, the Gaussian kernel) and
b) reduction operation on a given axis (in our case, the average of the Gaussian RBF kernel).

The idea is based on a block by block map reduced scheme: the data is loaded from the device to
the GPU memory only block by block. Once a block is loaded, the computation of the vector values
function is done on the GPU, and the result of the reduction operation is stored in a running buffer.
As a consequence, it is possible to have access to fast computations in the GPU without needing to
load the entire matrix at once.

In our case, the bottleneck comes from the calculation of the average of the Gaussian RBF
kernel in the MMD term. For example, for one million samples, the kernel matrix would be
one million by one million which does not fit in GPU memory. The block-by-block scheme of
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KeOps enables one to calculate the average of the Gaussian kernel without ever needing to instan-
tiate the entire matrix. Detailed explanations and tutorials are available at: https://www.kernel-
operations.io/keops/index.html

E FOSCTTM obtained with LSMMD-MA

The Fraction Of Samples Closer than The True Match (FOSCTTM) is a common metric to measure
accuracy in modality matching. The lower the metrics, the better the algorithm. We tested LSMMD-MA

on several synthetic datasets, as described in Appendix G. The experimental settings follow the ones
described in the simulations of [1] and [2]. In both cases, the algorithm is ran several times (i.e. for
several seeds) and the best seed is chosen according to the smallest loss in the training set (see [1])
or to the smallest FOSCTTM in the validation set (see [2]). We stopped training at 20, 000 epochs.
The learning rate was fixed to 0.0005, the scaling parameter of the Gaussian RBF kernel in the
MMD term was fixed to 4σ where σ was the average of the distance matrix, the regularisation
parameters (λ1, λ2) were either (

0.1√
p ,

0.01
n
√
p ) or (

0.01√
p , 0.0001

n
√
p ), where n and p are the number of samples

and features in each modality. We show that LSMMD-MA can reach a very good performance for both
experimental settings (Tables A5 and A4), as measured by FOSCTTM.

n = 1000 n = 104 n = 105 n = 5 ∗ 105 n = 106

p = 100 0.00173 0.00347 0.00337 0.00018 0.00011

p = 2000 0.0002 0.00025 0.00042 0.00003 -

Table A3: FOSCTTM obtained when selecting the smallest loss in the training set at the 20000th
epoch. Similar results were obtained when selecting the best epoch based on the smallest loss.

n = 1000 n = 104 n = 105 n = 5 ∗ 105 n = 106

p = 100 0.00006 0.00012 0.00011 0.0001 0.00004

p = 2000 0.00014 0.00015 0.00007 0.00002 -

Table A4: FOSCTTM obtained when selecting the best FOSCTTM in the validation set at the
20000th epoch. Similar results were obtained when selecting the best epoch based on the smallest
loss.
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Figure A1: Runtime as a function of number of cells for different implementations of MMD-MA, when
the dimension p of the input data varies. The algorithms ran for 500 epochs and a low-dimensional
representation of dimension d = 10, on a V100 GPU (16GB).

G Datasets

The synthetic datasets used for the runtime experiments have a varying number of samples from
103 to 106 and a varying number of features from 10 to 104. To generate them, we used the
generate data function in lsmmdma/data/data pipeline.py, with the random seed argument fixed
to 4 and the simulation argument set to ‘branch’. The simulation process works as follows. A man-
ifold (of shape ‘branch’) is generated in two dimensions. The resulting set of points is standardised.
The points are then mapped to p feature dimensions using a (2 x p feature) mapping, sampled
from a standard Gaussian distribution, resulting in a (n sample x p feature) matrix. Gaussian
noise is then added to each element of the matrix. This simulation was first described in [1] and the
latent space shaped as a branch aims at mimicking a development process for example.

The real-world dataset on which the last experiment is ran comes from [4], where datasets were
made publicly available for the Neurips Competition Multimodal Single-Cell Data Integration. The
dataset was already preprocessed to remove low quality cells and doublets. The counts were log-
transformed. We selected the genes in the gene expression modality and ADT protein measurements
based on a common gene ID, which resulted in 36 features for each modality. We used the same
hyperparameters as in the simulations (see Section E in the Appendix) and ran LSMMD-MA for 100,000
epochs.

H Comparison to baselines

In this section, we compare LSMMD-MA to several widely used single-cell data integration methods.
Among potential comparison partners we note that

• SCOT [5] and UnionCOM [6] do not scale to a large number of cells (n > 50, 000 cells). Indeed,
SCOT’s runtime scales in O(n3), which is prohibitive on a CPU and scales in O(n2) in terms of
memory which is prohibitive on a GPU. UnionCOM is a deep learning-based method that scales
quadratically in terms of the number of samples memory-wise, which is prohibitive on a GPU.

• SCIM [7] is a deep-learning based approach that requires weak cell-label supervision, which is
also not the setting we are tackling.
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• Finally, several other approaches (matrix factorisation based or deep learning based), such as
totalVI [8], scMVAE [9], MOFA+ [10] and Seurat v4 [11], require cell alignment which is not
needed with LSMMD-MA.

We therefore compared LSMMD-MA to three baselines that can scale to a similar number of
cells and are appropriate for the current setting. For our evaluation, we used the CITE-seq dataset
and the simulation dataset described in Appendix Section B, with 10000 samples and 1000 features.
The three methods are as follows:

• LIGER [12], in particular its Python version PyLiger [13], which is NMF-based. We used the
provided GitHub code and adapted it to make it work with a more recent Python version.
The simulated data was made positive by substracting the (negative) minimum value of each
modality to the entire matrix. The real data was preprocessed according to the package
guidelines. We ran PyLiger and varied the following parameters: the embedding dimension
([10, 20, 30]) and the lambda value ([1, 5 (default), 8, 10]) which balances the importance of
shared features compared to modality-specific ones.

• Harmonic alignment [14]. We note that using the GitHub code with the default parameters
does not scale to large matrices, as it requires computing all the eigenvalues of an n by n
matrix. We therefore reduced the number of eigenvectors used when decomposing the matrix.
The real data and simulated data were preprocessed as for LSMMD-MA. We ran the algorithm
varying the following parameters: the number of eigenvectors ([10, 20, 40, 100]) and the number
of filters ([4 (default), 10].

• Procrustes [15]. We used Procrustes superimposition (scipy.spatial.procrustes) on the
aligned modalities as a positive control and on the unaligned modalities to have a comparable
setting to LSMMD-MA. The real data and simulated data were preprocessed as for LSMMD-MA.

We obtained the following results with the FOSCTTM metric:

models LSMMD-MA Procrustes (aligned) Procrustes (unaligned) LIGER (best) Harmonic align. (best)

simulated data 0.003 0.003 0.50 5e-5 0.49

CITE-seq 0.22 0.23 0.49 0.49 0.48

Table A5: Comparison to baselines (FOSCTTM).

We observe that LSMMD-MA’s performance remains comparable to the baselines.
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