SUPPLEMENTARY INFORMATION for:

On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis

Yoshikazu Kawai^{*}, Maki Kawai, Eilidh Sohini Mackenzie, Yousef Dashti, Bernhard Kepplinger, Kevin John Waldron, Jeff Errington^{*}

*Corresponding authors yoshikazu.kawai@sydney.edu.au

jeffery.errington@sydney.edu.au

Contents:

Supplementary Figs. 1-7, Supplementary Table 1 and 2 and Supplementary References.

Supplementary Fig. 1. **Effects of Mirubactins and iron availability on** *B. subtilis* **growth. a** Effects of MC on *B. subtilis* growth in a complex medium. *B. subtilis* strains 168CA (wild-type), YK2739 ($\Delta efeU$), YK2740 ($\Delta fecC$) and YK2741 ($\Delta feuA$) were streaked on NA plates with or without 10 µg/ml MC, and incubated for 18 hr at 37°C. **b** Growth inhibition by high concentrations of MA in an iron-limiting minimal medium. Wild-type and $\Delta feuA$ strains were streaked on SMM plates with paper disc containing MA, and incubated for 30-42 hr at 37°C. **c** Growth of *B. subtilis* mediated by an iron utilization with MA. $\Delta fecC$ mutant were streaked on SMM plates with or without various concentrations of MA, as indicated, and incubated for 30-42 hr at 37°C. **d** Growth of an *mbl* mutant in a minimal medium. Wild-type (168CA) and Δmbl (YK2638) strains were streaked on SMM plates with or a 37°C. **e** Effects of iron availability on *mbl* mutant growth in a minimal medium. *mbl* mutant strains (YK2638; Δmbl , YK2771; $\Delta mbl \Delta fecC$) were streaked on SMM plates with or without added 200 µM ferric chloride (Fe³⁺), and incubated for 30-42 hr at 37°C.

Supplementary Fig. 2. **Growth rescue of elongation mutants by MC. a** Suppression of a toxic effect in an *mbl* mutant by added Mg²⁺ or MC. *B. subtilis* wild-type strain (168CA) was cultured in NB, and phase contrast micrograph and the corresponding membrane staining image for the exponentially growing cells were captured. An *mbl* mutant strain was cultured in NB containing 10 mM Mg²⁺ (Time 0), and the cells were diluted into fresh NB (no added Mg²⁺) with or without 10 µg/ml MC and incubated for 2-3 hr. Phase contrast micrographs and the corresponding membrane staining images were captured after the dilution. Scale bars represent 5 µm. **b** Schematic representation of key factors for PG synthesis during cell wall elongation in *B. subtilis*. **c** Growth rescue by MC in a strain lacking *mreB*, *mreC* and *mreD* genes (*AmreBCD*). YK1875 (*AmreBCD amyE::P_{xyl}-mreBCD*) was streaked on NA plates containing 100 mM NaCl (for osmoprotection), with or without 0.5 xylose, 10 mM Mg²⁺ or 40 µg/ml MC, and incubated for 24 hr at 37°C. **d** aPBP-dependent growth rescue by MC in a *rodA* mutant. YK2242 (*A4 P_{spac}-rodA*) was streaked on NA plates containing 100 mM NaCl (for osmoprotection), with or without 0.1 mM IPTG, 10 mM Mg²⁺ or 40 µg/ml MC, and incubated for 24 hr at 37°C.

Supplementary Fig. 3. **Growth rescue by MC during PG precursor depletion. a** Effects of MC and Mg^{2+} on cell morphology and lysis during *murGB* repression. Phase contrast micrographs of *B. subtilis* cells in the course of carrying out the growth curves shown in Figure 3A. *B. subtilis* strain YK1540 (*P_{spac}-murG-murB*) was cultured in NB containing 0.1 mM IPTG at 37°C (T0, hr). The exponentially growing cells were diluted into fresh NB (without IPTG) with 10 µg/ml MC or 10 mM Mg²⁺ and incubated for 1.5-3 hr. Scale bars represent 5 µm. **b** Growth rescue by MC during *murGB* repression. The YK1540 was streaked on NA plates containing IPTG, with or without 10 mM Mg²⁺ or 10 µg/ml MC, as indicated.

Supplementary Fig. 4. **Growth rescue of** *mbl* **mutant by** Mg^{2+} **associates with UDP-GlcNAc synthesis.** *a* Growth rescue of an *mbl* mutant by reducing UDP-GlcNAc synthesis. *B. subtilis* strains YK1538 (*P_{spac}-glmU*) and YK2687 (*Δmbl P_{spac}-glmU*) were streaked on NA plates containing various concentrations of IPTG, as indicated, and incubated for 18 hr at 37°C. The figures are representative of three independent experiments. *b* Effect of Mg^{2+} on intracellular UDP-GlcNAc concentrations. Wild-type strain (168CA) was cultured in LB with or without 10 mM Mg^{2+} or 10 µg/ml MC at 37°C to an OD_{600} =0.5. Cells were harvested from 7 ml of culture by centrifugation, washed and used for obtaining samples for measurements of UDP-GlcNAc levels. The means were obtaind from three independent experiments. Error bars indicate standard deviation (SD). Source data are provided as a Source Data file. *c* Mg^{2+} -dependent reduction of UDP-GlcNAc levels in an *mbl* mutant. YK2638 (*Δmbl*) was cultured in LB containing 10 mM Mg^{2+} and diluted into fresh LB with 10 mM Mg^{2+} or 10 µg/ml MC. The cells were incubated at 37°C to OD_{600} =0.5 for measurements of UDP-GlcNAc levels. The means were obtained from three independent experiments. Error bars indicate standard deviation (SD). Source data are provided as a source Data file.

а

Supplementary Fig. 5. *mbl* mutant lethality associates with glycolysis. a Effects of *gapA* expression levels on *mbl* mutant growth. *B. subtilis* strains YK1567 (P_{spac} -gapA) and YK2711 ($\Delta mbl P_{spac}$ -gapA) were streaked on NA plates containing various concentrations of IPTG, as indicated, and incubated for 18 hr at 37°C. **b** Effects of glycolytic or gluconeogenic carbon source on growth of an *mbl* mutant. Wild-type (168CA) and Δmbl (YK2638) strains were streaked on NA with or without 0.2% glucose or malate and incubated for 18 hr at 37°C.

Supplementary Fig. 6. Effects of respiratory chain enzymes and NADH production on *mbl* mutant lethality. a *B. subtilis* strains YK2638 (Δmbl), YK2694 ($ispA^{-}\Delta mbl$), YK2696 ($\Delta qoxB \Delta mbl$), YK2697 ($\Delta ctaB \Delta mbl$) and YK2718 ($\Delta sdhA \Delta mbl$) were streaked on NA plates with or without 10 mM Mg²⁺ and incubated for 18 hr at 37°C. b YK2732 (P_{spac} -pdhA Δmbl), YK2716 ($\Delta odhA \Delta mbl$) and YK2720 ($\Delta mdh \Delta mbl$) were streaked on NA plates with or without 10 mM Mg²⁺ and incubated for 18 hr at 37°C.

Supplementary Fig. 7. Enhancement of SOD activity in an *mbl* mutant and its suppression by Mg²⁺. *B. subtilis* strains 168CA (wild-type) and YK2638 (Δmbl) were cultured with or without 20 mM Mg²⁺ or 10 µg/ml MC at 37°C to OD₆₀₀=0.6. SOD activity was measured in lysates of the cells. The means were obtained from three independent experiments. Error bars indicate SD. Source data are provided as a Source Data file.

Strains	Genotypes	References
B. subtilis		
Marburg	wild-type	Lab. stock
(NCIB3610)		
168CA	<i>trpC2</i> (wild-type)	Lab. stock
BS115	trpC2 ΩspoVD::cat-P _{xyl} -murE	1
LR2	trpC2 ΩspoVD::cat-P _{xyl} -murE ispA ⁻	2
YK1395	trpC2 ispA ⁻ (xseB::Tn-kan)	2
YK1450	trpC2 ΩhepS::erm-P _{spac} -hepS	3
YK1538	trpC2 ΩgImU::erm-P _{spac} -gImU	This work
YK1540	trpC2 ΩmurG::erm-P _{spac} -murG-murB	This work
YK1567	trpC2 ΩgapA::erm-P _{spac} -gapA	4
YK1714	trpC2 ndh::Tn-kan	3
YK1875	trpc2 Ωneo-ΔmreB-mreC-mreD amyE::P _{xyl} -mreB-mreC-mreD spc	5
YK2242	trpC2 Δ4 P _{spac} -rodA kan	6
YK2245	trpC2 P _{spac} -rodA kan	6
YK2265	trpC2 aprE::P _{rpsD} -mcherry spc	3
YK2625	trpC2 Δmbl::cat ΩhepS::erm-P _{spac} -hepS	3
YK2638	trpC2 Δmbl::cat	7
YK2646	trpC2 Δmbl::cat ndh::Tn-kan	3
YK2665	trpC2 Δmbl::cat ΩmurG::erm-P _{spac} -murG-murB	This work
YK2687	trpC2 Δmbl::cat ΩgImU::erm-P _{spac} -gImU	This work
YK2689	trpC2 ΩmurG::erm-P _{spac} -murG-murB ndh::Tn-kan	This work
YK2694	trpC2 Δmbl::cat ispA⁻ (xseB::Tn-kan)	2
YK2696	trpC2 Δmbl::cat qoxB::Tn-kan	3
YK2697	trpC2 Δmbl::cat ctaB::Tn-kan	3
YK2700	trpC2 Δmbl::cat amyE::P _{xyl} -murB-spc	This work
YK2701	trpC2 Δmbl::cat amyE::P _{xyl} -murG-spc	This work
YK2711	trpC2 Δmbl::cat ΩgapA::erm-P _{spac} -gapA	This work
YK2716	trpC2 Δmbl::cat ΩodhA::erm ΔodhA	This work
YK2718	trpC2 Δmbl::cat ΩsdhA::erm ΔsdhA	This work
YK2720	trpC2 Δmbl::cat Ωmdh::erm Δmdh	This work
YK2732	trpC2 Δmbl::cat ΩpdhA::erm-P _{spac} -pdhA	This work
YK2739	trpC2 ∆efeU::kan	8
YK2740	trpC2 ΔfecC::kan	8
YK2741	trpC2 ΔfeuA::kan	8
YK2771	trpC2 Δmbl::cat ΔfecC::kan	8
E. coli		
BW25113	lacl ⁺ rrnB _{T14} ΔlacZ _{WJ16} hsdR514 ΔaraBAD _{AH33} ΔrhaBAD _{LD78} rph-1	Lab. stock
	Δ(araB–D)567 Δ(rhaD–B)568 ΔlacZ4787(::rrnB-3) hsdR514 rph-1	

Supplementary Table 1. Bacterial strains

Supplementary Table 2. Primers

Primers	Sequences
pMSD-glmU-F	GGGGAATTCTTCTATGGATAAAAGGGATATTG
pM-glmU-R	GGGGGATCCAAGCGGCGTATCTCCGCAA
pMSD-murGB-F	GGGGAATTCTTATCGTTATGTTATAGAGAAACT
pM-murGB-R	GGGGGATCCCCGGCCCACATACATAACC
pMSD-pdhA-F	GAAGAATTCAATGCACGTCTAATGACTG
pM-pdhA-R	GGAGGATCCCGCGAAATGCGTTGCAATC
pM-sdhA-F	GAAGAATTCTAAAGCAGCGGAATCAGG
pM-sdhA-R	GGAGGATCCTTA TCGTCGCACCAGCATAAG
pM-mdh-F	GAAGAATTCGAGCTGGCAGACGTTGTTC
pM-mdh-R	GGAGGATCC TTACCTGACTGGCCGATTACAC
MK116	GAGGAAGCGGAAGAATGAAG
MK117	TTCGGTAAGTCCCGTCTAGC
MK532	CCCAGTCTAAGATGCATTTTATGTCATATTG
MK533	GACATAAAATGCATCTTAGACTGGGGGAAAAAAGAAATGC
MK534	GCTCTAGAACTAGAATTCCTATTTTTTAATTCCTCGAGTACG
MK535	CGTACTCGAGGAATTAAAAAAAAAGGAATTCTAGTTCTAGAGC
MK536	CTCCGCATTCCATAGATGCATTTTATGTCATATTG
MK537	GACATAAAATGCATCTATGGAATGCGGAGGTTTAC
MK538	CTCTAGAACTAGAATTCTCAGCGATTTCCGCCGATG
MK539	CATCGGCGGAAATCGCTGAGAATTCTAGTTCTAGAGC

SUPPLEMENTARY REFERENCES

- Leaver, M. Dominguez-Cuevas, P. Coxhead, J. M. Daniel, R. A. & Errington, J. Life without a wall or division machine in *Bacillus subtilis*. *Nature* 457, 849-853 (2009). doi.org:10.1038/nature07742
- 2 Mercier, R. Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. *Cell* **152**, 997-1007 (2013). doi.org:10.1016/j.cell.2013.01.043
- 3 Kawai, Y. *et al.* Cell growth of wall-free L-form bacteria is limited by oxidative damage. *Curr Biol* **25**, 1613-1618 (2015). doi.org:10.1016/j.cub.2015.04.031
- 4 Kawai, Y. *et al.* Crucial role for central carbon metabolism in the bacterial L-form switch and killing by β-lactam antibiotics. *Nat Microbiol.* (2019). doi.org:10.1038/s41564-019-0497-3
- 5 Leaver, M. & Errington, J. Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in *Bacillus subtilis*. *Mol Microbiol*. **57**, 1196-1209 (2005). doi.org:10.1111/j.1365-2958.2005.04736.x
- 6 Emami, K. *et al.* RodA as the missing glycosyltransferase in *Bacillus subtilis* and antibiotic discovery for the peptidoglycan polymerase pathway. *Nat Microbiol* **2**, 16253 (2017). doi.org:10.1038/nmicrobiol.2016.253
- Schirner, K. & Errington, J. The cell wall regulator {sigma}I specifically suppresses the lethal phenotype of *mbl* mutants in *Bacillus subtilis*. *J Bacteriol* **191**, 1404-1413 (2009).
 doi.org:10.1128/JB.01497-08
- 8 Koo, B. M. *et al.* Construction and Analysis of Two Genome-Scale Deletion Libraries for *Bacillus subtilis. Cell Syst* **4**, 291-305 e297 (2017). doi.org:10.1016/j.cels.2016.12.013