Supplementary material

Development of an induced pluripotent stem cells-based liver-on-a-chip assessed with an Alzheimer's disease drug.

F. Fanizza¹, L. Boeri¹, F. Donnaloja¹, S. Perottoni¹, G. Forloni², C. Giordano^{1*}, D. Albani²

1. Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.

2. Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

* Corresponding author

Carmen Giordano

carmen.giordano@polimi.it

SUPPLEMENTARY TABLES

Table S1 Numerical values of the parameters used for the simulations.

Property	Value
Atmospheric pressure (outlet)	0 Pa
Wall conditions	No slip conditions
Density of culture medium (at 37°C)	1000 kg/m ^{3 42}
Dynamic viscosity of culture medium (at 37°C)	8.1*10 ⁻⁴ Pa*s ⁴²
Diffusion coefficient of oxygen	1.85*10 ⁻¹⁰ cm²/s
Pump flow rate	30 µl/min

Inlet velocity in the upper chamber	0.001 m/s
Inlet velocity in the lower chamber	0.19*10 ⁻³ m/s
Membrane permeability	7.8*10 ⁻¹⁹ m ²
Membrane porosity	2.5*10 ⁻³
Oxygen concentration at the inlets	0.2 mol/m ³
Density of COLL-PEG2000 hydrogel (at 37°C)	1000 kg/m ³
Dynamic viscosity of COLL-PEG2000	8.1*10 ⁻⁴ Pa*s
hydrogel (at 37°C)	
COLL-PEG2000 hydrogel permeability	6.45*10 ⁻¹⁷ m ²
COLL-PEG2000 hydrogel porosity	0.93
iPSC-derived hepatocytes oxygen	4.5 nmol/(min*10^6 cell) 20
consumption rate	
iPSC-derived endothelial cells oxygen	1.5 pmol/min/1000 cells ²¹
consumption rate	

Table S2 Numerical values of the parameters used for the donepezil distribution simulations.

Property	Value
COLL-PEG2000 hydrogel permeability to donepezil	6.45*10 ⁻¹⁷ m ²
Donepezil diffusion coefficient in iEndo culture medium	4,16 x 10 ^{-11.} m ² /s
Donepezil diffusion coefficient in iHep culture medium	4,12*10 ⁻¹¹ m²/s
Donepezil diffusion coefficient through the hydrogel	7,2772 x 10 ^{-12.} m²/s

Donepezil concentration at the inlet	0.2 mol/m ³
Donepezil partition coefficient	1.07

SUPPLEMENTARY EXPERIMENTAL

Transepithelial electrical resistance assessment

Transepithelial electrical resistance (TEER) was measured using EVOM (World Precision Instruments, USA) coupled with a chopstick-like electrode. Cell layer resistance was calculated placing the shorter electrode in the apical compartment of the Transwell®-like inserts and the longer one in contact with the plate. TEER ($\Omega \cdot cm^2$) was calculated as follows:

$TEER = (Rmeasured - Rblank) \cdot MembraneArea$

Where Rblank was measured on Transwell®-like inserts without cells and the *MembraneArea* was 1.13 cm². For each sample, we averaged three measures.

SUPPLEMENTARY FIGURES

Figure S1. a) The schematic shows the cell models assessed with the TEER test into the Transwell[®]-like insert. b) For each model we measure TEER in static condition. One-way ANOVA, Tukey's multiple comparison post hoc test **=p<0.01; ****= p<0.0001. c) TEER values of the 3D w/ iEndo model in static and dynamic condition. t-test p>0.5.