Supporting information

Nanoparticle-based Tough Polymers with Crack-propagation Resistance

Yuma Sasaki,¹ Yuichiro Nishizawa,¹ Takumi Watanabe,¹ Takuma Kureha,³ Kazuya Uenishi,⁴ Kazuko Nakazono,⁵ Toshikazu Takata,*^{5,6} and Daisuke Suzuki*^{1,2}

¹Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan

²Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan

³Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan

⁴Yokohama Rubber Co., Ltd., 2-1 Oiwake, Hiratsuka, Kanagawa 254-8601, Japan.

⁵Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan

⁶Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Experimental Details

Figure S1. Schematic illustration of the preparation of the tear test specimens.

Results and Discussion

Figure S2. Representative DSC curve (second heating) for an EM microparticle at a heating rate of 10 °C/min. T_g was calculated from the cross-point of tangents to the baseline and inflection point.

Figure S3. AFM height images of the EM and EM-R*X* (*X* = 0.001, 0.01, 0.05, 0.2) microparticles dried on a glass substrate and their determined sizes (FWHM and the maximum height).

Figure S4. TEM images of EM and EM-R*X* (*X* = 0.001, 0.01, 0.02, 0.05, 0.2) as well as EM-H*Y* $(Y = 0.1, 0.2)$ microparticles dried on the copper grid.

Figure S5 (a) Weight of the soluble mass (w_1) and original mass (w_2) obtained from the Soxhlet extraction of EM and EM-R X ($X = 0.001$, 0.01, 0.02, 0.05, 0.2) microparticles. (b) Molecularweight distribution of the soluble fraction of EM microparticles acquired from GPC measurements.

Figure S6. Photograph of a EM-R0.4 film. The EM-R0.4 microparticles formed a brittle film.

Figure S7. (a) Photographs and (b) SEM images (surface) of the EM and EM-R*X* (*X* = 0.001, 0.01, 0.05, 0.2) films.

Figure S8. Time-lapse photographs the tear tests of the (a) EM-R0.001, (b) EM-R0.01, (c) EM-

R0.05, and (d) EM-R0.2 films. The initial crack length *c* and elongation rate were fixed at 2 mm and 10 mm/min, respectively.

Figure S9. (a) *σ*-*λ* curves for the notched and unnotched EM-R0.05 latex films. (b) The Young's modulus *E*, maximum extension ratio λ_{max} , and maximum stress σ_{max} values obtained from the σ - λ curves.

Figure S10. (a) Chemical structure of 1,6-hexanediol dimethacrylate (HDD), which was selected as a conventional chemical crosslinker. (b) Stress-extension ratio curves of tear tests for HDDcrosslinked EM-H films. Elongation rate was fixed at 10 mm/min. Elongation-rate dependence of (c) stress-extension ratio curves and (d) photographs of latex films just before fracture at various rates.

Figure S11. SAXS scattering intensity in the high-*q* range for EM and EM-R films.

(b)		Energy density function $U/MJ \text{ m}^{-3}$	E/MPa	Young's modulus Maximum strain Maximum stress ε_{max} / $\%$	$\sigma_{\rm max}$ / MPa
	ΕM	16.9 ± 3.9	8.9 ± 6.6	789.3 ± 108.7	3.5 ± 0.6
	EM-R0.001	19.4 ± 2.0	4.1 ± 2.3	959.2 ± 44.8	3.7 ± 0.2
	EM-R0.01	34.4 ± 5.1	8.2 ± 2.4	932.3 ± 99.8	7.8 ± 1.5
	$EM-R0.02$	43.3 ± 4.3	12.2 ± 1.2	954.3 ± 22.5	10.0 ± 1.3
	EM-R0.05	23.3 ± 4.9	8.1 ± 3.1	925.6 ± 78.3	5.2 ± 0.6
	$EM-R0.2$	14.9 ± 1.8	9.4 ± 14.7	592.2 ± 29.7	3.4 ± 0.5

Figure S12. (a) Stress-strain curves for the EM and EM-R $X(X=0.001, 0.01, 0.02, 0.05, 0.2)$ films obtained from tensile test measurements. (b) The Energy density function *U*, Young's modulus *E*, maximum strain ε_{max} , and maximum stress σ_{max} values obtained from the stress-strain curves. The tensile speed was fixed at 10 mm/min. Each curve was extracted from those close to its mean (*N* $= 3$).

Figure S13. (a,c,e,g) Stress-extension ratio curves for the EM-R*X* latex films obtained from tear tests conducted at various elongation rates. (b,d,f,h) Photographs of the EM-R*X* latex films just before fracture at various elongation rates.

Movie S1. The fracture behavior of an EM film during a tear test at an elongation rate of 10 mm/min. Note that this video has been modified to 50x speed.

Movie S2. The fracture behavior of an EM-R0.02 film during a tear test at an elongation rate of 10 mm/min. Note that this video has been modified to 50x speed.