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S1 Geometric Model

To derive the geometric model for SBA inflation, we fit a variety of curves to a cross section of an in-
dividual SBA balloon using MATLAB image processing (Figure S1). We analyzed circles, ellipses, and
parabolas, and we found that parabolas generated the closest fit to the shape of the balloon’s cross sec-
tion.
We therefore attempted to approximate a relationship between the volume of fluid inside a balloon, and
the resulting height of the balloon.
To do this, we developed a system of three equations reported below a well as in Figure S1.

v = 2π

∫ ρ

0

x(h− αx2)dx (1)

y(x = ρ) = 0 = h− αρ2 (2)

l =

∫ ρ

0

√
1 + (−2αρ)2dx (3)

The first equation (Eq.1) describes the volume inside the balloon, approximated as the volume of revolu-
tion created by rotating a parabola about the y-axis and multiplying by 2 to account for both halves of
the balloon.
The second equation (Eq.2) is a boundary condition, stating that y = 0 when x = ρ.
The third equation (Eq.3) puts a constraint on the arc length of the cross sectional boundary, by setting
the arc length of the parabola in the first quadrant equal to the deflated radius of the balloon.
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Figure S1: Considerations for geometric modeling of a SBA balloon. a) A single balloon is taken as the base unit of an
SBA. We fabricated a single balloon and took a picture of its horizontal cross section. We used MATLAB (MathWorks)
image processing tools to fit a variety of curves to the cross section, ultimately determining that parabolas generate the
closest fit. b) The first quadrant of a generic parabola is plotted on a set of axes. From this curve, we defined three equa-
tions to describe the corresponding SBA balloon. The first equation describes the volume enclosed by the volume of rev-
olution. The second equation is a boundary condition for the parabola equation. The third equation puts a constraint on
the balloon’s cross sectional arc length.
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Using this system of three equations and three variables – v, α, and ρ – we could solve for an approxi-
mate relationship between the input volume v and the resulting height h.

The Mathematica notebook reported below shows the steps we took to solve the system.
In section (a) of the code, we defined a function for a Taylor series expansion of the ArcSinh function,
which would be used later in the notebook.
We defined the system of three equations in section (b) of the code, and then we solved the system in
(c-e).
In (f), we separated the variables, removed higher order terms, and retroactively multiplied by a factor
of 4 to correct for the removal of higher order terms.

3



Geometric Modeling of an SBA
Supplement to “A Collapsible Soft Actuator Facilitates Performance

in Constrained Environments”
Jacob Rogatinsky

a) The following function is a Taylor expansion for the ArcSinh function,
which will be used later in the script.

In[ ]:= trigSeries[n_, θ_] := Normal[Series[ArcSinh[θ], {θ, 0, 2 n - 1}]]

b) The following system of three equations describe the shape of an individ-
ual balloon from an SBA, determined to be parabolic through image process-
ing. Eq1 describes the volume of revolution generated by revolving the
parabola about the y-axis. Eq2 sets the arc length of the parabola in the first
quadrant to the deflated radius of the balloon. Eqα is the boundary condition
of the equation for a parabola when x=ρ.

In[ ]:= eq1 = v ⩵ 2 π Integratex h - α x2, {x, 0, ρ};

eq2 = l ⩵ IntegrateSqrt1 + 2 α x2
, {x, 0, ρ}[[1]];

eqα =
h

ρ2
;

c) The following equation constitutes an intermediate solution. Eqα is substi-
tuted into Eq1 for α, and the resulting Eqρ is solved for ρ.

In[ ]:= eqρ = Solve[eq1 /. α → eqα, ρ][[2]][[1]][[2]];

d) The following equation solves the resulting system of equations by substi-
tuting Eqα and Eqρ into Eq1 for α and ρ, respectively. The resulting EqSol
gives a relationship between the height of the balloon, h, and the volume of
the balloon, v.

In[ ]:= eqSol = eq2 /. α → eqα /. ρ → eqρ // Simplify

Out[ ]= 2 h3/2 l π ⩵ h 2 π 1 +
2 h3 π

v
v +

v ArcSinh h32 2 π

v


h

e) The following equation substitutes a second order Taylor series, as defined
in (a), into EqSol for the ArcSinh term.

4



In[ ]:= eqSol2 = eqSol /. ArcSinh
h3/2 2 π

v
 → trigSeries[2, x] /. x →

h3/2 Sqrt[2 π]

Sqrt[v]
// Simplify

Out[ ]= 2 h3/2 l π ⩵

h 2 π -h3 π + 3 1 + 1 +
2 h3 π

v
v

3 v

f) The following equation rearranges EqSol2 such that v and h are on sepa-
rate sides of the equation.

In[ ]:= eqSol3 = Solve[eqSol2, v][[1]][[1]][[2]] // Simplify

Out[ ]=
1

108 l2
32 h5 - 24 h3 l2 + 18 h l4 + 2 h2 256 h8 - 456 h6 l2 + 378 h4 l4 - 216 h2 l6 + 81 l8 

4096 h15 - 10 944 h13 l2 +
27 891 h11 l4

2
- 12 096 h9 l6 + 7047 h7 l8 - 2916 h5 l10 +

729 h3 l12 +
27

2
-h16 l6 7 h2 - 6 l2

2
256 h4 - 33 h2 l2 + 108 l4

1/3

+

22/3 8192 h15 - 21 888 h13 l2 + 27 891 h11 l4 - 24 192 h9 l6 + 14 094 h7 l8 - 5832 h5 l10 +

1458 h3 l12 + 27 -h16 l6 7 h2 - 6 l2
2
256 h4 - 33 h2 l2 + 108 l4

1/3

π

Removing higher order terms and multiplying by a constant factor of 4 to account for their removal, the 

resulting approximation is v ≃ 32 h5-24 h3 l2+18 h l4 π

27 l2
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S2 FEM Model through SOFA

The model from SOFA exploits a mapping between two spaces – the FEM space and the reduced order
space – to maximize the tradeoff between simulation speed and accuracy.
In the FEM space, we defined a set of nodes based on a 3D geometry designed in SolidWorks (Dassault
Systèmes) and imported to SOFA as a coarse mesh file. In the reduced order space, we defined a curve
to describe the robot’s imaginary backbone. This curve is defined by nine reference points, each with six
degrees of freedom to capture translation and rotation.
We move from the reduced order space to the FEM space at each time step in the simulation to calcu-
late the internal forces at each mesh node based on the overall system forces from inflation pressure. We
then map the mesh node forces to the reduced order space to update the position of the reference curve
and the mesh visualization. To move from the reduced order space to the FEM space, we use a kine-
matic relationship between the two spaces.

x = A(q) (4)

Here, the non-linear function A maps a given reference point from q into the corresponding FEM nodes
from x. Since our system has nine reference points, q and x do in fact become vectors, and the size of
the mapping between them is dependent on the number of nodes in the FEM model. We are also inter-
ested in the gradient of the function A, since its transpose allows us to move from the FEM space into
the reduced order reference space.

JT f(x) = (
∂A
∂q

)T f(x) (5)

From this equation, the transpose Jacobian matrix JT = (∂A
∂q

)T allows us to map the internal mesh forces

f(x) found in the FEM space to a set of new reference points in the reduced space. Overall, this system
is well-conditioned and can be inverted with a direct solver.
In practice, the system that is solved is based on static equilibrium between elastic forces in the finite
element model and pressure forces: FFEM(x) + Fpressure(x,p) = 0. The elastic forces are non-linear, but
introducing a small variation of the node positions allows us to linearize them at each step:

FFEM(x+ dx) = FFEM(x) +

(
dFFEM(x)

dx

)
dx = FFEM(x) +Kdx (6)

Here, K is the tangent matrix of internal forces in the FEM mesh nodes. Additionally, the pressure forces
can be decomposed in the following manner:

Fpressure(x, p) = H(x)T ∗ p (7)

Here, H(x)T is a rectangular matrix providing the distribution of pressures acting on the mesh nodes.
The number of columns equals the number of DoFs of the SBA, and the number of rows equals the num-
ber of nodes in the mesh for each chamber. p is the vector of internal pressures in each SBA cavity, and
its size equals the number of DoFs of the SBA.
Since the motion of the simulation is defined in the reduced space, the mesh nodes in x are constrained
by the relationship x = A(q) and dx = Jdq. Given this system, any variation in pressure at a given
time step causes a variation in the FEM nodes, given by:

FFEM(x+ dx) + Fpressure(x+ dx, p+ dp) = 0 (8)

This new equilibrium equation can be multiplied by the transposed Jacobian of A to map it to the re-
duced space:

JT
(
FFEM(x+ dx) + Fpressure(x+ dx, p+ dp)

)
= 0 (9)
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Now we can substitute in the linearization of the FEM forces, as well as the decomposition of the pres-
sure forces and the relationship between dx and dq:

JT
(
FFEM(x) +KJdq +H(x)T ∗ (p+ dp)

)
= 0 (10)

Here we assume that H(x+ dx)T ≈ H(x)T . We can reorient this into a linear system to solve:

(JTKJ)dq = JT
(
FFEM(x) +H(x)T ∗ (p+ dp)

)
(11)

Here JT
(
FFEM(x) + H(x)T ∗ (p + dp)

)
is a known vector, since we know x, q, and p from the previous

step, and we also know the change in pressure dp between the previous and current step. Additionally,
the matrix JTKJ is symmetric definite positive. This allows us to solve for dq and generate the configu-
ration of the new reduced space reference curve q + dq. In the following step, the new position vector of
the FEM nodes will be computed as xnew = A(q+ dq).

S3 Gravitational Contribution

We determined that the effect of gravity on actuator force output was negligible. To calculate the effect
of gravity, we summed the weight of the deflated actuator with the weight of its working fluid at full in-
flation.

Fgravity = g
(
ρfluidVfluid +mSBA

)
(12)

In equation 12, g = 9.81m
s2
, ρair = 1.225 kg

m3 , ρwater = 997 kg
m3 , Vfluid = 1.85 mL, and mSBA = 0.4 g.

This calculation yields Fgravity = 0.004 N for air, and Fgravity = 0.022 N for water. In our force charac-
terizations, the measurement errors over all trials ranged from ±0.01 N to ±0.12 N , so the force due to
gravity falls in the lower end of this range. We therefore deemed gravity’s contribution negligible.
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S4 Effect of External Forces in ABAQUS

To demonstrate the effect of external forces on a SBA, we generated an Abaqus simulation where a sin-
gle column SBA is inflated to a pressure of 6 kPa and a force of 12 mN is applied to the tip (see Fig. S2).
This simulation is a representation of the stiffness testing reported in Section 4.4 in the paper. As a re-
sult, we obtained an effective Young’s modulus of E = 34.0 kPa, compared with E = 35.3 kPa for the
experimental stiffness test. Thus, we show that ABAQUS is able to capture the effects of external load-
ing with a 3.7 % error.
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Figure S2: An ABAQUS simulation was developed to mimic stiffness testing on a 1-DoF SBA. Here, we generated an
ABAQUS simulation of a 1-DoF SBA of diameter d = 5 mm and with six balloons.

8



S5 Experimental Tests Setups
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Figure S3: Experimental setups to measure actuator stroke and force output. A pump infuses water or air into the flu-
idic system at low infusion rates for quasi-static conditions. A syringe pump (Harvard Apparatus, Pump 11 Pico Plus
Elite) is used for water, and an air pump (Adafruit, 4699) is used for air. A pneumatic pressure sensor (Honeywell, ASDX-
AVX030PGAA5) or hydraulic pressure sensor (Nidec Copal Electronics Inc., P-7100-103G-M5) is placed in series between
the pump and the soft actuator. a) For the stroke tests, the actuator is allowed to expand freely upon pressurization while
an electromagnetic (EM) position tracking system (Northern Digital Inc., Aurora) records its tip position. b) For the force
characterizations, a force sensor (ATI Industrial Automation Inc., NANO17) is added to the system in a fixed position
and records quasi-static force generation while the actuator inflates into it. c) For the stiffness test, the same force sensor
pushes on the actuator while it’s held in the inflated position to approximate a cantilevered beam.
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