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1 Previous Works

Traditional clinical prediction rules that have existed for decades relies on
a small set of hand-selected structured features. Three well-known examples
are CHADS2 score for atrial fibrillation stroke risk, Child-Pugh score for cir-
rhosis mortality, and Well’s criteria for pulmonary embolism [1–4]. An example
for readmission prediction is the LACE score, which uses 4 features: Length
of stay, Acuity of readmission, Comorbidity index and the number of recent
visits to the Emergency department.

Approaches that are based on traditional machine learning models
learns from a set of automatically selected structured features [5, 6]. For exam-
ple, Duke University Health System use regression with L1 regularization to
select features from patient age, diagnosis variables, laboratory variables, med-
ications, order types and utilization variables [7]. Their readmission prediction
model is a regression model on the selected features. (See Supplemental 3.2
for a complexity comparison with NYUTron.)

Another approach represents clinical notes with embeddings from tradi-
tional NLP models. For example, to predict readmission from discharge
notes, [8, 9] passes the LDA (Latent Dirichlet allocation) / TF-IDF (Term
frequency - inverse document frequency) embeddings of discharge notes to an
2-class SVM (support vector machine).

With the advent of EHR, anothger approach for clinical prediction is to
apply deep learning to high-dimensional structured EHR data. We will refer to
them as “structured EHR” approach. For example, [10] takes in the entire
EHR associated to a patient using the FHIR format (with task-specific labels)
and train an RNN with end-to-end.

Recently, researchers start to use clinical texts from electronic health
record to train clinical language models. Examples of encoder-based mod-
els include ClinicalBERT [11] (which further pretrained BERT using ICU
notes from MIMIC-III, and subsequently finetuned to predict readmission from
ICU notes) and Gatortron [12] (which pretrained a 345-million parameter
Megatron-BERT model using notes from the University of Florida Health and
finetuned for 5 clinical NLP tasks including named entity recogntion). Exam-
ples of large autoregressive models include PubmedGPT [13], a 2.7 billion
parameter model that performs well on biomedical question answering.

The gap: Traditional clinical prediction rules and traditional machine
learning models rely on structured data, which is often missing from hospi-
tal EHRs. Traditional NLP models do not benefit from pretraining with an
increasing amount of unlabelled clinical notes. Structured EHR approaches
also faces issues with missing structured features, not leveraging the vast
amount of unlabelled data, and the high cost of implementation. (See Sup-
plemental 3.1 for an example.) While recent studies on clinical language
models show potential for translating advances in NLP to improving quality
of healthcare, they are limited in that (1) they evaluate on a small subset of
patient population (e.g., ICU patients from MIMIC-III; patients with strokes)
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and (2) they did not perform prospective evaluation, which better resem-
bles the deployment setup by hardening the model and testing it outside the
development environment.

Our contribution: We are the first to pretrain a large language model
on an entire health system’s identified clinical notes and deploy the fine-
tuned model for a prospective trial for all patients. We show that our clinical
language model has a wide breadth of applicability to several clinical and oper-
ational tasks, as demonstrated by their improved performance over traditional
structured data baselines. On a specific clinical predictive task (readmission
prediction), we showed the benefit of pretraining with clinical texts, the cross-
site generalizability through local finetuning, and the deployability with a
prospective, non-interventional, single-arm trial.

2 Details on prediction tasks

2.1 Readmission Prediction

Readmission prediction is a classic, well-studied clinical predictive prob-
lem with practical clinical significance. Readmission puts patients at risk
medically and financially, and reducing readmission rates could improve the
quality of care. Every year, 1.15 billion patients are discharged globally, and
in the United States 14% of discharged patients are ultimately readmitted.
Nationally, readmitted patients are, on average, associated with an extra cost
to providers of $15,000 [14]. To reduce preventable readmissions, the Center
for Medicare and Medicaid Services (CMS) launched a hospital readmission
reduction program that decreases payments to hospitals according to the rate
of unplanned 30-day readmission. Due to the significance of this problem
both clinically and operationally, several attempts [7, 11] have been made to
build and deploy 30-day readmission models by both health systems and EHR
vendors with varying results.

We estimated the scale of readmission prediction problem as follows:
1) To estimate the number of patients discharged annually, we use the number
of hospital discharges per one thousand person in OECD countries in 2017.
OECD countries have 17.9% of the world’s 7.52 billion populations, and 154
hospital discharges per 1000 population [15, 16]. Assuming that the discharge
rate is similar in non-OECD countries, we estimate the total number of hospital
discharge in 2017 around the world as 7.52 · 154

1000 ≈ 1.16 billion discharges.
2) To investigate how often discharged patients get readmitted, we use the
readmission rate and cost from United States. In 2018, United States has a
14% readmission rate with an average readmission cost of $15,200 [14].

To reduce preventable readmission in United States, Center for Medicare
and Medicaid Services (CMS) launched a Hospital Readmission Reduc-
tion Program (HRRP). Starting from October 1, 2012, the U.S. government
reduces a maximum of 3% of payments to hospitals with excessive readmission,
as measured by “30-day risk-standardized unplanned readmission” [17].



5

Discharge Notes contain signals for readmission prediction. A
word cloud of discharge notes in NYU Readmission in shown in Figure 1. We
constructed word clouds based on non-readmitted and readmitted labels from
NYUTron where a word with a larger log odds ratio has a larger font size.
On the left, non-readmitted patients seem to have milder diseases such as
“pancreatitis” and have “friends” who can pick them up upon discharge. On
the right, readmitted patients have more serious disease such as “lymphoma”,
which requires frequent hospital visits for chemotherapy and radiotherapy.

Fig. 1: The word cloud of discharge notes from non-readmitted patients (left) and
readmitted patients (right)

In this paper, we define readmission as 30-day all-cause readmission.
That is, we say a patient is readmitted if there is a subsequent admission
within 30 days.

Our definition of “readmission” does not solely consist of preventable read-
mission (the ones that people care most about, or the yellow box after L3, as
shown in Figure 2). For example, if a patient had a successful brain surgery,
went home and fell over the stairs, we will still say the patient has an “all-cause
30-day readmission” although it is not preventable.

In an ideal scenario, we should finetune with the “unplanned, preventable
30-day readmission” label. However, we do not have this label in our database,
so we decided to use a looser label (from L1 in Figure 2) and leave the rest of
the decisions (L2 and L3) for the physicians. Our L1 label covers the set of all
“unplanned, preventable 30-day readmission”: that is, if a case has a positive
L3 label, it must have a positive L1 label.

To get more precise labels, we need to recruit a team of experienced physi-
cians to manually annotate each one of the 506,740 cases, with potential
disagreement over which cases are preventable. This annotation is expensive
with ambiguity over the “preventable” label, and we think the costs outweigh
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Fig. 2: Three levels for predicting readmission. We choose to use the L1 label because
obtaining L2 and L3 labels is expensive. At deployment, the physicians can use their
judgment for L2 and L3 to filter out the false positives for ”preventable, unplanned
readmission

the benefits. To elaborate, our current readmission prediction model (fine-
tuned with L1 label) will alert unplanned, preventable 30-day readmission with
some false positives (orange boxes: nonpreventable cases and planned cases).
At deployment, the physician can use their judgement to filter out the false
positive. For example, if the physician got alerted for a case with 3-day fol-
lowup, we assume the physician will ignore the alert because they know the
predicted readmission is planned. If we train a model with L3 label, the benefit
is that there will be fewer false positive, and the costs is expensive annotation
and potentially missing preventable cases from the ambiguity of annotating
“preventable” cases.

Practical significance of performance improvement: Given a large
patient cohort, every 0.01% improvements could positively affect the health
of real patients. For example, suppose we improve the recall of readmission
from 78% to 80% for a cohort of 27,376 patients from January to April of
2022 (the size of NYU Readmission - Deployment, shown in Extended Data
Table 1) with readmission rate of 10%. That means an extra 55 high-risk



7

patients would be identified prior to discharge. Suppose 27% of the patients’
readmission are preventable (from Main Text Figure 4b), then we could stop
around 15 patients from coming back to NYU Langone with interventions
(e.g., scheduling followup calls, delaying discharge, at-home visits). Even small
improvement could prevent real patients from suffering from readmission, on
which they are six times more liketly to die and stay three days longer, with
an additional cost of $15,000 per patient.

2.2 Insurance Denial Prediction

For patients with insurance, hospitals receive compensation from their insur-
ance companies by submitting insurance claims that document the details of
the visit such as procedures done and neccessity of the procedure. However,
the claimed amount does not always get fully reimbursed, which increases the
operating costs of a health system.

The task of insurance denial is to predict (at the point of care) whether
the claim associated with that visit will be denied by the insurance providers.
This would help reduce unnecessary out-of-pocket costs of the patients and
the financial stress of the health system.

In our dataset, we consider three possible outcomes of a insurance claim: (1)
the claim is directly approved, (2) the claim is initially rejected, but approved
upon appeal, (3) the claim is initially rejected, and still rejected upon appeal.

We say a claim is “initially denied” for outcomes (2) and (3), and a claim is
“directly approved” for outcome (1). We say a claim is “eventually denied” for
outcomes (3), and a claim is “eventually approved” for outcome (1) and (2).

We perform four types of prediction using the same method described in
Method “NYUTron + H&P Notes for Insurance Denial Prediction”:

1. Using NYUTron Insurance Denial dataset, predict whether a claim is
initially denied from H&P notes (shown in Main Text Figure 2c, AUC
87.2%±0.246%).

2. Using NYUTron Insurance Denial - D/C Notes dataset, predict whether a
claim is initially denied (AUC 87.71%±0.188%).

3. Using NYUTron Insurance Eventual Denial - H&P Notes dataset, predict
whether a claim is eventually denied(87.54%±0.312% AUC).

4. Using NYUTron Insurance Eventual Denial - D/C Notes dataset, predict
whether a claim is eventually denied(AUC 88.0%±0.313%).

2.3 Comorbidity Imputation

Charlson comorbidity index (CCI) quantifies the severity of a paitent’s health
condition based on the patient’s history of chronic disease and severe condition.
The index chooses a set of chronic diseases (e.g., congestic heart failure, liver
disease) and assigns a positive score for each chronic disease. The final index
sums over all the score, and a larger index indicates a more severe health
condition. The index can help physicians predict patient outcomes.
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The conventional calculation of CCI requires data collection and manual
entry. Using EHR, we can automate the process by first identifying the history
of chronic disease using ICD (International Classification of Diseases) diagnosis
codes, and then assigining scores based on the ICD codes.

However, the ICD codes are missing for certain patients (in our case, 22%
of the encounter). For example, patients who transferred from an external
health system with a separate EHR will have no past ICD codes. In this case,
we want to impute the comorbidity index. This setting is different than com-
mon imputation tasks, in that not partial, but all structured data are missing.
Motivated by the richness of care-relevant information in clinical notes, we
propose to impute CCI using clinical notes and language models.

3 Comparison of NYUTron v.s. other models

3.1 Comparison of Implementation Complexity:
NYUTron v.s. FHIR+RNN

To illustrate NYUTron’s benefit of low-cost implementation and low-resistance
deployment, here we show a comparison of developing and deploying (1)
FHIR+RNN model used in [10], as outlined in their supplementary materials,
v.s. (2) NYUTron.

Here are the 7 steps that would be required for preparing data to the FHIR
format:

1. Joining data: We need to include at least the following 19 tables with 1207
total columns, as shown in Table 1. We need to write multiple sql scripts
to join them together.

2. Data cleaning: we need to manually examine and remove fields of data with
mostly null values, and fields that contain care-irrelevant information (e.g.,
billing). Some examples include ‘isdeleted’ and ‘lastupdatedinstant’.

3. Value mapping: we need to map text fields for diagnosis into standardized
ICD-9 or ICD-10 codes.

4. Processing flowsheets: we need to sort vital signs and nursing documenta-
tion by the entry time.

5. Convert to FHIR format: for each patient, create a json file that captures
their entire medical history as a sequence of events, represented by various
features.

6. Further processing based on feature types. For example, if the feature is
numeric value, we need to either concatenate the value with their units,
or convert this value to its quantile representation. For the delta time
between events, we need to choose between rounding, capping, log scale,
and discretization with buckets.

7. Choosing the embedding size for each feature: either choose it as the number
of unique values for that features, or do a hyperparameter search. (For
high-dimensional features, doing a hyperparameter search for each feature
is very expensive)

https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-1/MediaObjects/41746_2018_29_MOESM1_ESM.pdf
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Name # columns
encounters 123
patients 133

medication 25
medication order 135
medication event 59

lab test 164
lab component result 57

diagnosis 33
diagnosis event 48

diagnosis terminology 22

Name # columns
procedure 50

procedure event 56
procedure order 65

procedure terminology 15
surgical procedure event 48
dental procedure event 52

provider 70
clinical note 39

clinical note text 13

Table 1: Minimal Tables in NYU Datalake Required for the FHIR+RNN Approach.
Table names were pseudonymized for license compliance.

As a comparison, our language model based approach has a low-
resistance data preparation with minimal manual processing and requires just
2 step:

1. Joining data: collect clinical notes from encounters, clinical note, and clini-
cal note text. The queried data has 2 columns: encounterkey and text. For
self-supervised pretraining, the data preparation is finished. For supervised
finetuning, we can additionally add a column of labels.

2. Preprocessing text: train a tokenizer from the pretraining text and tokenize
the finetuning text.

Apart from the difficulty of the data preparation, the approaches based on
high dimensional structured data have the additional problem of being chal-
lenging to deploy. Integration with FHIR data requires the full interoperability
of a potential EHR system with FHIR. While the Office of the National Coordi-
nator for Health Information Technology has mandated FHIR interoperability
by end-of-year 2022, challenges remain in real world support and compatibil-
ity. With LLM based approaches, integration can still be achieved using FHIR,
but can be as simple as copying and pasting as the only required input is free
text.

A future research question is whether there exists a trade-off between
language model’s better deployability and potential losses in performance com-
pared to models that relies on more complicated data structure. Such question
remains difficult to investigate due to existing data infrastructure and software
ecosystem in hospitals, as evidenced in the very limited use of advanced ML
model in real clinical environments [18–20].

3.2 Comparing the multifacted complexity of NYUTron
v.s. traditional clinical predictive model

NYUTron is more computationally-complex and storage-complex than tradi-
tional clinical predictive model because it performs more computations and
has more stored parameters.
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NYUTron is less data-complex than traditional clinical predictive model
because it requires less data fusing, imputation, and feature engineering.
We demonstrated this in our rapid prototyping and implementation of four
additional tasks under 1 week.

NYUTron is less deployment-complex than traditional clinical predictive
model, because they enable real-time inference as physicians write notes and
require fewer labelled examples. With clinical LLMs, physicians can get real-
time predictions as soon as they sign their notes in the EHR.

4 Robustness and generalization

4.1 Clinical language model is able to generalize across
different health systems through local finetuning

Here we give two examples of across-health-system generaliation through local
finetuning.

The first example is Gatortron-og (from University of Florida Health) gen-
eralizes to NYU Readmission (from NYU Langone Health). In Main Text
Figure 3b, the orange line comes from finetuning Gatortron-og, a language
model pre-trained with a mix of clinical text (notes from University of Florida
Health) and non-clinical text (web text, wikipedia, pubmed abstracts). The
finetuning data is NYU Readmission, which contains discharge notes from
NYU Langone Health. The figure shows that with 100 and 1000 examples,
Gatortron has a lower AUC than NYUTron. However, Gatortron catches up
to NYUTron after 10,000 local finetuning examples.

The second example is NYUTron (from NYU Langone Health) general-
izes to MIMIC-III Readmission (from Beth Israel Deaconess Medical Center
in Boston). We finetuned and tested NYUTron on the MIMIC-III read-
mission dataset, which consists of de-identified discharge notes from the
Beth-Israel’s ICU with binary labels for 30-day all-cause readmission. We com-
pared NYUTron with BioClinicalBERT[21], whose pretraining data covers the
MIMIC notes. Extended Data Figure 4 shows that at 1000 samples, NYUTron
has a 3.58% higher median AUC than BioClinicalBERT (57.22% v.s. 53.64%).
At 10,000 samples, NYUTron has a 6.42% higher median AUC than Bio-
ClinicalBERT (65.56% v.s. 59.14%). Using the full dataset (42,180 samples),
NYUTron has a 3.8% higher median AUC than BioClinicalBERT (67.04% v.s.
63.24%).

4.2 Text data is not necessarily less robust than
structured data

Main Text Figure 3(c)(d) shows that NYUTron is “non-robust” to changes in
deployment site in the sense that: when the model is pretrained on one site, but
finetuned and tested on the other site, there is a performance drop compared
to doing everything locally.
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However, we hypothesize that text-based model are not necessarily less
robust than structured-data-based model. To show this, we ran the same
“Manhattan-versus-Brooklyn” experiments using site-specific variants of NYU
Readmission - LACE. The result is shown in Table 2. For brevity, here we
focus on the results of Manhattan test and discuss 3 findings.

Trained on / Tested on Brooklyn Manhattan
All 57.18%± 0.319% 62.70%± 0.345%
Brooklyn 58.37%± 1.19% 63.11%± 1.61%
Manhattan 58.11%± 0.0213% 64.62%± 0.0824%

Table 2: Manhattan v.s. Brooklyn readmission prediction experiment using
lace+xgb

First, when the structured data based model is trained in Brooklyn, and
tested in Manhattan (63.11% median AUC), there is also a performance drop
(1.51% AUC, or 2.34% relative percentage drop) compared to doing everything
locally (model trained and tested in Manhattan has 64.62% AUC).

Second, the performance drop from structured data model is not necessarily
smaller than the performance drop from text data model. For example, Main
Text Figure 3c shows that when NYUTron is pretrained in Brooklyn, but
finetuned and tested in Manhattan (84.11% AUC), there is a performance
drop of 0.68% AUC compared to doing everything locally (84.79% AUC), or
0.80% relative percentage drop. Both NYUTron’s absolute change (0.68% v.s.
1.51%) and relative change (0.80% v.s. 2.34%) is smaller than the observed
drop from lace+xgb. To give another example: Main Text Figure 3c shows
that when NYUTron is pretrained in Manhanttan, finetuned in Brooklyn, and
tested in Manhattan (80.70% AUC), there is a performance drop of 1.03%
AUC compared to doing everything locally (81.73% AUC), or 1.26% relative
percentage drop. Both NYUTron’s absolute change (1.03% v.s. 1.51%) and
relative change (1.26% v.s. 2.34%) is smaller than the observed drop from
lace+xgb.

Third, we see that the language models achieve a higher overall AUC (Main
Text Figure 3b,c) than lace+xgb (Table 2).

Together, the three finding suggests that NYUTron is not less robust
than lace+xgb on readmission prediction, and that it has a better AUC than
lace+xgb.

4.3 Potential explanations of the subgroup discrepancies

The complex data generating process of clinical notes (which depends on a
variety factors such as social and medical history of patients and providers,
interactions between patients and providers, and the norms of our society)
makes identifying the causes of subgroup discrepancies shown in Extended
Data Figure 5,6 extremely difficult. Here we provide a few speculations and
encourage future works in this area.
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1. Toxicity and bias in clinical texts. For example, [22] shows that differ-
ent ethnic groups have different levels of recorded pain. It is possible that
the provider’s writings were affected by their bias towards different ethnic
groups.

2. Inherent difference between subgroup distribution. For example, [23] shows
that even using self-reported numerical level of menstrual pain, Australian
women have a higher level of pain than Chinese women. It is possible that
these two groups naturally have different pain threshold. Another example
is that hospitals with higher readmission rates have patients with “more
chronic conditions, less education, fewer assets” [24], suggesting that the
patient demographics may affect the distribution of readmission.

3. Complex social factors such as systematic racism. For example, it is possible
that NYUTron performs worse on predicting black patients’ readmission
because they have a more complex medical history due to systematic racism,
rendering them the more “difficult” cases for prediction.

5 Deployment platform -NYUTriton

Deploying machine learning models in a live healthcare environment carries
multiple considerations both technically, clinically, and ethically the full extent
of which are beyond the scope of this article. There are numerous essays and
editorials on these topics, and we include in our references several which we
find particularly lucid on the subject [25–28]. We specifically focus here on our
actual experience in deployment of a large language model, NYUTron, in a
real-world environment and the unique considerations when working with these
large models in terms of performance, security, reliability, interpretability.

Performance is always a major focus of every software engineering project,
and here we were significantly aided by the optimizations built into TensorRT
and Onnx and nVidia Triton. TensorRT is an accelerated format for deep
neural networks that builds in several optimizations to make models faster and
more portable. NVIDIA Triton accepts TensorRT or Onnx formatted models,
and facilitates their access via its REST API. We chose to run a modified,
Dockerized version of NVIDIA Triton in order to take advantage of these
optimizations for rapid model inferencing while utilizing on-premises hardware.

Security and monitoring are major concerns in healthcare environments
that handle the personal health information of thousands of millions of vul-
nerable patients. While the present system is naturally suitable to a cloud
deployment, and could be done using secured communications to minimize
the possibility of data breach, for security purposes we opted to utilize our
own internal hardware for model serving. NYUTriton was built to run using
docker-compose or as a Helm chart for immediate and scalable deployment
via Kubernetes. To facilitate monitoring, NYUTriton was integrated with
Prometheus and Grafana to provide continuous monitoring by our engineering
team.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
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Interpretable outputs is one final, additional, consideration when working
with LLMs in deployment. While a consideration for medical machine learning
algorithms in general, where it has been widely discussed [19, 29], we feel like
this bears particular significance in the case of LLMs for two reasons: (1) We
propose LLMs as being a potential universal interface for EHR analytics, and
with universal inputs comes the added potential of unexpected behaviors, (2)
LLMs are particularly complex and black-box in nature. While it is possible
to perform sensitivity analysis and to look at attention weighting on inputs
to attempt to understand what drives model predictions, we argue that in a
real-world medical case interpretability is frequently overrated while evidenced
based evaluation is underrated. In our opinion, if LLMs are properly validated
in prospective, randomized controlled trials (as are many medical devices),
than understanding the inner workings of them is much less relevant. In line
with this thinking, we have begun a randomized controlled trial of NYUTron,
tied to an intervention, in order to directly assess its performance at delivering
a positive impact on patient care.
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