Supplementary Information

All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle

Rui Zeng^{1§}, Lei Zhu^{1§}, Ming Zhang¹, Wenkai Zhong¹, Guanqing Zhou¹, Jiaxing Zhuang¹, Tianyu Hao¹, Zichun Zhou¹, Libo Zhou¹, Nicolai Hartmann², Xiaonan Xue³, Hao Jing³, Fei Han⁴, Yiming Bai⁴, Hongbo Wu⁵, Zheng Tang⁵, Yecheng Zou⁶, Haiming Zhu⁷, Chun-Chao Chen⁸, Yongming Zhang¹, Feng Liu^{1*}

¹School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, China.

²Attocube systems AG, Eglfinger Weg 2, Haar 85540, Germany.

³Shanghai OPV Solar New Energy Technology Co., Ltd., Shanghai 201210, China.

⁴State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

⁵Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai 201620, China

⁶State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong 256401, China.

⁷Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China. ⁸School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

§These authors contributed equally: Rui Zeng, Lei Zhu.

*e-mail: fengliu82@sjtu.edu.cn

Supplementary Methods

Energy level measurement of cyclic voltammetry (CV). The electrochemical behavior of the materials was investigated using CV with a standard three-electrode electrochemical cell in a 0.1 M Bu₄NPF₆ solution in CH₃CN at room temperature under an atmosphere of nitrogen with a scanning rate of 0.1 V/S. A Pt plate working electrode, a Pt wire counter electrode, and an Ag/AgCl (0.01 M in CH₃CN) reference electrode were used. The experiments were calibrated with the standard ferrocene/ferrocenium (Fc) redox system and assumption that the energy level of Fc is 4.37 eV below vacuum.

In site thickness variation curve measurement. In-situ thickness change was obtained using the FILMETRICS F20-EXR optical profilometer in continuous measurement setting.

Atomic force microscopy-based infrared spectroscopy (tapping AFM-IR). For tapping AFM-IR measurements, an IR-neaSCOPE (neaspec, attocube systems AG) was used to map IR absorption via detecting the mechanical response of an AFM cantilever upon sample stimulation by pulsed IR light. In the instrument, a pulsed, tunable QCL laser is focused onto a PtIr coated AFM probe via a parabolic mirror. while the microscope is operated in intermittent contact mode. The readout of the optically induced changes in the sample is performed by providing bimodal excitation of the cantilever and monitoring the response at the second cantilever Eigen-mode, while the first Eigen-mode is used for AFM topography and feedback. Such an active bimodal technique enables reliable tracking of the cantilever resonance, which in turn suppresses mechanically induced artefacts in the AFM-IR image contrasts.¹

Transient absorption spectroscopy (TAS). For femtosecond transient absorption spectroscopy, the fundamental output from Yb:KGW laser (1030 nm, 220 fs Gaussian fit, 100 kHz, Light Conversion Ltd) was separated to two light beam. One was introduced to NOPA (ORPHEUS-N, Light Conversion Ltd) to produce a certain wavelength for pump beam (here we use 550 and 750 nm, 30 fs pulse duration), the

other was focused onto a YAG plate to generate white light continuum as probe beam. The pump and probe overlapped on the sample at a small angle less than 10°. The transmitted probe light from sample was collected by a linear CCD array.

The exciton annihilation method employs TAS to measure exciton lifetimes as a function of excitation density.² The exciton diffusion length, $L_D = \sqrt{D\tau}$. τ is the lifetime of single-excited for neat PY-IT films.

The series of fluence dependent decays are globally fit to a rate equation accounting for bimolecular (exciton annihilation) and monomolecular decay pathways, assuming that annihilation destroys both excitons;

$$\frac{\mathrm{d}n(t)}{\mathrm{d}t} = -kn(t) - \frac{1}{2}\gamma n^2(t) \tag{1}$$

which has the following solution:

$$n(t) = \frac{n(0)e^{(-kt)}}{1 + \frac{\gamma}{2k}n(0)[1 - e^{(-kt)}]}$$
(2)

where n(t) is the singlet exciton density as a function of time after the laser excitation, k is the monomolecular decay rate and γ is the singlet-singlet bimolecular exciton annihilation rate. Here the intrinsic monomolecular decay constant, k, is a fixed value, extracted from the dilute PY-IT film where diffusion and annihilation does not occur. The global fits account for absolute excitation densities, which are ascertained from the TA signal after accounting for the fluence. The bimolecular rate constant is then used to determine the exciton diffusion coefficient

$$D = \frac{\gamma}{8\pi R} \tag{3}$$

where *D* is the diffusion constant and *R* is the effective interaction or annihilation radius of singlet excitons which is the separation at which the annihilation occurs.

Paracrystalline disorder factor (*g-factor*) on π - π stacking. The scherrer expression for weakly disordered system gives the coherence length that paracrystalline feature persists. And considering the interplanar distance *d*, *g*-factor could be estimated, defined by:^{3,4}

$$g = \frac{1}{2\pi} \sqrt{\Delta_q \times d} \tag{4}$$

 Δ_q is the full width at half the maximum of a diffraction peak, defined as

$$\Delta_q = \frac{2\pi}{\text{CCL}} \tag{5}$$

Combining the above two equations, we arrive at

$$g = \sqrt{\frac{d}{2\pi \times \text{CCL}}} \tag{6}$$

Transient photovoltage (TPV) and photocurrent (TPC) measurement. The lifetime of carriers can be measured by the transient photovoltage measurement. The background illumination was provided by a normal LED light source, and pulsed light was provided by arbitrary wave generator. The photovoltage traces were registered by the oscilloscope. The photocurrent traces were registered with the resistance of 50 Ω , switching open-circuit mode to short-circuit mode. The integrated TPC signal provides a measure of the total charge generated by the laser pulse (ΔQ). Empirically, the differential capacitance values are found to follow the exponential dependence on the open-circuit voltage given by

$$C = \frac{\Delta Q}{\Delta V} = C_0 exp(\gamma V_{OC}) + D \tag{7}$$

So, the charge-carrier density as a function of V_{OC} is given by treating the device as a parallel-plate capacitor and integrating with respect to voltage, as

$$n = \frac{1}{Aed} \int_{-\infty}^{Voc} C_0 exp(\gamma V) dV$$
(8)

where A is the active layer area, and d is the active layer thickness. Then, the recombination rate coefficient can be determined, which is defined by

$$k(n) = \frac{1}{\tau(n)n} \tag{9}$$

The τ as a function of *n* follows an approximated exponential law of

$$\tau = \tau_0 (\frac{n}{n_0})^{\lambda} \tag{10}$$

suggesting that the non-geminate recombination is the dominant loss mechanism as the parameter of λ approaching 1. ⁵ The recombination order R (R= λ +1) was calculated by the exponential factor λ (λ equal to the slope of lg τ vs. lg *n*), R is expected to be 2 in

strictly bimolecular recombination conditions, and a higher value of R (R>2) measures the defects and inherent energy disorder that cause carrier recombination.

Jsc and Voc on the light intensity (\mathbf{P}_{light}) dependence. The correlation between Jsc and light intensity (P_{in}) can be expressed as $J_{SC} \approx P_{in}^{\alpha}$, where α is close to 1 suggesting minimal bimolecular recombination. ⁶ The dependence of Voc on light intensity is examined to further understand the recombination processes. Generally, with a slope s close to kT/q (where k is the Boltzmann constant, T is the temperature in Kelvin, q is the elementary charge), trap-assisted recombination should be negligible.

Space-charge-limited current (SCLC) measurements. The electron-only devices were fabricated with ITO/ZnO/Active layer/PNDIT-F3N/Ag structures and hole-only devices were fabricated with ITO/PEDOT:PSS/Active layer/MoOx/Ag structures. The SCLC mobility was calculated according to the Mott-Gurney square law:

$$J=9\varepsilon_{\rm r}\varepsilon_0\mu V^2/8L^3\tag{11}$$

where *J* is the current density, ε_r is the relative dielectric constant of the transport medium component, ε_0 is the vacuum permittivity, μ is the electron or hole mobility, *V* is the effective voltage, and *L* is the thickness of active layer.⁷

Impedance spectroscopy (IS). IS is employed to access the DOS information. ⁸ The chemical capacitors (C_{μ}^{n}) determined by IS reflect the capability of the photovoltaic device to accept or release additional charge carriers as the result of the shifting in E_{Fn} . As the E_{Fn} reflects the electron filling level. Using the zero-temperature approximation of Fermi function at occupancy >1%, DOS $g_n(E_{Fn})$ is obtained by extracting the C_{μ}^n following:

$$C^n_\mu = Lq^2 g_n(E_{Fn}) \tag{12}$$

where *L* is the thickness of the active layer, *q* is the elemental charge. ^{9, 10} By applying different illumination and corresponding the bias voltage, the E_{Fn} moves across the

electronic states, and the scatter plot of filling state as a function of voltage can be obtained.

Impedance measurements were carried out by illumination with a 1.5G illumination source (1000 W m⁻²) using a Solar Simulator. Impedance spectra were measured for different light intensities by applying a small voltage perturbation (10 mV rms) at frequencies from 8 MHz to 50 Hz, for different bias voltages. To measure in open circuit voltage conditions, a bias voltage equals to Voc at each light intensity was applied. These measurements were performed with LCR-IM3536 equipped with a frequency analyzer module, always at room temperature. The data was collected for 10 average. Recombination resistance and chemical capacitance were directly extracted from the low-frequency region.

EQE_{EL} **measurement.** The EQE_{EL} was recorded with an in-house-built system comprising a standard silicon photodiode 1010B, Keithley 2400 source meter (for supplying voltages and recording injected currents), and Keithley 6482 picoammeter (for measuring the emitted light intensity).

Pearson correlation analysis. In the correlation analysis, we used the Pearson correlation coefficient r. The Pearson correlation coefficient r between two variables X and Y is defined as

$$r = \frac{cov(X,Y)}{\sigma_X \sigma_Y} \tag{13}$$

where cov(X, Y) represents covariance between X and Y, σ_X and σ_Y represent respective standard deviations.

Refractive-index (n) and extinction-coefficient (k) measurement. The wavelength dependent refractive-index (n) and extinction-coefficient (k) was measured with SENTECH SE 850 DUV ellipsometer by Ms Le Zhao of National Center for Nanoscience and Technology.

Power generation simulation during summer solstice in Shanghai. Here is the formula for calculating the zenith angle θ_Z of Shanghai on that day.

$$\omega = 15 \times (ST - 12) \tag{14}$$

$$\alpha_s = \arcsin\left(\sin\varphi\sin\delta + \cos\varphi\cos\delta\cos\omega\right) \tag{15}$$

$$\theta_Z = 90^\circ - \alpha_s \tag{16}$$

ST is apparent solar time; φ is local latitude; δ is sun declination angle; ω is solar hour angle; α_s is solar altitude; θ_Z is zenith angle.

The formula of power generation on function of PCE is as follow.

$$P(mW) = PCE \times 100 \ mW/cm^2 \times 0.052 cm^2 \tag{17}$$

The power generation of as-cast (P_1) and sequential processing (P_2) is

$$\begin{split} P_1(mW) &= (15.08 \times 1 + 14.90 \times 2 + 14.45 \times 2 + 13.72 \times 2 + 12.74 \times 2 \\ &+ 11.49 \times 2) \times 0.052 = 7.78 \\ P_2(mW) &= (18.12 \times 1 + 18.08 \times 2 + 18.05 \times 2 + 17.98 \times 2 + 17.63 \times 2 \\ &+ 16.08 \times 2) \times 0.052 = 10.08 \\ P_2/P_1 &= 1.30 \end{split}$$

Thus, the ratio of power generation between as-cast and sequential processing devices is 1.30.

Supplementary Tables

DIB	SVA (min)	$J_{ m SC}$ (mA cm ⁻²)	$V_{\rm OC}$ (V)	FF (%)	PCE ^a (%)
	2	25.14	0.941	73.34	17.35
	3	(24.32±0.22)	(0.939 ± 0.003)	(72.78±0.73)	(16.63±0.31)
25	5	25.69	0.940	74.10	17.89
23 mg ml ⁻²	3	(25.27±0.17)	(0.937 ± 0.002)	(73.58±0.61)	(17.41±0.26)
	7	25.48	0.941	72.49	17.38
	/	(25.01±0.19)	(0.939 ± 0.003)	(72.17±0.46)	(16.94±0.18)
	2	25.40	0.944	73.85	17.71
	3	(24.89±0.24)	(0.938 ± 0.005)	(73.14±0.69)	(17.09±0.32)
20 11	5	25.95	0.943	74.51	18.24
30 mg ml ⁻	3	(25.55±0.18)	(0.939 ± 0.002)	(74.13±0.50)	(17.79±0.22)
	7	25.73	0.937	73.06	17.62
	/	(25.25±0.20)	(0.937 ± 0.004)	(72.51±0.57)	(17.15±0.29)
	2	24.70	0.941	72.79	16.92
	3	(24.28±0.25)	(0.938 ± 0.002)	(72.06±0.77)	(16.41±0.36)
25	5	25.37	0.939	73.17	17.43
35 mg ml ⁻	3	(24.94±0.21)	(0.938 ± 0.003)	(72.79±0.49)	(17.02±0.24)
	7	25.27	0.940	71.76	17.04
	1	(24.79±0.18)	(0.939±0.004)	(71.42±0.58)	(16.67±0.26)

Supplementary Table 1. Photovoltaic performance in variety DIB concentration and SVA duration under simulated AM 1.5G illumination.

^aThe average values are obtained from ~30 individual experimental results.

Lamellar ($q \approx 0.297 \text{ Å}^{-1}$)	Peak Area	d-spacing (Å)	CCL (Å)
As-cast	92.31±4.14	21.20	58.02
DIB	129.01±5.57	21.39	70.11
DIB/TA/SVA	133.36±5.96	21.14	73.82
DIB/SVA/TA	111.51±7.73	21.19	71.31
$(q \approx 0.395 \text{ Å}^{-1})$	Peak Area	d-spacing (Å)	CCL (Å)
$(q \approx 0.395 \text{ Å}^{-1})$ As-cast	Peak Area 29.61±1.03	<i>d</i> -spacing (Å) 16.37	CCL (Å) 68.61
$(q \approx 0.395 \text{ Å}^{-1})$ As-cast DIB	Peak Area 29.61±1.03 54.88±2.51	<i>d</i> -spacing (Å) 16.37 15.91	CCL (Å) 68.61 74.40
$(q \approx 0.395 \text{ Å}^{-1})$ As-cast DIB DIB/TA/SVA	Peak Area 29.61±1.03 54.88±2.51 57.94±2.20	<i>d</i> -spacing (Å) 16.37 15.91 15.88	CCL (Å) 68.61 74.40 76.59

Supplementary Table 2. Crystallization analysis for all-PSC films (in-plane).

Note: The error of d-spacing and CCL both less than 0.01 Å, which is due to the statistical properties of the scattering technology itself.

π-π $(q \approx 1.640 \text{ Å}^{-1})$	Peak Area	d-spacing (Å)	CCL (Å)
As-cast	1024.72±9.58	3.84	16.63
DIB	1047.16±10.22	3.84	18.29
DIB/TA/SVA	1162.85±9.76	3.84	19.27
DIB/SVA/TA	1028.03±12.64	3.85	18.16
Amorphous		٥	
$(q \approx 1.279 \text{ Å}^{-1})$	Peak Area	$d_{\mathrm{ap}}\left(\mathrm{A} ight)$	
As-cast	140.81±4.52	4.95	
DIB	128.73±4.16	4.94	
DIB/TA/SVA	118.12±3.88	4.94	
DIB/SVA/TA	140.40±6.94	4.94	

Supplementary Table 3. Crystallization analysis for all-PSC films (out-of-plane).

DM6·DV ΙΤ	Angle	$J_{ m SC}$	$V_{ m OC}$	FF	PCE
1 10.1 1-11	(°)	$(mA cm^{-2})$	(V)	(%)	(%)
	0	24.17	0.933	66.87	15.08
	0	(23.68±0.24)	(0.932 ± 0.001)	(66.31±0.55)	(14.64±0.27)
	10	23.53	0.928	67.05	14.64
	10	(23.08±0.24)	(0.928 ± 0.001)	(66.53±0.55)	(14.25±0.26)
	20	22.49	0.922	67.19	13.93
A a post	20	(21.98±0.26)	(0.921 ± 0.002)	(66.65±0.57)	(13.49±0.28)
As-cast	20	21.39	0.916	67.28	13.18
	50	(20.83±0.27)	(0.914 ± 0.002)	(66.72±0.58)	(12.70±0.28)
	40	20.06	0.910	67.43	12.31
	40	(18.49±0.30)	(0.908 ± 0.002)	(66.84±0.60)	(11.23±0.25)
	50	18.05	0.903	67.62	11.02
		(17.44±0.31)	(0.901 ± 0.003)	(67.03±0.61)	(10.54±0.29)
	0	25.89	0.942	74.32	18.12
		(25.52±0.22)	(0.941 ± 0.001)	(73.88±0.54)	(17.75±0.29)
	10	25.80	0.939	74.45	18.03
	10	(25.41±0.24)	(0.939 ± 0.001)	(73.96±0.56)	(17.66±0.31)
	20	25.77	0.935	74.65	17.98
DIR/TA/SVA	20	(25.34±0.25)	(0.934 ± 0.001)	(74.14±0.56)	(17.56±0.30)
	30	25.69	0.932	74.68	17.87
	30	(25.20±0.27)	(0.931 ± 0.002)	(74.10±0.58)	(17.40±0.32)
	40	25.30	0.927	74.71	17.52
	70	(24.78±0.27)	(0.925 ± 0.002)	(74.14±0.59)	(17.01 ± 0.32)
	50	24.29	0.923	74.78	16.76
	50	(23.77±0.30)	(0.921 ± 0.002)	(74.18±0.61)	(16.25±0.34)

Supplementary Table 4. Photovoltaic performance of as-cast and DIB/TA/SVA as function of light receiving angle under simulated AM 1.5G illumination based on PM6:PY-IT.

^aThe average values are obtained from ~30 individual experimental results. In order to reduce the impact of the edge shadow, the devices are measured without mask.

Supplementary Table 5. Photovoltaic performance of as-cast and DIB/TA/SVA as function of light receiving angle under simulated AM 1.5G illumination based on PM6:Y6.

DMC.VC	Angle	$J_{ m SC}$	Voc	FF	PCE
PNIO: 10	(°)	(mA cm ⁻²)	(V)	(%)	(%)
	0	25.16	0.867	70.31	15.33
	0	(24.76±0.22)	(0.866 ± 0.001)	(69.84 ± 0.55)	(14.98±0.25)
	10	24.29	0.862	70.52	14.77
	10	(23.92±0.23)	(0.860 ± 0.001)	(69.98 ± 0.55)	(14.40±0.26)
	20	23.38	0.858	70.74	14.19
A a cost	20	(22.95±0.25)	(0.858 ± 0.001)	(70.21±0.56)	(13.84±0.26)
As-cast	20	22.06	0.853	70.91	13.34
	30	(21.63±0.28)	(0.851 ± 0.001)	(70.38±0.58)	(12.95±0.27)
	40	20.32	0.848	71.24	12.27
	40	(19.84±0.31)	(0.846 ± 0.002)	(70.69 ± 0.58)	(11.85±0.29)
	50	18.17	0.843	71.45	10.94
	50	(17.60±0.35)	(0.842 ± 0.002)	(70.86 ± 0.60)	(10.50 ± 0.30)
	0	26.29	0.857	75.80	17.08
		(25.95±0.23)	(0.856 ± 0.001)	(75.38±0.54)	(16.75±0.28)
	10	26.06	0.855	75.87	16.90
	10	(25.64±0.25)	(0.855 ± 0.001)	(75.47±0.55)	(16.58±0.29)
	20	25.92	0.853	75.96	16.79
	20	(25.51±0.24)	(0.852 ± 0.001)	(75.53±0.56)	(16.43±0.29)
DID/IA/SVA	30	25.61	0.850	76.10	16.57
	30	(25.12±0.29)	(0.848 ± 0.001)	(75.65±0.58)	(16.12±0.32)
	40	25.16	0.848	76.26	16.27
	40	(24.65±0.32)	(0.846 ± 0.001)	(75.75±0.58)	(15.81±0.33)
	50	24.54	0.845	76.47	15.86
	50	(23.97±0.34)	(0.844 ± 0.001)	(75.92±0.59)	(15.38±0.34)

^aThe average values are obtained from ~30 individual experimental results.

In order to reduce the impact of the edge shadow, the devices are measured without mask.

Supplementary Table 6. Photovoltaic performance of as-cast and DIB/TA/SVA as function of light receiving angle under simulated AM 1.5G illumination based on D18:Y6.

D10.VC	Angle	$J_{ m SC}$	Voc	FF	PCE
D18:10	(°)	(mA cm ⁻²)	(V)	(%)	(%)
	0	25.56	0.869	70.62	15.69
	0	(24.98±0.24)	(0.869±0.001)	(70.06±0.62)	(15.22±0.28)
	10	24.62	0.866	70.71	15.08
	10	(24.00±0.29)	(0.864 ± 0.002)	(70.12±0.64)	(14.55±0.32)
	20	23.57	0.862	70.83	14.39
A a post	20	(22.75±0.33)	(0.860 ± 0.001)	(70.21±0.64)	(13.74±0.32)
As-cast	20	22.46	0.856	71.02	13.65
	30	(21.61±0.37)	(0.855±0.001)	(70.36±0.65)	(13.01±0.34)
	40	20.65	0.849	71.26	12.49
	40	(19.73±0.44)	(0.847 ± 0.002)	(70.54±0.67)	(11.79±0.39)
	50	18.52	0.842	71.54	11.16
		(17.60±0.46)	(0.841 ± 0.001)	(70.76±0.69)	(10.48±0.37)
	0	26.84	0.849	76.35	17.40
		(26.32±0.26)	(0.847 ± 0.001)	(75.86±0.59)	(16.97±0.30)
	10	26.68	0.846	76.42	17.25
	10	(26.07±0.29)	(0.844 ± 0.002)	(75.95±0.62)	(16.72±0.33)
	20	26.45	0.843	76.51	17.06
ΔΙΒ/ΤΑ/SVΑ	20	(25.69±0.32)	(0.841 ± 0.001)	(76.10±0.64)	(16.46±0.33)
	30	26.02	0.839	76.78	16.76
	30	(25.29±0.36)	(0.838 ± 0.001)	(76.17±0.63)	(16.15±0.36)
	40	25.39	0.835	76.96	16.32
	-0	(24.50±0.41)	(0.834 ± 0.002)	(76.31±0.66)	(15.61±0.39)
	50	24.64	0.830	77.19	15.79
	50	(23.69±0.45)	(0.829 ± 0.001)	(76.53±0.67)	(15.03±0.41)

^aThe average values are obtained from ~30 individual experimental results.

In order to reduce the impact of the edge shadow, the devices are measured without mask.

Supplementary Table 7. Photovoltaic performance of as-cast and DIB/TA/SVA as function of light receiving angle under simulated AM 1.5G illumination based on PM6:IT-4F.

DM6.IT /F	Angle	$J_{ m SC}$	Voc	FF	PCE
1 1/10.11-41	(°)	$(mA cm^{-2})$	(V)	(%)	(%)
	0	20.19	0.860	72.40	12.57
	0	(19.90±0.19)	(0.859±0.001)	(71.95±0.44)	(12.32±0.19)
	10	19.23	0.858	72.47	11.96
	10	(18.90±0.20)	(0.859±0.001)	(72.00±0.46)	(11.71±0.20)
	20	18.36	0.856	72.55	11.40
A a coat	20	(18.02±0.19)	(0.855 ± 0.002)	(72.08±0.46)	(11.13±0.20)
As-cast	20	16.91	0.852	72.79	10.49
	30	(16.54±0.22)	(0.850±0.001)	(72.29±0.47)	(10.17±0.20)
	40	15.38	0.846	73.02	9.50
	40	(14.99±0.23)	(0.844 ± 0.002)	(72.55±0.48)	(9.18±0.20)
	50	13.47	0.837	73.31	8.27
		(13.03±0.25)	(0.836 ± 0.002)	(72.78±0.50)	(7.93±0.21)
	0	21.17	0.863	74.96	13.69
		(20.87±0.19)	(0.862 ± 0.001)	(74.51±0.44)	(13.40±0.23)
	10	21.08	0.862	75.05	13.64
	10	(20.77±0.19)	(0.860 ± 0.001)	(74.59±0.44)	(13.34±0.23)
	20	20.96	0.861	75.11	13.55
	20	(20.65±0.20)	(0.859±0.001)	(74.63±0.45)	(13.26±0.23)
DID/IA/SVA	20	20.75	0.859	75.25	13.41
	50	(20.42±0.21)	(0.859±0.001)	(74.77±0.45)	(13.12±0.24)
	40	20.38	0.854	75.42	13.13
	40	(20.01±0.22)	(0.852±0.001)	(74.91±0.46)	(12.78±0.24)
	50	19.54	0.848	75.67	12.54
	50	(19.15±0.23)	(0.847 ± 0.001)	(74.21±0.47)	(12.05±0.22)

^aThe average values are obtained from ~30 individual experimental results.

In order to reduce the impact of the edge shadow, the devices are measured without mask.

Supplementary Table 8. Photovoltaic performance of as-cast and DIB/TA/SVA as function of light receiving angle under simulated AM 1.5G illumination based on PBDB-T:ITIC.

PRDR_T.ITIC	Angle	$J_{ m SC}$	Voc	FF	PCE
I DDD-1.IIIC	(°)	(mA cm ⁻²)	(V)	(%)	(%)
	0	15.56	0.897	62.07	8.66
	0	(15.08±0.28)	(0.895±0.002)	(61.45±0.61)	(8.29±0.24)
	10	14.94	0.893	62.14	8.29
	10	(14.46±0.30)	(0.890 ± 0.002)	(61.51±0.63)	(7.92±0.25)
	20	14.26	0.889	62.23	7.89
A	20	(13.90±0.33)	(0.887±0.001)	(61.57±0.64)	(7.60±0.25)
As-cast	20	13.07	0.883	62.41	7.20
	30	(12.72±0.32)	(0.880±0.002)	(61.72±0.67)	(6.91±0.24)
	40	11.58	0.875	62.60	6.34
	40	(11.17±0.36)	(0.873±0.003)	(61.88±0.69)	(6.03±0.25)
	50	9.62	0.866	62.92	5.24
		(9.19±0.40)	(0.863±0.003)	(62.17±0.70)	(4.93±0.26)
	0	17.41	0.897	68.26	10.66
		(17.09±0.27)	(0.895±0.001)	(67.65±0.60)	(10.34±0.25)
	10	17.14	0.895	68.34	10.48
	10	(16.81±0.29)	(0.894 ± 0.001)	(67.74±0.61)	(10.17±0.26)
	20	16.85	0.892	68.45	10.28
	20	(16.50±0.32)	(0.890 ± 0.002)	(67.82±0.63)	(9.95±0.27)
DID/IA/SVA	20	16.38	0.886	68.63	9.96
	30	(16.04±0.32)	(0.884 ± 0.002)	(67.97 ± 0.63)	(9.64±0.28)
	40	15.86	0.879	68.91	9.61
	40	(15.47±0.35)	(0.876 ± 0.002)	(68.23±0.66)	(9.24±0.30)
	50	15.21	0.871	69.24	9.17
	30	(14.78±0.38)	(0.868 ± 0.003)	(68.55±0.68)	(8.80±0.31)

^aThe average values are obtained from ~30 individual experimental results. In order to reduce the impact of the edge shadow, the devices are measured without mask.

Supplementary Table 9. 2D volumn integrate values in different incident angle light.

	0°	10°	20°	30°	40°	50°
As-cast	6.19*10 ³⁶	6.01*10 ³⁶	5.80*10 ³⁶	5.39*10 ³⁶	5.10*10 ³⁶	4.51*10 ³⁶
DIB/TA/SVA	7.12*10 ³⁶	7.07*10 ³⁶	7.03*10 ³⁶	6.99*10 ³⁶	6.89*10 ³⁶	6.71*10 ³⁶

ST (h)	ω (°)	φ (°)	δ (°)	α_s (°)	$ heta_Z$ (°)	Normalized θ_Z
7	-75	41	23.4	26.09	63.91	46.31
8	-60	41	23.4	37.36	52.64	35.04
9	-45	41	23.4	48.62	41.38	23.78
10	-30	41	23.4	59.36	30.64	13.04
11	-15	41	23.4	68.37	21.63	4.03
12	0	41	23.4	72.4	17.60	0
13	15	41	23.4	68.37	21.63	4.03
14	30	41	23.4	59.36	30.64	13.04
15	45	41	23.4	48.62	41.38	23.78
16	60	41	23.4	37.36	52.64	35.04
17	75	41	23.4	26.09	63.91	46.31

Supplementary Table 10. Changes of zenith angle during summer solstice in Shanghai.

Normalized θ_Z gives the device an inclination of 17.6° so that it could be perpendicular to sunlight at noon.

Supplementary Table 11. The efficiency corresponding to the angle of incidence at different times.

$\mathbf{CT}(\mathbf{h})$	companding 0 -	PCE (%)		
<i>SI</i> (n)	corresponding θ_Z	As-cast	DIB/TA/SVA	
7	46.31	11.49	17.08	
8	35.04	12.74	17.63	
9	23.78	13.72	17.98	
10	13.04	14.45	18.05	
11	4.03	14.90	18.08	
12	0	15.08	18.12	
13	4.03	14.90	18.08	
14	13.04	14.45	18.05	
15	23.78	13.72	17.98	
16	35.04	12.74	17.63	
17	46.31	11.49	17.08	

	D (cm ² s ⁻¹)	τ (ps)	$L_{\rm D}$ (nm)
As-cast	4.72*10 ⁻²	266.35±6.56	35.46
DIB	5.18*10-2	274.77±6.87	37.72
DIB/TA/SVA	5.49*10 ⁻²	289.63±6.95	39.87

Supplementary Table 12. TAS parameters of neat PY-IT films in different conditions with varying excited fluence. The data was achieved through exponential fitting.

Supplementary Table 13. TAS parameters of blend films in different conditions. The data was achieved through biexponential fitting.

	$\tau_1(ps)$	A_1	$ au_2(\mathrm{ps})$	A_2	$\tau_{\rm p}~({\rm ps})$
As-cast	0.531±0.026	0.276±0.007	13.706±0.824	0.669±0.006	1498.7±21.67
DIB	0.446±0.021	0.359 ± 0.007	12.071±0.610	0.592 ± 0.006	1955.1±24.94
DIB/TA/SVA	0.416±0.023	0.424 ± 0.008	11.365±0.546	0.542±0.011	2151.9±27.37

Supplementary Table 14. Parameters fitted in TPC/TPV and light intensity experiment. (*n* is charge density, τ_c is the charge lifetimes, α is the parameter about non-geminate recombination, *s* is the curve slope of voltage versus light intensity)

	λ	$n (\times 10^{19} \mathrm{m}^{-3})$	τ_{c} (µs)	α	s(kT/q)
As-cast	1.34±0.008	5.31	1.19	0.935±0.001	1.188±0.051
DIB	1.31±0.004	7.64	1.33	0.936±0.002	1.129±0.037
DIB/TA/SVA	1.30±0.005	8.78	1.39	0.938±0.001	1.105±0.044
DIB/SVA/TA	1.45±0.013	1.45	0.84	0.931±0.005	1.493±0.081

	$\mu_{\rm e} \ ({\rm cm}^2 \ {\rm s}^{-1} \ {\rm V}^{-1})$	$\mu_{\rm h} ({\rm cm}^2 {\rm s}^{-1} {\rm V}^{-1})$	μ e/ μ h
As-cast	$(1.12\pm0.288)\times10^{-3}$	$(3.01\pm0.352)\times10^{-4}$	3.72
DIB	$(1.22\pm0.323)\times10^{-3}$	$(3.52\pm0.339)\times10^{-4}$	3.47
DIB/TA/SVA	$(1.27\pm0.274)\times10^{-3}$	$(3.71\pm0.404)\times10^{-4}$	3.42
DIB/SVA/TA	$(8.96\pm0.522)\times10^{-4}$	$(2.04\pm0.597)\times10^{-4}$	4.39

Supplementary Table 15. Mobilities obtained from SCLC measurements.

Supplementary Table 16. DoS details for all-PSC in different condition.

	$N_{\rm t}~({\rm cm}^{-3})$	$E_{\rm t}~({\rm meV})$
As-cast	(3.36±0.282)×10 ¹⁸	139±0.9
DIB	(6.00±0.361)×10 ¹⁸	118±1.4
DIB/TA/SVA	(1.28±0.190)×10 ¹⁹	99±0.7
DIB/SVA/TA	(2.18±0.524)×10 ¹⁸	162±2.5

Supplementary Figures

Supplementary Fig. 1 The previous experimental data about surface optical morphology based on P3HT:PCBM in our group.

Supplementary Fig. 2 a, UV-vis absorption spectroscopy of pure and blend films, **b,** normalized absorption spectra of the neat PY-IT in different concentration of DIB.

Supplementary Fig. 3 PL spectra of **a**, PM6 and blends in different conditions excited at 520 nm, **b**, PY-IT and blends in different conditions excited at 750 nm.

Supplementary Fig. 4 In site thickness variation curve of polymer films with as-cast, CN, DIB (in CF) in steady solvent evaporation process.

Supplementary Fig. 5 The film thickness in DIB, DIB/TA, DIB/TA/SVA, DIB/SVA, DIB/SVA/TA process. The values are obtained from around 10 experimental data.

Supplementary Fig. 6 Schematic diagram of process routing for DIB/TA/SVA.

Supplementary Fig. 7 Device performance in a, 25 mg ml⁻¹ DIB, b, 30 mg ml⁻¹ DIB,
c, 35 mg ml⁻¹ DIB and SVA for 3/5/7 min.

Supplementary Fig. 8 Energy level measurement of **a**, CV for PM6 and PY-IT neat films, and **b**, Energy level diagram (unit, eV).

Supplementary Fig. 9 the efficiency of ITO/2PACZ/PM6:PY-IT/F3N/Ag in optimum condition.

Supplementary Fig. 10 The certification test report of the best performance by the Chengdu Institute of Product Quality Inspection Co., Ltd. National Photovoltaic Product Quality Inspection &Testing Center. (the cover of the report)

Chengdu Institute of Product Quality Inspection Co., Ltd. National Photovoltaic Product Quality Inspection &Testing Center TEST REPORT

est Report No.AGXB	122W00507	T REFORT	Page 1 of 3	
Product Name	Organic Solar Cell	Trade Mark	1	
Manufacture Date	16/11/2022	Model /Type	1	
Sample No.	AGXB122W00507	Sample Grade	7	
Sample Quantity	One piece	Sample State	Normal	
Delivery Date	18/11/2022	Sample Delivered personnel	Feng Liu	
Commission unit	Shanghai Jiao Tong University	Manufacturer	Shanghai Jiao Tong University	
Commission unit address	No. 800 Dongchuan Road	Manufacturer Address	No. 800 Dongchuan Road	
Commission unit Zip code	200240	Manufacturer Zip code	200240	
Commission unit Tel.	17602152711	Manufacturer Tel.	17602152711	
Center Address	No. 355, 2 nd Tengfei Road, Southwest Airport Economic Development Zone, Chengdu, Sichuan, P. R. China.	Measurement Date	18/11/2022	
Methods	IEC 60904-1:2006 Photovoltaic devices-Part 1: Measurement of Photovoltaic Current-Voltage Characteristics.			
Test conclusion This column blank. 检验检测专用章 (Snew chap up r test apprt) Issue D能验检测表思算				
Remarks	The mask area is provided by t Original number of the sample	he Commission unit: 0.0313 :Z15-4.	cm ² ;	
Approved by	夏庆塘 Reviewed L	y 成略桥	Measured by 2/19/32	

Supplementary Fig. 11 The basic information of the test sample, commission unit, and third-party agency. (page 1 of the report)

Chengdu Institute of Product Quality Inspection Co., Ltd. National Photovoltaic Product Quality Inspection &Testing Center TEST REPORT

Supplementary Fig. 12 The specific performance parameters of the test sample. (page 2 of the report)

Chengdu Institute of Product Quality Inspection Co., Ltd. National Photovoltaic Product Quality Inspection & Testing Center TEST REPORT

Supplementary Fig. 13 The mask used in the test. (page 3 of the report)

Supplementary Fig. 14 Continuous illumination stability of normalized **a**, *J*_{CS} **b**, *V*_{OC} **c**, FF **d**, PCE based on PM6:PY-IT in different conditions.

Supplementary Fig. 15 Relative EQE curves of PM6:PY-IT in different condition compared to as-cast device.

Supplementary Fig. 16 The BHJ in **a**, DIB/TA/SVA condition and **b**, DIB/SVA/TA condition prepared on silicon wafer.

Supplementary Fig. 17 Refractive index (n) and extinction coefficient (k) of the involved layers for optical modeling.

Supplementary Fig. 18 a, the measured EQE/IQE (solid line) vs simulated EQE/IQE (dash line), **b**, the simulated EQE as a function of junction thickness.

Supplementary Fig. 19 Plots of the *V*_{OC} versus *J*_{SC} for the efficient all-PSCs reported in the literature.

Supplementary Fig. 20 a, 2D GIWAXS patterns and **b,** line cut profiles for PM6 and PY-IT neat films.

Supplementary Fig. 21 2D GIWAXS patterns for PM6:PY-IT blends in different conditions.

Supplementary Fig. 22 Morphology for PM6:PY-IT BHJ films of **a-c**, height images, **d-f**, phase images, and **g-i**, TEM images in different conditions.

Supplementary Fig. 23 FTIR spectra of PM6 and PY-IT.

Supplementary Fig. 24 RSoXS measurement of **a**, CK-RSoXS profiles and **b**, NK-RSoXS profiles for blended films.

Supplementary Fig. 25 a, Surface profile, b, three-dimensional AFM, c, diagonal linecut of surface profile of as-cast. d, Surface profile, e, three-dimensional AFM, f, diagonal linecut of surface profile of DIB. g, Surface profile, h, three-dimensional AFM, i, diagonal linecut of surface profile of DIB/TA. j, Surface profile, k, three-dimensional AFM, l, diagonal linecut of surface profile of DIB/TA. J.

Supplementary Fig. 26 Optical microscope photograph of a, as-cast b, DIB c, DIB/TAd, DIB/TA/SVA e, DIB/SVA f, DIB/SVA/TA.

Supplementary Fig. 27 *J-V* curves and decay histogram of as-cast and sequential processing as function of light receiving angle for **a**, **b**, PM6:Y6, **c**, **d**, D18:Y6, **e**, **f**, PM6:IT-4F, **g**, **h**, PBDB-T:ITIC.

Supplementary Fig. 28 Optical microscope photograph, three-dimensional AFM, surface profile of **a**, **b**, **c**, PM6:Y6, **d**, **e**, **f**, D18:Y6, **g**, **h**, **i**, PM6:IT-4F, **j**, **k**, **l**, PBDB-T:ITIC in sequential processing.

Supplementary Fig. 29 The normalized light field (optical electric field $|E(x)^2|$) distribution for solar cell devices with different surface morphology at different incident light in **a**, 0° **b**, 10° **c**, 20° **d**, 30° **e**, 40° **f**, 50° (as cast flat device); **g**, 0° **h**, 10° **i**, 20° **j**, 30° **k**, 40° **l**, 50° (DIB/TA/SVA rugged device).

Supplementary Fig. 30 The 2D volume integrate and *J*_{SC} as function of light incident angle. (The solid blue line and red line represent the *J*_{SC} for as-cast and DIB/TA/SVA condition at different incident angles, respectively; the dash blue line and red line represent the 2D integrate value of light field distribution for as-cast and DIB/TA/SVA condition at different incident angles, respectively.)

Supplementary Fig. 31 The nonlinear fitting curve of PCE value in different incident angle.

Supplementary Fig. 32 TAS for neat PY-IT films in different conditions. **a-c**, color plot, **d-f**, representative at indicated delay times, **g-i**, the excitons decay dynamics under the excitation of 9, 18 and 36 mJ cm⁻².

Supplementary Fig. 33 Contour maps of TAS for **a**, neat PM6 (with a color scale from around -4×10^{-3} to 8×10^{-3}), **b**, as-cast blended film (with a color scale from around -3×10^{-3} to 3×10^{-3}), **c**, DIB blended film (with a color scale from around -10×10^{-3} to 10×10^{-3}), and **d**, DIB/TA/SVA blended film (with a color scale from around -15×10^{-3} to 15×10^{-3}).

Supplementary Fig. 34 Representative at indicated delay times of TAS for a, neat PM6,b, as-cast blended film, c, DIB blended film, and d, DIB/TA/SVA blended film.

Supplementary Fig. 35 Recombination kinetics of polaron in corresponding conditions.

Supplementary Fig. 36 Photocurrent density (J_{ph}) versus effective bias (V_{eff}) characteristics in different conditions.

Supplementary Fig. 37 a, Lifetime of carriers and **b**, charge density of carriers as a function of V_{OC} fitted from TPC and TPV. (κ_1 and κ_2 represent the slope of the fitted line for lifetime and charge density as function of V_{OC} , respectively)

Supplementary Fig. 38 Characteristics of a, JSC and b, VOC versus light intensity.

Supplementary Fig. 39 SCLC mobility measurement in different conditions of **a**, electron-only devices and **b**, hole-only devices fitted by Mott-Gurney law. (the μ_e represents electron mobility; the μ_h represents hole mobility)

Supplementary Fig. 40 EQE_{EL} of the blend PM6:PY-IT devices. ($\Delta E_{non-rad}$ represents the non-radiative recombination)

Supplementary Fig. 41 Pearson correlation analysis of major devices (as-cat, DIB, DIB/TA/SVA) and structure parameters.

Supplementary References

- Ambrosio, A., Devlin, R. C., Capasso, F., & Wilson, W. L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS *Photonics* 4, 846-851 (2017).
- 2. Chandrabose, S. et al. High exciton diffusion coefficients in fused ring electron acceptor films. *J. Am. Chem. Soc.* **141**, 6922-6929 (2019).
- Rivnay, J., Noriega, R., Kline, R. J., Salleo, A., & Toney, M. F. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. *Phys. Rev. B* 84, 045203 (2011).
- Bokel, F. A. et al. In situ X-ray scattering studies of the influence of an additive on the formation of a low-bandgap bulk heterojunction. *Chem. Mater.* 29, 2283-2293 (2017).
- Wood, S., Blakesley, J. C., & Castro, F. A. Assessing the validity of transient photovoltage measurements and analysis for organic solar cells. *Phys. Rev. Appl.* 10, 024038 (2018).
- Schilinsky, P., Waldauf, C. & Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. *Appl. Phys. Lett.* 81, 3885–3887 (2002).
- Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer:fullerene bulk heterojunction solar cells. *Adv. Mater.* 19, 1551– 1566 (2007).
- Fabregat-Santiago, F., Garcia-Belmonte, G., Mora-Sero, I., & Bisquert, J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. *Phys. Chem. Chem. Phys.* 13, 9083-9118 (2011).
- Garcia-Belmonte, G. et al. Influence of the intermediate density-of-states occupancy on open-circuit voltage of bulk heterojunction solar cells with different fullerene acceptors. *J. Phys. Chem. Lett.* 1, 2566-2571 (2010).
- 10. Garcia-Belmonte, G., Boix, P. P., Bisquert, J., Sessolo, M., & Bolink, H. J. Simultaneous determination of carrier lifetime and electron density-of-states in

P3HT: PCBM organic solar cells under illumination by impedance spectroscopy. *Sol. Energy Mater. Sol. Cells* **94**, 366-375 (2010).