External globus pallidus input to the dorsal striatum regulates habitual seeking behavior in male mice

Matthew Baker^{1,#}, Seungwoo Kang^{1,2,#}, Sa-Ik Hong¹, Minryung Song³, Minsu Abel Yang³, Lee Peyton¹, Hesham Essa¹, Sang Wan Lee^{3,4}, and Doo-Sup Choi^{1,5,6,*}

¹Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA. ²Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA. ³Department of Brain and Cognitive Sciences, ⁴Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. ⁵Department of Psychiatry and Psychology, ⁶Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA.

[#]These authors contributed equally to this work.

*Corresponding author: choids@mayo.edu

Keywords: external globus pallidus, arkypallidal neuron, goal-directed behavior, habit, reward-seeking behavior

Supplementary Figure 1. Cellular markers of dorsolateral striatum (DLS)-projecting external globus pallidus (GPe) arkypallidal neurons. (a) Schematic of retrograde mCherry virus injection into the DLS and representative IHC images at the injection site and in the GPe. Scale: 200 μ m. (b) representative IHC images of GPe arkypallidal cells and FOXP2 and PV cellular markers. Scale: 50 μ m. (c) Quantification of overlap of retrograde mCherry with FOXP2 and PV cellular markers in the GPe. *n* = 3 mice/group. Data represent mean ± SEM. Source data are provided as a Source Data file. Supplementary Figure 1a was created with BioRender.com.

Supplementary Figure 2. External globus pallidus (GPe) arkypallidal Ca²⁺ imaging training. (a) Average weight of mice undergoing food restriction prior to operant conditioning. **(b)** Latency to magazine decreased across training sessions. $F_{(1,16)} = 142.9$, p < 0.0001 for time, $F_{(1,16)} = 5.34$, p < 0.04 for group, $F_{(1,16)} = 1.14$, p = 0.30 for interaction. n = 5 mice/group. **(c)** Nose poke rates increased over time in the active hole. For RR, $F_{(1,80)} = 127.3$, p < 0.0001 for nose poke, $F_{(9,80)} = 4.99$, p < 0.0001 for time, $F_{(9,80)} = 4.93$, p < 0.0001 for interaction. For RI, $F_{(1,80)} = 142.1$, p < 0.0001 for nose poke, $F_{(9,80)} = 1.85$, p = 0.07 for time, $F_{(9,80)} = 1.77$, p = 0.09 for interaction. **(d)** Total nosepokes for RR and RI groups across the training session. **(e)** Calcium signal for rewarded (R+) and unrewarded (R-) magazine exit. For the rewarded magazine exit [M_{exit} (R+)], $F_{(1,7)} = 6.66$, p = 0.036 for group (RR vs RI), $F_{(120,840)} = 0.85$, p = 0.87 for time, $F_{(120,840)} = 1.26$, p = 0.039 for interaction. For the non-rewarded magazine exit [M_{exit} (R-)], $F_{(1,7)} = 0.20$, p = 0.67 for group (RR vs RI), $F_{(120,840)} = 8.65$, p < 0.0001 for time, $F_{(120,840)} = 5.51$, p < 0.0001 for interaction. Two-way repeated measures ANOVA with Tukey's *posthoc* tests were used for (**b**-e). n = 5 (RR), 4 (RI). See supplementary Table 3 for specific significant time ranges. Data represent mean \pm SEM. *p < 0.05.

Supplementary Figure 3. External globus pallidus (GPe) arkvpallidal neuron Ca²⁺ signal changes across an operant session. For rewarded nose poke (a) unrewarded nose poke (b), simple linear regression models for the association between a change in GPe arkypallidal neuron Ca2+ signal (2 sec after - 2 sec before) and operant trial duration averaged into 10 blocks. For the rewarded nose poke (NP+), $F_{(1,48)}$ = 8.26, p = 0.006 for RR, $F_{(1,38)}$ = 6.78, p = 0.013 for RI, $F_{(1,86)} = 0.79$, p = 0.38 for RR versus RI. For the non-rewarded nose poke (NP-), $F_{(1,48)} = 1.48$, p = 0.23 for RR, $F_{(1,38)} =$ 11.66, p = 0.002 for RI, $F_{(1.86)} = 10.08$, p = 0.002for RR versus RI. Rewarded magazine entry (c) unrewarded magazine entry (d). For the rewarded magazine entry [Mentry (R+)], F(1,48) = 6.62, p = 0.013 for RR, $F_{(1,38)} = 28.86$, p <0.0001 for RI, $F_{(1,86)} = 5.34$, p = 0.023 for RR versus RI. For the non-rewarded magazine entry [M_{entry} (R-)], $F_{(1,48)}$ = 1.96, p = 0.17 for RR, $F_{(1,38)} = 9.08, p = 0.005$ for RI, $F_{(1,86)} = 0.69, p =$ 0.41 for RR versus RI. Rewarded magazine exit (e) and unrewarded magazine exit (f). For the rewarded magazine exit $[M_{exit} (R+)], F_{(1,48)} =$ 9.08, p = 0.004 for RR, $F_{(1,38)} = 3.12$, p = 0.09for RI, $F_{(1,86)} = 0.60$, p = 0.44 for RR versus RI. For the non-rewarded magazine exit [Mexit (R-)], $F_{(1,48)} = 3.30$, p = 0.075 for RR, $F_{(1,38)} = 21.77$, p < 0.0001 for RI, $F_{(1,86)} = 2.99$, p = 0.13 for RR versus RI. Linear regression tests were used for (a-f). Lines indicate regression line ± 95% CI. R² value indicates a significant association between the change in Ca2+ signal and behavioral event progression across a trial. *p < 0.05 for between-group slope comparisons. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file. Supplementary Figure 3a-f were created with BioRender.com.

Supplementary Figure 4. Effects of caspase-3 (casp3) ablation of external globus pallidus (GPe) arkypallidal neurons on spontaneous locomotion and motor skill acquisition. (a) GPe arkypallidal neuron ablation did not alter distance traveled or average velocity in the open field test, (b) or anxiety-like behaviors during the first 10 minutes. (c) Latency to fall increased across training sessions for both groups. $F_{(49,1274)} = 8.68$, p < 0.0001 for time, $F_{(1,26)} = 1.28$, p = 0.27 for group (control vs casp3), $F_{(49,1274)} = 0.76$, p = 0.89 for interaction. (d) Caspase mice had a shorter latency to fall compared to control mice for days. $F_{(4,130)} = 58.82$, p < 0.0001 for time, $F_{(1,130)} = 1.49$, p = 0.22 for group (control vs casp3), $F_{(4,130)} = 2.99$, p = 0.018 for interaction. Sidak's *posthoc* tests show *p < 0.05 in day 1 (p = 0.0005) and day 2 (p = 0.018). Two-tailed Mann-Whitney tests were used for (**a-b**). Two-way repeated measures ANOVA with Sidak's *posthoc* tests were used for (**c-d**). n = 14 mice/group. Data represents mean \pm SEM. *p < 0.05. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 5. Effects of caspase-3 (casp3) ablation of external globus pallidus (GPe) arkypallidal neurons on operant training. (a) Average weight of mice undergoing food restriction prior to operant conditioning. (b) Latency to magazine decreased across training sessions. For RR, $F_{(1,18)} = 29.91$, p < 0.0001 for time, $F_{(1,18)} = 0.00$, p = 0.99 for group, $F_{(1,18)} = 2.36$, p = 0.11 for interaction. For RI, $F_{(1,18)} = 30.55$, p < 0.0001 for time, $F_{(1,18)} = 0.13$, p = 0.73 for group, $F_{(1,18)} = 0.01$, p = 0.98 for interaction. (c) Nose poke rates increased over time in the active hole. For RR, $F_{(9,161)} = 13.38$, p < 0.0001 for time, $F_{(1,18)} = 0.21$, p = 0.65 for group, $F_{(9,161)} = 0.66$, p = 0.74 for interaction. For RI, $F_{(9,161)} = 20.64$, p < 0.0001 for time, $F_{(1,18)} = 0.22$, p = 0.86 for interaction. Total nosepokes also increased over time. For RR, $F_{(9,161)} = 18.29$, p < 0.0001 for time, $F_{(1,18)} = 0.03$, p = 0.86 for group, $F_{(9,161)} = 0.2$, p = 0.99 for interaction. For RI, $F_{(9,161)} = 25.26$, p < 0.0001 for time, $F_{(1,18)} = 0.17$, p = 0.68 for group, $F_{(9,161)} = 0.35$, p = 0.99 for interaction. For RI, $F_{(9,161)} = 25.26$, p < 0.0001 for time, $F_{(1,18)} = 0.17$, p = 0.68 for group, $F_{(9,161)} = 0.35$, p = 0.99 for interaction. For RI, $F_{(9,161)} = 25.26$, p < 0.0001 for time, $F_{(1,18)} = 0.17$, p = 0.68 for group, $F_{(9,161)} = 0.35$, p = 0.99 for interaction. For RI, $F_{(9,161)} = 25.26$, p < 0.0001 for time, $F_{(1,18)} = 0.17$, p = 0.68 for group, $F_{(9,161)} = 0.35$, p = 0.99 for interaction. Two-way repeated measures ANOVA tests were used for (b-c). n = 10 mice/group. Total nosepokes across training days. Data represent mean \pm SEM. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 6. Effect of external globus pallidus (GPe) arkypallidal neuron ablation (casp3) on goal-directed and habitual seeking of an ethanol-containing reward and baseline ethanol preference and consumption. (a) RR-trained (Goal-directed; 10% sucrose 10% ethanol reward) sham mice reduced nosepoke responses in the devalued state, confirming goal directed behavior. However, casp3 mice showed no changes in nose poke responses between valued and devalued states, typical of habitual behavior. (b) RI-trained mice showed no differences between valued and devalued states, suggesting habitual behavior. (c) 10% ethanol preference and consumption during a continuous access two-bottle choice test. For preference, $F_{(13,234)} = 9.09$, p < 0.0001 for time, $F_{(1,18)} = 0.33$, p = 0.57 for group, $F_{(13,234)} = 1.29$, p = 0.22 for interaction. For consumption, $F_{(13,234)} = 3.54$, p < 0.0001 for time, $F_{(1,18)} = 0.39$, p = 0.54 for group, $F_{(13,234)} = 0.87$, p = 0.58 for interaction. Wilcoxon test was used for (a-b). Two-way repeated measures ANOVA tests were used for (c). n = 8 mice/group. Data represent mean \pm SEM. *p < 0.05. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file. Supplementary Figure 6c was created with BioRender.com.

Supplementary Figure 7. Effects of C21 concentration on spontaneous locomotion in mice expressing hM3Dq in external globus pallidus (GPe) arkypallidal neurons in the open field test. (a) There was no effect of C21 concentration on distance traveled, average velocity, or ambulatory time and episodes. (b) Nor was there any effect on anxiety-like behaviors during the first 10 minutes of the open field test. Kruskal-Wallis tests were used for (a-b). n = 5 mice/group. Data represent mean ± SEM. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 8. Effects of IP injection groups on spontaneous locomotion in mice expressing hM3Dq in external globus pallidus (GPe) arkypallidal neurons in the open field test. (a) No effects of the injection group on distance traveled, average velocity, or ambulatory time, except the main effect on ambulatory episodes (p = 0.02). (b) No effects on anxiety-like behaviors during the first 10 minutes of the open field test. Kruskal-Wallis tests were used for (a-b). n = 5 mice/group. Data represent mean ± SEM. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 9. Operant training of hM3Dq-expressing mice in external globus pallidus (GPe) arkypallidal neurons. (a) Average weight of mice undergoing food restriction prior to operant conditioning. (b) Latency to magazine decreased across training sessions. $F_{(1,49)} = 17.29$, p = 0.0001 for time. (c) Nose poke rates increased over time in the active hole. $F_{(1,168)} = 91.68$, p < 0.0001 for time. Total nosepokes for RI group across the training session. $F_{(1,168)} = 97.61$, p < 0.0001 for time. One-way ANOVA. n = 17 mice. Data represent mean ± SEM. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 10. Effect of D1R agonist, SKF38393, on RI operant conditioning. (a) No differences in nose poke rates between the valued and devalued state for RI-trained mice with saline, saline + SKF, nor C21 + SKF, indicating habitual reward-seeking. (b) Systemic D1R activation increased magazine entries compared to saline and coadministration of C21 in mice expressing hM3Dq in GPe arkypallidal neurons. For magazine entry, Dunn's *posthoc* tests show difference between Saline and Saline + SKF (p = 0.048), Saline + SKF and C21 + SKF (p = 0.034). Wilcoxon test was used for (a). Kruskal-wallis test with Dunn's *posthoc* tests were used for (b). n = 8 mice/group. Data represent mean ± SEM. *p < 0.05. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 11. Effect of chemogenetic activation of external globus pallidus (GPe) arkypallidal neurons on goal-directed RR conditioning. (a) Differences between the valued and devalued state for RR-trained mice with saline (p = 0.008) and C21 groups (p = 0.016), indicating goal-directed reward-seeking. (b) Chemogenetic activation of GPe arkypallidal neurons decreased nose poke (p = 0.03) and magazine entry (p = 0.031), but not in magazine duration (p = 0.67)-seeking behaviors during extinction testing. Wilcoxon test was used for (a). Two-tailed Mann Mann-Whitney tests were used for (b). n = 8 mice/group. Data represent mean ± SEM. *p < 0.05. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 12. Effect of chemogenetic activation of external globus pallidus (GPe) arkypallidal neurons on habitual sweetened ethanol-seeking. (a) No differences in nosepoke rates between the valued and devalued state for RI-trained mice with saline or C21 groups indicated habitual-seeking. (b) Chemogenetic activation of GPe arkypallidal neurons decreased nose poke (p = 0.0073), magazine entry (p = 0.046), and magazine duration (p = 0.0065)-seeking behaviors during extinction testing. Wilcoxon test was used for (a). Two-tailed Mann Mann-Whitney tests were used for (b). n = 10 mice/group. Data represent mean ± SEM. *p < 0.05. See Supplementary Table 2 for full statistical information. Source data are provided as a Source Data file.

Supplementary Figure 13. Possible circuit mechanisms of GPe arkypallidal neurons on habitual behaviors. Circuit overview involving the external globus pallidus (GPe) and dorsolateral striatum (DLS), including excitatory glutamatergic (red) and inhibitory GABAergic (blue) projections. (a) Caspase 3-induced ablation of the arky GPe > DLS circuit caused an increase in cFos expression in the DLS and resulted in a shift from goal-directed to habitual seeking. (b) In contrast, chemogenetic activation (hM3Dq) of arky^{GPe→DLS} caused a global reduction in seeking behaviors, which was blocked by D1R agonism. Possible afferent innervation of arkypallidal (arky) neurons from dorsal striatal medium spiny neurons (MSN), motor cortex (MCx), and neighboring prototypic (proto) neurons, which also project to the subthalamic nucleus (STN). Supplementary Figure 13a, and b were created with BioRender.com.

	SVM Data input				
Event	Before		After		AUC
-	Start (s)	End (s)	Start (s)	End (s)	
	-2	0	0	2	0.70 ± 0.001
Nasa naka	-1.5	0	0	1.5	0.68 ± 0.001
Nose-poke	-1	0	0	1	0.65 ± 0.001
-	-0.5	0	0	0.5	0.65 ± 0.001
	-2	0	0	2	0.66 ± 0.001
Magazine entry	-1.5	0	0	1.5	0.67 ± 0.001
	-1	0	0	1	0.67 ± 0.001
	-0.5	0	0	0.5	0.68 ± 0.001
Magazine exit	-2	0	0	2	0.65 ± 0.001
	-1.5	0	0	1.5	0.68 ± 0.001
	-1	0	0	1	0.70 ± 0.001
	-0.5	0	0	0.5	0.71 ± 0.001

Supplementary Table 1. SVM AUC results to classify behavioral task types for all time windows of analysis using fiber photometry data.

Figure	Statistical	Comparison	Value	<i>p</i> value
Figure 1h		Proin region	$E_{11} = 97.60$	p<0.0001
Figure 15	Une-way ANOVA		$F_{2,6} = 07.00$	p < 0.0001
Eiguro 1d	Linnaired T test		q = 10.72 t(4) = 8.72	p = 0.0012
Figure 10	Wilcoven test		1(4) = 0.72	p = 0.001
Figure 20	WIICOXUIT LESI		W- 500	p = 0.030
Eiguro 2g			$F_{47} = 5.00$	p = 0.02
Figure 29			$F_{400,040} = 11.40$	p = 0.040
		NP+: Interaction	$F_{400,040} = 1.62$	p = 0.0001
			$F_{1.7} = 12.34$	p = 0.0001
		NP-: Time	$F_{120,840} = 12.52$	p = 0.0000
	/	NP-: Interaction	$F_{120,840} = 5.52$	p < 0.0001
Figure 2h	Two-way RM	ME+: BR vs Bl	$F_{1.7} = 25.84$	p = 0.00014
rigaro zn	ANOVA	ME+: Time	$F_{120,840} = 14.48$	p < 0.0001
	/	ME+: Interaction	$F_{120,840} = 5.73$	p < 0.0001
	Two-way RM	ME -: RR vs RI	$F_{1,7} = 0.05$	p = 0.83
	ANOVA	ME -: Time	$F_{120,840} = 5.60$	p < 0.0001
	/	ME - Interaction	$F_{120,840} = 1.74$	p< 0.0001
Figure 3b	One-sample t-	Accuracy NP vs 50%	t(1599) = 116.1	p< 0.0001
i iguio ob	test			
	One-sample t-	Accuracy MEntry vs 50%	t(1599) = 136.4	p< 0.0001
	test	y Lindy		,
	One-sample t-	Accuracy M _{Exit} vs 50%	t(1599) = 105.7	<i>p</i> < 0.0001
	test			
	One-sample t-	Sensitivity NP vs 50%	t(1599) = 109.1	<i>p</i> < 0.0001
	test			
	One-sample t-	Sensitivity M _{Entry} vs 50%	t(1599) = 126.9	<i>p</i> < 0.0001
	test			
	One-sample t-	Sensitivity M _{Exit} vs 50%	t(1599) = 101.4	<i>p</i> < 0.0001
	test			
	One-sample t-	Specificity NP vs 50%	t(1599) = 104.8	<i>p</i> < 0.0001
	test	0	((4500) 440.0	
	One-sample t-	Specificity M _{Entry} vs 50%	t(1599) = 118.9	<i>p</i> < 0.0001
		Creativity March 500/	t(1500) = 04.25	nc 0.0001
	toot	Specificity M _{Exit} vs 50%	l(1599) – 94.55	p < 0.0001
Figure 4c	Linnaired t test	Control ve Casp3	t(8) = 6.90	p = 0.001
Figure 40	Wilcovon test	RR Control: V vs DV	W = -45.00	p = 0.001
		RR Cash3: V vs DV	W= -7.00	p = 0.73
	Wilcoxon test	RI Control: V vs DV	W= -16 00	p = 0.38
		RI Casp3: V vs DV	W= 5.00	p = 0.83
Figure 4f	Unpaired T-test	DMS: Control vs Casp3	t(8) = 1.02	p = 0.34
	Unpaired T-test	DLS: Control vs Casp3	t(8) = 3.99	p = 0.004
Figure 5e	Paired T-test	Frequency: Veh vs C21	t(3) = 4.47	p= 0.021
	Paired T-test	Time: Veh vs C21	t(3) = 11.86	p= 0.0013
Figure 5f	Wilcoxon test	Saline: V vs DV	W= -58.00	p= 0.14
		C21: V vs DV	W= -21.00	<i>p</i> = 0.57

Supplementary Table 2. Summary of statistical analyses and results.

		C21+ Raclopride: V vs DV	W= -2.00	<i>p</i> = 0.91
		C21+ SKF38393: V vs DV	W= 0.00	<i>p</i> = 0.99
Figure 5g	Kruskal-Wallis	Nose Poke: Drug		<i>p</i> = 0.0004
	test			
	Posthoc Dunn's	Saline vs C21	Z = 2.71	<i>p</i> = 0.04
	test	Saline vs C21 + Raclopride	Z = 3.96	<i>p</i> = 0.0005
		Saline vs C21 + SKF38393	Z = 0.83	<i>p</i> = 0.99
	Kruskal-Wallis test	Magazine Entry: Drug		<i>p</i> < 0.0001
	Posthoc Dunn's	Saline vs C21	Z = 3.59	<i>p</i> = 0.002
	test	Saline vs C21 + Raclopride	Z = 4.13	<i>p</i> = 0.0002
		Saline vs C21 + SKF38393	Z = 0.69	<i>p</i> = 0.99
Figure S2b	Two-way RM	MT: Time	F _{1.16} = 142.9	p<0.0001
1 19010 020	ANOVA	MT: Group	$F_{1,16} = 5.34$	p= 0.040
		MT: Interaction	F _{1,16} = 1.14	p = 0.30
Figure S2c	Two-wav RM	RR: NP	F _{1,80} = 127.3	<i>p</i> < 0.0001
5	ANOVA	RR: Time	F _{9,80} = 4.99	<i>p</i> < 0.0001
		RR: Interaction	F _{9,80} = 4.93	<i>p</i> < 0.0001
	Two-way RM	RI: NP	F _{1,80} = 142.1	<i>p</i> < 0.0001
	ANOVA	RI: Time	F _{9,80} = 1.85	<i>p</i> = 0.070
		RI: Interaction	F _{9,80} = 1.77	<i>p</i> = 0.090
Figure S2e	Two-way RM	MX +: RR vs RI	F _{1,7} = 6.66	<i>p</i> = 0.036
	ANOVA	MX +: Time	F _{120,840} = 0.85	<i>p</i> = 0.87
		MX +: Interaction	F _{120,840} = 1.26	<i>p</i> = 0.039
	Two-way RM	MX -: RR vs RI	F _{1,7} = 0.20	<i>p</i> = 0.67
	ANOVA	MX -: Time	F _{120,840} = 8.65	<i>p</i> < 0.0001
		MX -: Interaction	F _{120,840} = 5.51	<i>p</i> < 0.0001
Figure S3a	Linear	NP+: RR	b= 0.065; R ² = .15; F _{1.48} = 8.26	<i>p</i> = 0.006
	rtegression	NP+: RI	b= 0.10; R ² = .15;	<i>p</i> = 0.013
			F _{1,38} = 6.78	
		NP+: RR vs RI	F _{1,86} = 0.79	<i>p</i> = 0.38
Figure S3b	Linear	NP-: RR	b= 0.011; R ² = .03;	<i>p</i> = 0.23
	Regression		$F_{1,48} = 1.48$	
		NP-: RI	$D=0.037; R^2=.23;$	p = 0.002
		NP-' BB vs Bl	$F_{1.86} = 10.08$	p = 0.002
Figure S3c	Linear	MF+' RR	b= 0.076; R ² = .12;	p = 0.013
r iguro occ	Regression		F _{1,48} = 6.62	<i>p</i>
	i togi ocolori	ME+: RI	b= 0.18; R ² = .43;	<i>p</i> < 0.0001
			F _{1,38} = 28.86	
		ME+: RR vs RI	F _{1,86} = 5.34	<i>p</i> = 0.023
Figure S3d	Linear	ME-: RR	$b=0.044; R^2=.04;$	<i>p</i> = 0.17
Regression			$F_{1,48} = 1.96$	n= 0.005
			$F_{1.29} = 0.08$	p = 0.005
		MF-' RR vs RI	$F_{1,86} = 0.69$	p = 0.41
Figure S3e		MX+' RR	b= -0.08: R ² = 16	p = 0.004
			F _{1,48} = 9.08	,

	Linear	MX+: RI	b= -0.05; R ² = .08;	<i>p</i> = 0.09
	Regression		F _{1,38} = 3.12	
		MX+: RR vs RI	F _{1,86} = 0.60	<i>p</i> = 0.44
Figure S3f	Linear	MX-: RR	$b = -0.06; R^2 = .06;$	<i>p</i> = 0.075
Regression			$F_{1,48}=3.30$	m < 0.0001
		MA-: RI	$D = -0.12; R^2 = .30;$ $F_{1.38} = 21.77$	<i>p</i> < 0.0001
		MX-: RR vs RI	F _{1,86} = 2.29	<i>p</i> = 0.13
Figure S4a	Mann-Whitney	Distance: Control vs Casp3	U = 81	<i>p</i> = 0.45
J. J	test	Velocity: Control vs Casp3	U = 91	<i>p</i> = 0.76
		Ambulatory Time: Control	U = 58	<i>p</i> = 0.069
		vs Casp3		
		Ambulatory Episodes:	U = 97	<i>p</i> = 0.98
		Control vs Casp3		
Figure S4b	Mann-Whitney	Time in center: Control vs	U = 70	<i>p</i> = 0.21
	test	Casp3		
		Time in periphery: Control	U = 70	<i>p</i> = 0.21
		vs Casp3		
		Center Entries: Control vs	U = 80	<i>p</i> = 0.42
		Casp3		0.40
		Peripheral Entries: Control	U = 80	<i>p</i> = 0.42
			F - 0.60	nc 0 0001
Figure 54c		Control va Caan	F 49,1274 - 0.00	p < 0.0001
	ANOVA		F1,26- 1.20	p = 0.27
Figure S/d		Time	$F_{49,1274} = 0.70$	p = 0.09 p < 0.0001
i igule 34u		Control ve Casp	$F_{4,130} = 1.49$	p = 0.22
			$F_{4,120} = 2.99$	p = 0.22 p = 0.018
	Posthoc Sidak	Day 1	t(130) = 3.90	p = 0.0005
	test	Day 2	t(130) = 2.92	p = 0.018
		Day 3	t(130) = 1.11	p = 0.79
		Day 4	t(130) = 0.56	p = 0.98
		Day 5	t(130) = 1.25	<i>p</i> = 0.69
Figure S5b	Two-wav RM	RR MT: Time	F _{1,18} = 29.91	<i>p</i> < 0.0001
J	ANOVA	RR MT: Group	F _{1,18} = 0.00	<i>p</i> = 0.99
		RR MT: Interaction	F _{1,18} = 2.36	<i>p</i> = 0.11
	Two-way RM	RI MT: Time	F _{1,18} = 30.55	<i>p</i> < 0.0001
	ANOVA	RI MT: Group	F _{1,18} = 0.13	<i>p</i> = 0.73
		RI MT: Interaction	F _{1,18} = 0.01	<i>p</i> = 0.98
Figure S5c	Two-way RM	RR: Time	F _{9,161} = 13.38	<i>p</i> < 0.0001
	ANOVA	RR: Group	F _{1,18} = 0.21	<i>p</i> = 0.65
		RR: Interaction	F _{9,161} = 0.66	<i>p</i> = 0.74
	Two-way RM	RI: Time	F _{9,161} = 20.64	<i>p</i> < 0.0001
	ANOVA	RI: Group	F _{1,18} = 0.28	<i>p</i> = 0.61
		RI: Interaction	F _{9,161} = 0.52	<i>p</i> = 0.86
	Two-way RM	RR: Time	$F_{9,161} = 18.29$	<i>p</i> < 0.0001
	ANOVA	RR: Group	F _{1,18} = 0.03	<i>p</i> = 0.86
		RR: Interaction	$F_{9,161} = 0.2$	<i>p</i> = 0.99
	Two-way RM	RI: Time	F _{9,161} = 25.26	<i>p</i> < 0.0001
	ANOVA	RI: Group	$F_{1,18} = 0.17$	<i>p</i> = 0.68

		RI: Interaction	F _{9,161} = 0.35	<i>p</i> = 0.96
Figure S6a Wilcoxon test		RR Control: V vs DV	W= -43.00	<i>p</i> = 0.0078
Ū		RR Casp3: V vs DV	W= 8.00	<i>p</i> = 0.72
Figure S6b	Wilcoxon test	RI Control: V vs DV	W= -28.00	<i>p</i> = 0.11
Ū		RI Casp3: V vs DV	W= -29.00	<i>p</i> = 0.15
Figure S6c	Two-Way RM	Time	F _{13,234} = 9.09	<i>p</i> < 0.0001
ANOVA		Control vs Casp3	F _{1,18} = 0.33	<i>p</i> = 0.57
	(preference)	Interaction	F _{13,234} = 1.29	<i>p</i> = 0.22
	Two-Way RM	Time	F _{13,234} = 3.54	<i>p</i> < 0.0001
	ANOVA	Control vs Casp3	F _{1,18} = 0.39	<i>p</i> = 0.54
	(consumption)	Interaction	F _{13,234} = 0.87	<i>p</i> = 0.58
Figure S7a	Kruskal-Wallace	Distance traveled: C21		<i>p</i> = 0.28
	test	concentration		
		Velocity: C21 concentration		<i>p</i> = 0.29
		Ambulatory time: C21		p= 0.56
		concentration		
		Ambulatory episode: C21		p= 0.37
		concentration		
Figure S7b	Kruskal-Wallace	Time in center: C21		p= 0.17
	test	concentration		
		Time in periphery: C21		p= 0.17
		concentration		
		Center entries: C21		p= 0.37
		concentration		
		Peripheral entries: C21		p= 0.34
		concentration		
Figure S8a	Kruskal-Wallace	Distance traveled: IP		<i>p</i> = 0.07
	test	injection groups		0.40
		Velocity: IP injection groups		p= 0.42
		Ambulatory time: IP		p= 0.19
		Injection groups		n= 0.02
		Ambulatory episode: IP		p = 0.02
	Deathag Dupp's	Injection groups	7 - 0.05	n> 0.00
	toot	Saline vs C21	Z = 0.05	p> 0.99
		Saline vs 621 + Raciopride	2 - 2.03	p = 0.13
		Soline vs $C21 \pm SKE38303$	7 = 0 79	p = 0.79
Eiguro Seb	Kruckal Wallaco	Time in center: ID injection	2 = 0.79	p=0.79
i igule Sob	test	aroups $p = 0.30$		p = 0.00
	1001	Time in periphery: IP		p = 0.30
		injection groups		0.00
		Center entries IP injection		p= 0.68
		aroups		
		Peripheral entries: IP		p= 0.71
		injection groups		'
Figure S9b	One-wav RM	MT Time	F _{1,49} = 17.29	<i>p</i> = 0.0001
	ANOVA			
Figure S9c	One-way RM	NP rate: RI Time	F _{1,168} = 91.68	<i>p</i> < 0.0001
	ANOVA			

	One-way RM ANOVA	Total NP: RI Time	F _{1,168} = 97.61	<i>p</i> < 0.0001
Figure	Wilcoxon test	Saline: V vs DV	W= -14.00	<i>p</i> = 0.36
S10a		SKF: V vs DV	W= -14.00	<i>p</i> = 0.37
		SKF+C21: V vs DV	W = 19.00	<i>p</i> = 0.20
Figure S10b	Kruskal-Wallis test	Nose Poke: Drug		<i>p</i> = 0.26
	Kruskal-Wallis test	Magazine Entry: Drug		<i>p</i> = 0.02
	Posthoc Dunn's	Saline vs SKF	Z = 2.41	p= 0.048
	test	Saline vs C21 + SKF	Z = 0.12	p> 0.99
		SKF vs C21 + SKF	Z = 2.53	<i>p</i> = 0.034
	Kruskal-Wallis test	Magazine Duration: Drug		<i>p</i> = 0.043
	Posthoc Dunn's	Saline vs SKF	Z = 2.19	p= 0.085
	test	Saline vs C21 + SKF	Z = 0.04	p> 0.99
		SKF vs C21 + SKF	Z = 2.16	<i>p</i> = 0.093
Figure	Wilcoxon test	Saline: V vs DV	W= -36.00	<i>p</i> = 0.008
S11a		C21: V vs DV	W= -34.00	<i>p</i> = 0.016
Figure	Mann-Whitney	NP: Saline vs C21	U = 11.50	<i>p</i> = 0.03
S11b	test	Entries: Saline vs C21	U = 11.50	<i>p</i> = 0.031
		Duration: Saline vs C21	U = 27.50	<i>p</i> = 0.67
Figure	Wilcoxon test	Saline: V vs DV	W= -3.00	<i>p</i> = 0.90
S12a		C21: V vs DV	W= -31.00	<i>p</i> = 0.13
Figure	Mann-Whitney	NP: Saline vs C21	U = 15.5	<i>p</i> = 0.0073
S12b	test	Entries: Saline vs C21	U = 23.5	<i>p</i> = 0.046
		Duration: Saline vs C21	U = 15	<i>p</i> = 0.0065

Supplementary Table 3. Time range for significant (*posthoc* Sidak test; p < 0.05) individual comparisons between fiber photometry groups.

Figure	Comparison	Time range
Fig. 2g	NP+; RR vs. RI	NS
	NP-; RR vs. RI	0.73 – 1.7 s
Fig. 2h	M _{entry} +; RR vs. RI	0.00 – 2 s
	M _{entry} -; RR vs. RI	NS
Fig. S2e	M _{exit} +; RR vs. RI	NS
_	M _{exit} -; RR vs. RI	0.03 – 0.27 s