Supplementary Materials

In vivo tissue pharmacokinetics of ERBB2-specific binding oligonucleotide based drugs by PET imaging

Sun Mi Park^{1,†}, Suji Baek^{2,†}, Jung Hwan Lee³, Sang-Keun Woo⁴, Tae Sup Lee⁴, Hyun Soo Park⁵, Jongook Lee³, Yeon-Koo Kang¹, Seo Young Kang¹, Min Young Yoo¹, Hai-Jeon Yoon¹, Bom Sahn Kim^{1,*}, Kang Pa Lee^{2,*}, Byung Seok Moon^{1,*}

¹Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea ²Research and Development Center, UMUST R&D Corporation, Seoul 01411, Korea

³Research and Development Center, INTEROligo Corporation, Anyang, 14058, Korea

⁴Division of RI Applications, Korea Institute Radiological and Medical Sciences, Seoul 01812, Korea

⁵Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea

[†]These authors contributed equally to this study.

Radiosynthesis of ERBB2-cODN-idT-APs-[¹⁸F]F ([¹⁸F]1)

Figure S1. Radio-TLC chromatogram for fluorine-18 incorporation of N₃-PEG₃-[¹⁸F]F ([¹⁸F]**3**).

- **Figure S2**. Radio-TLC chromatogram of the N₃-PEG₃-[¹⁸F]F mixture obtained after pretreatment with a C18 plus Sep-Pak cartridge.
- **Figure S3**. Preparative HPLC chromatogram of the reaction mixture, [¹⁸F]**3** (red: gamma ray; blue: UV-220 nm).
- **Figure S4**. Analytical HPLC chromatogram for determining the radiochemical purity of [¹⁸F]**3** (upper: gamma ray, bottom: UV-220 nm).
- Figure S5. Radio-TLC chromatogram for determining the conversion yield from [¹⁸F]3 to [¹⁸F]5.
- Figure S6. Radio-TLC chromatogram obtained after pretreatment of [¹⁸F]5 with a C18 Sep-Pak cartridge.
- **Figure S7.** Preparative HPLC chromatogram of the reaction mixture, [¹⁸F]**5** (red: gamma ray; blue: UV-260 nm).
- **Figure S8.** Analytical HPLC chromatogram obtained to determine the radiochemical purity of [¹⁸F]**5** (upper: gamma ray; bottom: UV-260 nm).
- **Figure S9.** Co-injection HPLC chromatogram with standard **5** for determining the identity of [¹⁸F]**5** (upper: gamma ray; bottom: UV-260 nm).
- Figure S10. Analytical HPLC chromatogram obtained for determining the hybridization efficiency of

[¹⁸F]**1** (upper: gamma ray; bottom: UV-260 nm).

- **Figure S11.** Co-injection HPLC chromatogram with standard **1** for determining the identity of [¹⁸F]**1** (upper: gamma ray; bottom: UV-260 nm).
- **Figure S12**. Time-activity curves of ERBB2-cODN-idT-APs-[¹⁸F]F ([¹⁸F]1) for internal dosimetry calculated from whole-body PET images.
- Figure S13. The ratio of AUCs for various organs to the blood over a late time-interval (70-90 min).
- Figure S14. Investigation of changes for optimal hybridization efficiency at various concentrations (1,

2, 3, 5, 10, 50, 100 and 200 nmol) of ERBB2-cODN-idT-AP (6) (gamma ray).

- Table S1. Pharmacokinetic parameters of [¹⁸F]1 after intravenous administration in healthy mice
- Table S2. Pharmacokinetic parameters of [¹⁸F]1 after intravenous administration in ERBB2-positive tumor (KPL4)-bearing mice
- Table S3. Internal absorbed dose in normal mice (mGy/MBq)

Radiosynthesis of ERBB2-cODN-idT-APs-[¹⁸F]F ([¹⁸F]1)

Fluorine-18 in O-18 water from the cyclotron was extracted on a pre-activated QMA carbonate Sep-Pak cartridge using a solution of tetra-n-butylammonium bicarbonate (TBAHCO₃, 40 wt%, 5.0 µL) in MeOH (1 mL). The eluted solution containing fluorine-18 was dried azeotropically at 100 °C under a nitrogen stream; this process was repeated with the subsequent addition of acetonitrile (CH₃CN, 0.4 mL) at 100 °C (× 2). The precursor, 11-azido-3,6,9-trioxa-1-undecanol mesylate (2, N₃-PEG₃-OMs, 2.5 μ L) was dissolved in acetonitrile (0.5 mL) and added in a reaction vial (4 mL size) which contained the TBA⁺[¹⁸F]F⁻ complex. The reaction mixture was then stirred at 100 °C for 10 min. After cooling to room temperature, the labeling yield was checked by radio-thin layer chromatography (TLC) (100% EtOAc, $R_f = 0.7 \sim 0.8$, Figure S1). The reaction solution was diluted with 15 mL of water, loaded on a C18 plus Sep-Pak cartridge, washed with 5 mL of water, and eluted with 1.5 mL of acetonitrile. The pretreated product by a C18 plus Sep-Pak cartridge, N₃-PEG₃-[¹⁸F]F ([¹⁸F]**3**), was found to be over 99% of radiochemical purity (Figure S2). The eluted acetonitrile solution was diluted with 4 mL of water, filtered using a syringe filter (GHP, 13 mm, 0.45 µm), and purified using a reverse-phase HPLC system A [Gilson 321 System equipped with a UV detector (UV-220 nm) and gamma-ray detector (Lablogic systems, Sheffield, UK); column: XBridge RP18 (Waters, 10×250 mm) with a guard column (Phenomenex, CA, USA; 10×10 mm); eluent: 20% CH₃CN:H₂O; flow rate: 3 mL/min; Figure S3]. The eluate was collected at a retention time of approximately 26 min and diluted with 40 mL of water, slowly trapped on a C18 plus Sep-Pak cartridge, washed with 5 mL of water, and eluted with 1.0 mL of acetonitrile. The eluted solution was used for the subsequent click reactions without further treatment. In this step, the radiochemical purity was above 99%, as checked by an analytical HPLC system B [Agilent 1260 system equipped with a UV detector (UV-220 nm) and gamma-ray detector (Elysia-Raytest, Straubenhardt, Germany); column: Xterra RP18 (Waters, 4.6 × 250 mm); flow rate: 1 mL/min; eluent: 10% CH₃CN:0.1 M triethylamine acetate (TEAA, 0 min); 10% CH₃CN:0.1 M TEAA (5 min); 80% CH₃CN:0.1 M TEAA (15 min); Figure S4].

For the synthesis of cODN-PEG₃-[¹⁸F]F ([¹⁸F]**5**), 0.1 M CuI in acetonitrile (20 µL), 1 M DIPEA in acetonitrile (10 µL), and N₃-PEG₃-[¹⁸F]F in CH₃CN ([¹⁸F]**3**, 0.7 mL) were added in a 4 mL vial in order; finally 3'-GTC GGT GTG GTG GTC-5'-hexynyl (**4**, cODN-5'-hexynyl) in water (200 µg in 0.2 mL) was added to the vial. The mixture was then stirred at 70 °C for 20 min. After cooling to room temperature, the conversion yield was checked by radio-TLC (100% EtOAc, R_f = 0.0~0.1 for cODN-PEG₃-[¹⁸F]F and R_f = 0.7~0.8 for N₃-(PEG)₃-[¹⁸F]F; Figure S5). The mixture was diluted with 10 mL of 0.05 M TEAA which contained 10 µL of 0.5 M ethylenediaminetetraacetic acid (EDTA), loaded on a C18 plus Sep-Pak cartridge, washed with 10 mL of water, and then eluted with 1 mL of acetonitrile (Figure S6). In this step, most of the N₃-PEG₃-[¹⁸F]F ([¹⁸F]**3**) was removed. The eluted solution was diluted with 4 mL of 0.1 M TEAA, filtered using a syringe filter (GHP, 13 mm, 0.45 µm), and purified using a reverse-phase HPLC System C [Gilson 321 System equipped with a UV detector (UV-260 nm) and gamma-ray detector (Lablogic systems, UK); column: XBridge RP18 (10×250 mm) with a guard column (Phenomenex, CA, USA; 10×10 mm); eluent: 5% CH₃CN:0.1 M TEAA (0 min); 5% CH₃CN:0.1 M TEAA (5 min); 30% CH₃CN:0.1 M TEAA (25 min); 80% CH₃CN:0.1 M TEAA (30 min); flow rate: 3 mL/min; Figure S7]. The eluate was collected at a retention time of approximately 22 min, diluted with 10 mL of water, slowly trapped on a C18 plus Sep-Pak cartridge, washed with 10 mL of water, and eluted with 1.0 mL of ethanol. The collected solution was completely evaporated under a nitrogen stream at 95 °C. In this step, the radiochemical purity (over 99%, Figure S8) and identity (Figure S9) were checked using an analytical HPLC system D [Agilent 1260 system equipped with a UV detector (UV-260 nm) and gamma-ray detector (Elysia-Raytest, Germany); column: Xterra RP18 (Waters, 4.6 × 250 mm); flow rate: 1 mL/min; eluent: 10% CH₃CN:0.1 M TEAA (0 min); 10% CH₃CN:0.1 M TEAA (5 min); 80% CH₃CN:0.1 M TEAA (5 min); 80% CH₃CN:0.1 M TEAA (15 min)].

To prepare the hybridized aptamers, the prepared cODN-PEG₃-[¹⁸F]F ([¹⁸F]**5**) was dissolved in annealing buffer (0.2 mL; 10 mM Tris pH 7.5, 1 mM EDTA, 50 mM NaCl, 10 mM MgCl₂) containing ERBB2-cODN-idT-APs (**6**, 100 nmol). The mixture was heated to 95 °C for 5 min and cooled slowly to 45 °C at a rate of 1 °C/10 sec; the temperature was maintained at 45 °C for 5 min, and then slowly cooled to 25 °C. The hybridization efficiency and radiochemical purity were checked using an analytical HPLC system D (Figure S10). The identity was confirmed by co-injection with standard ERBB2-cODN-idT-APs-F (**1**, Figure S11). The final solution was diluted with 2 mL of saline and used for further PET imaging studies without further purification.

Figure S1. Radio-TLC chromatogram for fluorine-18 incorporation of N₃-PEG₃-[¹⁸F]F ([¹⁸F]**3**).

Figure S2. Radio-TLC chromatogram of the N₃-PEG₃-[¹⁸F]F mixture obtained after pretreatment with a C18 plus Sep-Pak cartridge.

Figure S3. Preparative HPLC chromatogram of the reaction mixture, [¹⁸F]3 (red: gamma ray; blue: UV-

220 nm)

Figure S4. Analytical HPLC chromatogram for determining the radiochemical purity of [¹⁸F]**3** (upper: gamma ray, bottom: UV-220 nm).

Figure S5. Radio-TLC chromatogram for determining the conversion yield from $[^{18}F]$ **3** to $[^{18}F]$ **5**.

Figure S6. Radio-TLC chromatogram obtained after pretreatment of [¹⁸F]5 with a C18 Sep-Pak cartridge.

Figure S7. Preparative HPLC chromatogram of the reaction mixture, [¹⁸F]**5** (red: gamma ray; blue: UV-260 nm).

Figure S8. Analytical HPLC chromatogram obtained to determine the radiochemical purity of [¹⁸F]**5** (upper: gamma ray; bottom: UV-260 nm).

Figure S9. Co-injection HPLC chromatogram with standard **5** for determining the identity of [¹⁸F]**5** (upper: gamma ray; bottom: UV-260 nm).

Figure S10. Analytical HPLC chromatogram obtained for determining the hybridization efficiency of [¹⁸F]**1** (upper: gamma ray; bottom: UV-260 nm).

Figure S11. Co-injection HPLC chromatogram with standard 1 for determining the identity of [¹⁸F]1 (upper: gamma ray; bottom: UV-260 nm).

Figure S12. Time-activity curves of ERBB2-cODN-idT-APs-[¹⁸F]F ([¹⁸F]1) for internal dosimetry calculated from whole-body PET images.

Figure S13. The ratio of AUCs for various organs to the blood over a late time-interval (70-90 min).

Figure S14. Investigation of changes for optimal hybridization efficiency at various concentrations (1, 2, 3, 5, 10, 50, and 100 nmol) of ERBB2-cODN-idT-AP (6) (gamma ray).

PK parameter	T _{max} (sec)	C_{max} (%ID/g)		$AUC_{0-5,400 \text{ sec}}$ (%ID/g·sec)		$T_{1/2}$ (sec)	
Organ	median (min-max)	mean	GSD	mean	GSD	mean	GSD
Brain	45.0 (45.0-60.0)	1.2	1.7	1,684.5	1.7	734.3	1.3
Gall bladder	30.0 (30.0-30.0)	4.7	1.2	10,420.8	1.1	290.4	1.2
Heart	30.0 (30.0-30.0)	13.9	1.7	11,718.7	1.9	505.8	1.3
Intestine	5,100.0 (240.0-5,400.0)	3.0	1.4	11,090.9	1.3	-	-
Kidney	240.0 (120.0-600.0)	14.0	1.1	26,519.2	1.2	666.5	1.3
Liver	30.0 (30.0-30.0)	7.6	1.7	11,333.4	1.4	628.1	1.1
Lung	30.0 (30.0-45.0)	7.7	1.7	6,995.2	1.7	497.1	1.3
Spleen	37.5 (15.0-60.0)	3.1	1.9	5,280.9	1.6	697.2	1.2
Stomach	37.5 (30.0-180.0)	2.1	1.7	5,723.2	1.6	1,025.0	1.7
Urinary bladder	5,400.0 (4,800-5,400.0)	149.2	1.1	524,726.6	1.3	-	-
Muscle	450.0 (240.0-600.0)	0.6	1.4	1,863.6	1.4	1,019.1	1.3
Blood	15.0 (15.0-60.0)	132.2	1.8	37,922.4	1.1	146.6	1.7

Table S1. Pharmacokinetic parameters of [¹⁸F]1 after intravenous administration in healthy mice

Table S2. Pharmacokinetic parameters of [¹⁸F]**1** after intravenous administration in ERBB2-positive tumor (KPL4)-bearing mice.

PK parameter	T_{max} (sec)	C _{max} (%ID/g)	AUC _{0-5,400sec} (%ID/g·sec)	T _{1/2} (s	ec)
Organ	median (min-max)	mean	GSD	mean	GSD	mean	GSD
Tumor	210.0 (120.0-300.0)	0.86	1.06	3,385.6	1.1	3,666.3	1.8

Table S3. Internal absorbed dose in normal mice (mGy/MBq)

Organs	Absorbed dose (mGy/MBq)
Brain	6.69E00
Heart	2.64E01
Lung	2.95E01
Liver	4.49E00
Kidney	3.73E01
Stomach	6.35E01
Spleen	2.67E01
Intestine	3.17E-01
Urinary bladder	7.52E-02
Total Body	1.83E00