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Figure S1 is an illustrative example of elevation detection, decay extraction, and grouping of 
individual decay episodes. 

Figure S1. An illustrative example of the key steps of the model based on CO2 data collected 
from an office for nine days. Data in Figure S1.d) are extracted from the red box in S1.c), and 
data in Figure S1.e) are further extracted from the red box in S1.d).

Figures S2-S4 show the clustering results of elevation detection (k-means), emission/decay 
separation (k-means), and decay segmentation (DBSCAN) with regard to the corresponding 
data features based on the office CO2 data. As is shown, elevated and non-elevated periods are 
well separated based on the concentration difference from baseline and the absolute value of 
concentration gradient. Emissions and decays can be distinguished according to the positive or 
negative sign of concentration gradient and the relative high-low position. Plateau periods (i.e., 
concentration higher than baseline and relatively stable) are separated from emissions and 
decays too (Figure S1.c). Further, individual decay episodes can be segmented based on the 
increase in the number of previous non-decay samples. 
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Figure S2. Elevation detection clustering result based on office CO2 data.

Figure S3. Emission/decay separation clustering result based on office CO2 data.
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Figure S4. Decay events segmentation clustering result based on 1-day office CO2 data.

Figures S5 and S6 demonstrate the hyperparameter selection approach, while Figures S7-S9 
demonstrate the result filtration process.  Figure S5 shows an example of the grid search process 
for selecting the optimal moving average window length and relative high-low position 
window length using CO2 data from an office (continuous CO2 concentration time series at 1-
min intervals for 8 consecutive days). In this example, the relative high-low window length has 
a small impact when it is greater than 3 min (also 3 data points), while a moving average 
window length of 5 min (5 data points) leads to the highest Calinski-Harabasz score and the 
lowest Davies-Bouldin score, indicating better defined clusters. Therefore, this combination of 
hyperparameters was used in the following analysis for this dataset. 

As is shown in Figure S6, a high minimum sample requirement (e.g., 30 data points) results in 
significantly higher regression R2 values at the cost of the number of decays. Its impact on the 
results is negligible within the range of 2 – 10 samples, so we used the default value of 5. The 
maximum distance governs whether temporally disconnected data points will be considered as 
in the sample group. The smaller this parameter is, the higher the R2 values in regression 
analysis are. We selected a conservative value of 0.001 for this parameter to avoid joining 
disconnected decay periods into a longer one, although consequently fewer decays remained 
available for characterizing temporal variations. 



S5

Figure S5. k-means clustering performance with different hyperparameters based on CO2 data 
in the office. 

Figure S6. DBSCAN performance with different hyperparameters based on CO2 data in the 
office. 

Based on CO2 and PM2.5 concentration data collected from an office, Figure S7 shows the 
trade-off between the duration threshold (decays shorter than the corresponding threshold were 
excluded) and the number of decays left as well as the consequent impact on the median of the 
estimated decay rate. Without post-regression result filtration, 283 and 267 decays were 
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recognized (approximately 6.3 and 5.6 per sensor per day) for CO2 and PM2.5, respectively. 
Applying a duration threshold increases the average R2 value, especially for PM2.5 where the 
raw data are noisier. However, in this case, this increase is moderate and the median loss rate 
remains relatively consistent, while the number of remaining decays significantly drops. 
Therefore, we applied a duration threshold of 5 min to remove those extremely short decays. 
Further, Figure S8 shows the impact of setting a threshold for the regression r-squared value 
on the number of remaining decays and the median decay rate. In this case, most of the 
remaining decays after duration thresholding have a relatively high r-squared value already, 
and an r-squared threshold of 0.7 was selected to keep most of the decays while excluding those 
with substantial noise. For decays consisting of concentration data that are close to the 
estimated baseline, the uncertainties resulting from the baseline estimation process can be 
magnified. Therefore, setting a threshold for the median concentration difference from the 
baseline may remove those decays to improve the accuracy of loss rate estimation. Figure S9 
shows the estimated decay rate and the corresponding concentration difference from baseline 
after the duration and r-squared thresholding. It is found that those decays with a smaller 
median concentration difference from the corresponding baselines indeed show higher 
variations. We decided to use a concentration difference threshold of 25 ppm for CO2 and 5 
μg/m3 for PM2.5 in this example. 

Figure S7. The number of remaining decays, average r-squared value, and median decay rate 
vs. duration thresholds in the office. 

Figure S8. The number of remaining decays and median decay rate vs. r-squared thresholds in 
the office. 
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Figure S9. The estimated decay rate vs. the concentration difference from the baseline threshold 
in the office. 

Figures S10, S12, and S15 provide examples of daily CO2 and PM2.5 concentrations with 
recognized decays in the office, classroom, and house, respectively. Figure S11 is a schematic 
of the laboratory chamber’s HVAC system. 

Figure S10. An example of daily CO2 and PM2.5 concentrations with recognized decays in the 
environmental chamber (center location).

Figure S11. A schematic of the laboratory chamber’s HVAC system
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Figure S12. An example of daily CO2 and PM2.5 concentrations with recognized decays in the 
office.

Figures S13 and S14 compare baseline estimation methods and sensor consistency results 
based on the office CO2 data, as an addition to the PM2.5 data shown in the main document. 

Figure S13. top) Different CO2 baseline estimates (the band shows the standard deviation 
across five different sensors) and bottom) the corresponding estimated decay rate in the office.  
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Figure S14. top) CO2 concentration data from five collocated low-cost CO2 sensors and bottom) 
the corresponding decay rate estimates in the office. 

Figure S15. An example of daily CO2 and PM2.5 concentrations with recognized decays in the 
classroom (back location).

Figure S16 is a photo of the classroom showing the location of air supply and return. 



S10

Figure S16. A photo of the classroom

Figure S17. An example of daily CO2 concentration with recognized decays in the home (with 
the outdoor concentration in navy dashed line).

Figure S18 shows the seasonal variation of the estimated air change rate based on the CO2 
decay rate in the home throughout the year.

Figure S18. Seasonal variation of the estimated air change rate based on CO2 decay rate in the 
home. 

Table S1 shows the results of a sensitivity analysis on all hyperparameters used in this work. 
The hyperparameters in the base scenario are λ = 109, p = 0.001, ma = 5, rhl = 5, eps = 0.01, 
ms = 5. Before result filtration, baseline estimation and DBSACN parameters have a large 
impact on the mean CO2 loss rate. However, after result filtration, only the maximum distance 
(eps) in DBSCAN has an impact of greater than 10% on the mean loss rate. This parameter 
determines whether adjacent decay data points are considered single or separate decay events, 
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and it is easy to recognize an unreasonable eps value by visually examining the decay 
recognition results.

Table S1. The impact of hyperparameter selection on the estimated CO2 loss rate in the office

Before filtration After filtration 
mean % change std % change mean % change std % change

base 0.86 0.51 0.88 0.41
Baseline 
estimation
λ = 108 0.95 10% 0.72 41% 0.89 1% 0.41 1%
λ = 1010 0.81 -6% 0.50 -1% 0.79 -10% 0.39 -3%
p = 0.0001 0.75 -13% 0.40 -22% 0.79 -10% 0.40 -1%
p = 0.01 1.12 30% 1.02 101% 0.93 5% 0.44 7%
Feature 
extraction 
ma = 3 0.86 0% 0.51 0% 0.88 0% 0.41 0%
ma = 10 0.86 0% 0.69 37% 0.82 -7% 0.34 -16%
rhl = 3 0.86 0% 0.51 0% 0.88 0% 0.41 0%
rhl = 10 0.86 0% 0.51 0% 0.88 0% 0.41 0%
DBSCAN
eps = 0.001 1.12 29% 0.53 4% 1.03 17% 0.45 11%
eps = 0.1 0.15 -82% 0.49 -4% 0.29 -67% 0.15 -63%
ms = 3 1.20 39% 1.00 96% 0.97 10% 0.47 15%
ms = 10 0.95 10% 0.47 -8% 0.94 6% 0.33 -20%

 


