
S2 Appendix: Details on kernels included in KernelBiome

A Overview of kernels in KernelBiome

In this section, we give additional details on the kernels used in KernelBiome. A full list of

all kernels and their corresponding metrics together with a visualization on S2 is given in S7

Appendix.

As discussed in the main paper, we consider four types of kernels.

• Euclidean These are kernels that are used on Euclidean space but restricted to the

simplex. This includes the linear kernel and the RBF kernel.

• Probability distribution These are kernels that are constructed from metrics between

probability distributions. KernelBiome includes two parametric classes of kernels, the

Hilbertian kernel and the generalized-JS kernel. These kernels correspond to multiple

well-known metrics on probabilities such as the chi-squared metric, the total-variation

metric, the Hellinger metric and the Jensen-Shannon metric.

• Aitchison geometry These are kernels that are constructed by using the centered log-

ratio transform to project data on the simplex into Euclidean space and then combining

it with a Euclidean kernel. KernelBiome includes the Aitchison kernel and the Aitchison

RBF kernel. In order to allow for zeros, a small positive number c is added to each

coordinate for all observations before applying the centered log-ratio transformation.

• Riemannian manifold These kernels are connected to the simplex via multinomial

distributions and have been shown to empirically perform well on sparse text data

mapped into the simplex. KernelBiome contains the heat-diffusion kernels.

For each type of kernel there are multiple parameter settings. Although users of the KernelBiome

package can freely change the parameters, the default settings for KernelBiome for each type

of kernel are provided by the package and are given in Table A.
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Geometry Kernel Parameters Number
of
kernels

Euclidean linear none 1
RBF σ2 ∈ {10−2 ·m1, 10−1 ·m1,m1, 10 ·m1,

102 ·m1, 103 ·m1, 104 ·m1}
7

Probability generalized-
JS

(a, b) ∈ {(1, 0.5), (1, 1), (10, 0.5), (10, 1), (10, 10),
(∞, 0.5), (∞, 1), (∞, 10), (∞,∞)}

9

distributions Hilbertian (a, b) ∈ {(1,−1), (1,−10), (1,−∞), (10,−1),
(10,−10), (10,−∞), (∞,−1), (∞,−10)}

8

Aitchison Aitchison c ∈ {µX/2 · 10−4, . . . ,min(µX/2 · 104, 10−2)} 9
geometry Aitchison-

RBF
c ∈ {µX/2 · 10−4, . . . ,min(µX/2 · 104, 10−2)},
σ ∈ {c ·m2 · 10−1, c ·m2, c ·m2 · 10}

15

Riemannian
manifold

heat-
diffusion

t = x
2

n−1 1
4π for x ∈ {10−20, . . . , 10} 6

Table A. Default parameter grid in KernelBiome. m1 and m2 are the median heuristic for the
RBF and Aitchison-RBF kernel, respectively, which depend on the data. µX is the minimal
non-zero value in X. The zero grids for the Aitchison geometry kernels have an even logarithmic
spacing and contain 9 and 5 parameters for the Aitchison and Aitchison-RBF, respectively.
Similarly, the grid for x for the heat-diffusion kernel has an even logarithmic spacing with 6
values. There are a total of 55 kernels.

A.1 Connecting positive definite kernels to metrics

A semi-metric d satisfies all properties of a metric, except that d(x, y) = 0 does not imply

x = y. This can happen because a kernel can map two different points in X to the same point

in Hk. Any fixed kernel k on X induces a semi-metric dk on X defined for all x, y ∈ X by

d2k(x, y) = k(x, x) + k(y, y)− 2k(x, y). (A)

This holds for all positive-definite kernels by Theorem 1.2 in S5 Appendix. In particular, this

corresponds to the distance between the embedded points in the RKHS Hk, that is,

‖k(x, ·)− k(y, ·)‖Hk
= dk(x, y).

The feature embedding x 7→ k(x, ·) induced by a kernel therefore preserves the distances dk.

A useful aspect of kernel methods, is that they allow a post-analysis based on the embedded

features, see also Section 2 in S5 Appendix.
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A partial reverse implication is also true. For a particular type of semi-metric d on X

(these metrics are called Hilbertian, see S5 Appendix) it is possible to construct a kernel k

on X defined for all x, y ∈ X by

k(x, y) = −1
2d

2(x, y) + 1
2d

2(x, x0) + 1
2d

2(x0, y),

where x0 ∈ X is an arbitrary reference point, such that the distance in the corresponding

RKHS Hk is d.

Kernels can be shifted in such a way that the origin in the induced RKHS changes but the

metric in (A) remains fixed (see Lemma 1.1 in S5 Appendix). A natural origin in the simplex

is given by the point u = (1p , . . . ,
1
p), therefore we have shifted all kernels such that k(u, ·) ≡ 0

and hence correspond to the origin in Hk. In S5 Appendix, we provide a short overview of

the mathematical results that connect kernels and metrics.

B Weighted kernels - including prior information

In this section, we discuss how to include prior knowledge, e.g. phylogenetic information, into

the simplex kernels. We assume the information is encoded in a matrix W ∈ Rp×p where each

element corresponds to a measure of similarity between components. That is, Wi,j is large

if components i and j are similar (or related) and small otherwise. We assume that W is

symmetric, positive semi-definite and all entries in W are non-negative.

The linear kernel and all kernels based on probability distributions have the form

k(x, y) =
∑p

i=1 k0(x
i, yi) (B)

and we therefore define the weighted version by

kW (x, y) =

p∑
j,`=1

Wj,` · k0(xj , y`). (C)

The weighted versions of the remaining kernels are defined individually. A full list of the

weighted kernels is given in Section 2 of S7 Appendix.
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B.1 Validity of weighted kernels

In order to use the proposed weighted kernels, we need to ensure that they are indeed positive

definite. In the following, we prove this for the weighted versions of the linear kernel, the

Hilbertian kernel, the Generalized-JS kernel, the RBF kernel and the Aitchison kernel. We

do not prove it for the Aitchison RBF kernel and the Heat Diffusion kernel and only note

that they appear to be positive definite from our empirical evaluations.

We begin by showing that the kernel defined in (C) is positive definite whenever k0 :

[0, 1]× [0, 1]→ R is positive definite. To see this, fix x1, . . . , xn ∈ Sp−1 and α ∈ Rn and denote

by KW ∈ Rn×n the kernel Gram-matrix based on x1, . . . , xn and kernel kW . Then,

α>KWα =
n∑

i,r=1

p∑
j,`=1

αiαrWj,`k0(x
j
i , x

`
r)

=

p∑
j,`=1

Wj,`

 n∑
i,r=1

αiαrk0(x
j
i , x

`
r)

 .

Since k0 is positive definite, it holds that
∑

i,r αiαrk0(x
j
i , x

`
r) ≥ 0 and hence α>KWα ≥ 0

since all entries in W are non-negative.

We now go over the individual weighted kernels and argue that they are positive definite.

• Linear kernel Since R is a Hilbert space with the inner product xy which induces

the |x− y| it follows that the squared distance d2Linear(x, y) := (x− y)2 is Hilbertian as

well. Applying Theorem 1.1 in S5 Appendix we know that the distance is of negative

type. Thus, based on the one-dimensional squared linear distance d2Linear, we apply

Theorem 1.2 in S5 Appendix with x0 = 1
p to construct the following positive definite

kernel k0 defined for all x, y ∈ [0, 1] by

k0(x, y) := −1
2(x− y)2 + 1

2(x− 1
p)2 + 1

2(1p − y)2 = xy − x
p −

y
p + 1

p2
.

Comparing this with our weighted linear kernel in Section 2 of S7 Appendix, we see

that the weighted linear kernel has the form (C) and is therefore positive definite by the

above argument.
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• Hilbertian kernel As shown by [1] the distance dHilbert : R+ × R+ → R defined for

all x, y ∈ R+ by

d2Hilbert(x, y) =
2

1
b

[
xa + ya

] 1
a − 2

1
a

[
xb + yb

] 1
b

2
1
a − 2

1
b

is a Hilbertian metric on R+. Applying Theorem 1.2 in S5 Appendix with x0 = 1
p results

in a positive definite kernel k0 that when combined as in (C) results in the proposed

weighted Hilbertian kernels in Section 2 of S7 Appendix. Therefore, we have shown

that the weighted Hilbertian kernels are positive definite as long as W has non-negative

entries.

• Generalized-JS kernel Similarly the weighted Generalized-JS kernels in Section 2

of S7 Appendix can all be decomposed as in (C) with a one-dimensional kernels k0 on

[0, 1]. [2] show that all these k0 can be generated using Theorem 1.2 in S5 Appendix

with x0 = 1
p based on Hilbertian metrics. Hence, all weighted Generalized-JS kernels

are positive definite as long as W has non-negative entries.

• Aitchison kernel To show that the weighted Aitchison kernel (defined in Section 2

of S7 Appendix) is positive definite, we first define the mapping Φ : Sp−1 → Rp by

Φ(x) := x+c
g(x+c) . Then, the weighted Aitchison kernel is given by

k(x, y) = Φ(x)>WΦ(y).

Since W is symmetric and positive semi-definite there exists M ∈ Rp×p such that W =

M>M . Therefore, for any α ∈ Rn and x1, . . . , xn ∈ Sp−1 it holds that

∑
i,r

αiαrk(xi, xr) =
∑
i,r

αiαr(MΦ(xi))
>MΦ(xr) ≥ 0.

Hence, k is positive definite.

• RBF kernel Using the symmetry of W the weighted RBF kernel can be expressed as
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follows

k(x, y) = exp
(
− 1

σ2

p∑
j,`=1

Wj,`(x
j − y`)2

)
= exp

(
− 1

σ2

p∑
j,`=1

Wj,`(x
j)2
)

exp
(
− 1

σ2

p∑
j,`=1

Wj,`(y
j)2
)

︸ ︷︷ ︸
=:A(x,y)

· exp
( 2

σ2

p∑
j,`=1

Wj,`x
jy`
)

︸ ︷︷ ︸
=:B(x,y)

The function A is a positive definite kernel since it is the inner-product of a feature

mapping. The function B can be shown to be a kernel by considering the Taylor

expansion of the exponential function and using that sums and limits of positive definite

kernels are again positive definite together with the fact that W is positive semi-definite.

Therefore, the weighted RBF kernel is positive definite.

C UniFrac-Weighting

In this section, we show how prior information based on the UniFrac-Distance [3] can be

encoded into a weight matrix W ∈ Rp×p. Depending on the application at hand different

distances can be used in a similar way. The UniFrac-Distance is a β-diversity measure that

uses phylogenetic information to compare two compositional samples x, y ∈ Sp−1. Each

element of the sample is hereby placed on a phylogenetic tree. The distance between both

samples is computed via quantification of overlapping branch length, that is,

UniFrac-Distance(x, y) =
sum of unshared branch length of x and y

sum of all tree branch length of x and y
∈ [0, 1].
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Based on the UniFrac-Distance, we define two similarity matrices MA,MB ∈ [0, 1]p×p for all

i, j ∈ {1, . . . , p} by

MA
i,j := 1−UniFrac-Distance(ei, ej),

MB
i,j :=

p∑
`=1

UniFrac-Distance(ei, e`) ·UniFrac-Distance(ej , e`),

where ei, ej ∈ Sp−1 with 1 on the i-th and j-th coordinate, respectively. MA and MB are

two options of encoding the UniFrac-Distance as a similarity. MB is positive semi-definite by

construction, while this is not true for MA and should be checked empirically. We recommend

using MA whenever it is positive semi-definite.

We then construct the weight matrix WUniFrac ∈ Rp×p by scaling M∗ such that the

diagonal entries are one, that is,

WUniFrac := DM∗D,

where D = diag(σ1, . . . , σp), with σi = 1/
√
M∗i,i. Since by construction the matrix M∗ has

its largest values on the diagonal, this weight matrix takes values in [0, 1]. Moreoever, by

construction it remains symmetric and positive semi-definite.
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