
S4 Appendix: Additional experiments with simulated data

A Consistency of CPD and CFI

We illustrate the consistency of CPD and CFI from Theorem 2.1 in the main text based on

KernelBiome with the following example. Let ktv be the total variation kernel and consider

the function

f : x 7→ 100 · ktv(z, x)

with

z = (0.06544714, 0.08760064, 0.17203408, 0.07502236, 0.1642615,

0.03761901, 0.18255478, 0.13099514, 0.08446536) ∈ S8

being a fixed and randomly selected point. Furthermore, we generate an i.i.d. dataset (X1, Y1),

. . . , (Xn, Yn) based on the following 2 step generative model.

• Step 1: Generate a random variable X̃ = (X̃1, . . . , X̃9) such that the three blocks

(X̃1, X̃2, X̃3), (X̃4, X̃5, X̃6), and (X̃7, X̃8, X̃9) are i.i.d. from LogNormal(0,Σ), where

Σ =


1 0.25 −0.25

0.25 1 0.25

−0.25 0.25 1

. Then, Xi is constructed by normalizing X̃, that is, Xi =

X̃/
∑9

j=1 X̃
j . The block structure adds non-trivial correlation structure between the

compositional components.

• Step 2: Generate Yi based on Xi by

Yi = f(Xi) + εi

with εi
iid∼ N (0, 1).

Based on one such dataset, we estimate the CFI and CPD for a fitted KernelBiome estimator

(using kernel ridge regression and default settings), and compare the estimates against the
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population CFI and CPD calculated from the true function f . In Fig A, we report the mean

squared deviations (MSD) for both CFI and CPD based on 100 such datasets for each sample

size.

50 100 200 500

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
S

D
(C

F
I)

0

1

2

3

4

5

M
S

D
(C

P
D

)

Fig A. MSD of estimated CFI and CPD using KernelBiome estimator based on 100 random
datasets for each sample size. For CPD, we calculate the true and estimated CPD based on 100
evenly spaced grid points within the range of [0.001, 0.999] and the reported MSD is the average
MSD over the 9 components. As the sample size n increases the CFI and CPD estimates based
on KernelBiome converge to the true population quantities.

B Comparing CFI and CPD with permutation importance

and partial dependence plots

Two common approaches to assess the importance of individual features are permutation

importance (PI) and partial dependency plot (PDP). PI of the j-th feature is defined as the

mean difference between the baseline mean squared error of a fitted model and the average

mean squared error after permuting the j-th feature column a certain number of times. PDP

is used to describe how individual features contribute to a fitted model. For the j-th feature,

it describes its contribution by the function z 7→ E[f̂(X1, . . . , Xj−1, z,Xj , . . . , Xp)], where

f̂ is the fitted model. Both PI and PDP can be misleading when used with compositional

covariates.

In this section, we illustrate this based on two examples. In both cases, the proposed ad-

justed measures CFI and CPD remain correct, while the PI and PDP are incorrect. Consider
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f1 f2

x1 x2 x3 x1 x2 x3

CFI 0.85 0.87 -1.72 1.94 -1.94 0.00
RI 3.76 2.99 0.00 0.00 -4.72 -4.40
PI 11.66 5.76 0.00 0.00 28.98 24.72

Table A. CFI, RI and PI for the two functions f1 and f2 defined in (A). Only CFI correctly
attributes the effect of x3 (marked in bold).

the two functions

f1 : x 7→ 10x1 + 10x2

f2 : x 7→ 1− x2 − x3

1− x3
.

(A)

For f1, changes in all coordinates affect the function value due to the simplex constraint. For

f2, only changes in x1 and x2 affect the function value but not changes in x3. This is because

on the simplex f2(x) = x1

x1+x2 . An importance measure should therefore associate a non-zero

value to x3 for f1 and zero to x3 for f2.

We generate 200 i.i.d. observations X1 . . . , X100 with Xi
d
= X̃i/

∑3
j=1 X̃

j
i for X̃i

i.i.d.∼

LogNormal(0, Id3) (LogNormal(µ,Σ) denotes the log-normal distribution with location pa-

rameter µ and scale parameter Σ. Id3 denotes the 3-dimensional identity matrix.) and

compute PI, PDP, CFI and CPD for each of the two functions. The results are given in

Table A and Fig B.

As expected, the CFI and also CPD correctly capture the behavior of the two functions.

However, PI and PDP are incorrect in both cases: For f1 the variable x3 shows no effect both

with PI and PDP and for f2 the variable x3 is falsely assigned a strong negative effect even

though it does not affect the function value at all. In Table A, we have additionally computed

the relative influence (RI) given by E[ d
dxj f̂(X)] due to [1]. It has the same problems as PI as

it does not take into account the simplex structure.
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Fig B. Top row: CPD and PDP plot based on f1. Bottom row: CPD and PDP plot based on f2.
CPD reflects the true feature importance on the simplex while PDP does not.
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