
S5 Appendix: Background on kernels

A Connection between metrics and kernels

Definition A.1 (Metric, semi-metric, and quasi-metric). A function d : X ×X → R is called

a metric if it satisfies

(a) d(x, x) = 0,

(b) d(x, y) = d(y, x) ≥ 0,

(c) d(x, y) ≤ d(x, z) + d(y, z),

(d) d(x, y) = 0⇒ x = y.

It is called a semi-metric if it satisfies (a)-(c), and a quasi-metric if it satisfies (a)-(b).

Definition A.2 (Function of negative type and Hilbertian metric). A quasi-metric d : X ×

X → R is called of negative-type if for all n ∈ N, all x1, · · · , xn ∈ X , and all c1, · · · , cn ∈ R

with
∑n

i=1 ci = 0, it holds that

n∑
i,j=1

cicjd
2(xi, xj) ≤ 0. (A)

If d is a (semi-)metric, then d is also called Hilbertian.

Theorem A.1 (Sufficient and necessary conditions for isometric embeddings). A quasi-metric

space (X, d) can be isometrically embedded in a Hilbert space if and only if d is of negative

type.

Proof. See [1, Theorem 2.4].

Definition A.3 ((conditionally) positive definite kernels). A symmetric function k : X×X →

R (i.e., ∀x, y ∈ X , k(x, y) = k(y, x)) is called a positive definite kernel if and only if for all

n ∈ N, all x1, · · · , xn ∈ X , and all c1, · · · , cn ∈ R, it holds that

n∑
i,j=1

cicjk(xi, xj) ≥ 0 (B)
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It is called a conditional positive definite kernel if instead of for all c1, · · · , cn ∈ R condition

(B) only holds for all c1, · · · , cn ∈ R with
∑n

i=1 ci = 0.

Lemma A.1. Let X be a non-empty set, fix x0 ∈ X and let k, k̃ : X ×X → R be symmetric

functions satisfying for all x, y ∈ X that

k(x, y) = k̃(x, y)− k̃(x, x0)− k̃(y, x0) + k̃(x0, x0) (C)

Then k is positive definite if and only if k̃ is conditionally positive definite.

Proof. Fix n ∈ N, c1, · · · , cn ∈ R, and x0, x1, · · · , xn ∈ X . Let c0 = −
∑n

i=1 ci, then we have

n∑
i,j=0

cicj k̃(xi, xj) =

n∑
i,j=1

cicj k̃(xi, xj) +

n∑
i=1

cic0k̃(xi, x0)

+

n∑
j=1

c0cj k̃(xj , x0) + c0c0k̃(x0, x0)

=
n∑

i,j=1

cicj k̃(xi, xj)−
n∑

i,j=1

cicj k̃(xi, x0)

−
n∑

i,j=1

cicj k̃(xj , x0) +
n∑

i,j=1

cicj k̃(x0, x0)

=
n∑

i,j=1

cicj [k̃(x, y)− k̃(x, x0)− k̃(y, x0) + k̃(x0, x0)]

=

n∑
i,j=1

cicjk(xi, xj).

(D)

Now, if k̃ is conditionally positive definite, then (D) implies that
∑n

i,j=1 cicjk(xi, xj) ≥ 0, so

k is positive definite; if k is positive definite, (D) implies that
∑n

i,j=0 cicj k̃(xi, xj ≥ 0 so k̃ is

conditionally positive definite. This completes the proof of Lemma A.1.

Lemma A.2 (Shifted conditionally positive definite). Let X be a non-empty set and let

k : X × X → R be a positive definite kernel, then

k̃(x, y) = k(x, y) + f(x) + f(y)

is a conditionally positive definite kernel for all f : X → R.
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Proof. The proof follows the exact same argument as the proof of Lemma A.1.

Theorem A.2 (Connection between Hilbertian semi-metrics and positive definite kernels).

Let k : X × X → R and d : X × X → [0,∞) be functions. If k is a positive definite kernel

and d satisfies d2(x, y) = k(x, x) + k(y, y) − 2k(x, y), then d is a Hilbertian semi-metric.

On the other hand, for any x0 ∈ X , if d is a Hilbertian semi-metric and and k satisfies

k(x, y) = −1
2d

2(x, y) + 1
2d

2(x, x0) + 1
2d

2(x0, y), then k is a pd kernel.

The result is due to [2].

Proof. We start with the first part. Assume that k is a positive definite kernel and d satisfies

d2(x, y) = k(x, x) + k(y, y) − 2k(x, y). Then, d is indeed a semi-metric by the following

arguments:

(a) d(x, x) =
√
k(x, x) + k(x, x)− 2k(x, x) = 0,

(b) d(x, y) = d(y, x), and since k is positive definite, let c1 = 1, c2 = −1, x1 = x, and

x2 = y,

0 ≤
n∑

i,j=1

cicjk(xi, xj) = k(x1, x1)− k(x1, x2)− k(x2, x1) + k(x2, x2)

= k(x, x) + k(y, y)− 2k(x, y)

= d(x, y)

(c) Since k is a positive definite kernel, there exists a feature map φk from X to an RKHS

Hk, and we have

||φk(x)− φk(y)||2Hk
= 〈φk(x)− φk(y), φk(x)− φk(y)〉Hk

= 〈φk(x), φk(x)〉Hk
+ 〈φk(y), φk(y)〉Hk

− 2〈φk(x), φk(y)〉Hk

= k(x, x) + k(y, y)− 2k(x, y)

= d2(x, y)

Therefore, d(x, z) ≤ d(x, y) + d(y, z) follows from the triangle inequality of a norm.
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To show d is also Hilbertian, take any n ∈ N, any x1, · · · , xn ∈ X , and any c1, · · · , cn ∈ R, we

have

n∑
i,j=1

cicjd(xi, xj) =
n∑

i=1

cik(xi, xi)
n∑

j=1

cj +
n∑

j=1

cik(xj , xj)
n∑

i=1

ci

− 2

n∑
i,j=1

cicjk(xi, xj)

= −2

n∑
i,j=1

cicjk(xi, xj) ≤ 0 (since k is positive definite).

This proves the first part of the theorem.

For the second part, assume that d is a Hilbertian semi-metric and k satisfies k(x, y) =

−1
2d

2(x, y)+ 1
2d

2(x, x0)+ 1
2d

2(x0, y). Then, since d is Hilbertian, −d2 satisfies the requirement

of a conditionally positive definite kernel (with the additional property that −d2(x, x) = 0).

Hence, by Lemma A.1, k is indeed positive definite. This completes the proof of Theorem A.2.

B Dimensionality reduction and visualization with kernels

One important benefit of using the kernel approach is that we can leverage the kernels for

dimensionality reduction and visualization, so that one can identify outliers in the data and

further investigate them. In this section, we provide a short introduction on how to use kernels

for multi-dimensional scaling and connect it to kernel PCA [3].

Kernel methods project the compositional data into a (potentially) high-dimensional

RKHS Hk, which we now want to project into the low dimensional Euclidean space R`

(with ` � p) such that the lower dimensional representation preserves information that

helps separate the observations of different traits in the RKHS. That is, given observations

x1, · · · , xn ∈ Sp−1 and a kernel k, we would like to define a map Φ : Hk → R` such that

n∑
i,j=1

‖〈k(xi, ·), k(xj , ·)〉Hk
− 〈Φ(k(xi, ·)),Φ(k(xj , ·))〉R`‖2
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is minimized. In matrix notation, this corresponds to solving

arg min
Z∈Rn×`

‖K − ZZ>‖2,

where the rows of Z are zi = Φ(k(xi, ·)) ∈ R` for all i ∈ {1 · · · , n} and K ∈ Rn×n is the

kernel Gram-matrix. This is similar to the classical multidimensional scaling (MDS) but

measuring the similarity in the RKHS instead of in Euclidean space. By the Eckart-Young

theorem [4], this minimization problem can be solved via the eigendecomposition of the matrix

K = V ΣV >, and the optimal solution is

Zopt = (V1, . . . , V`)(Σ:`)
1
2 ,

where V1, . . . , V` are the first ` columns of V and Σ:` is the upper-left (`× `)-submatrix of Σ.

The optimal projection Φopt is then given for all f ∈ Hk by

Φopt(f) = (Σ:`)
− 1

2 (V1, . . . , V`)
>


〈f, k(x1, ·)〉Hk

...

〈f, k(xn, ·)〉Hk

 . (E)

This in particular allows to project a new observations w ∈ Sp−1 with the same projection

that is w 7→ Φopt(k(w, ·)).

The projection in (E) depends on the origin of the RKHS Hk. To remove this de-

pendence, it may therefore be desirable to consider a centered version of the optimal pro-

jection. This can be achieved by considering the RKHS H̃k consisting of the functions

f̃(·) = f(·) − 1
n

∑n
i=1 k(xi, ·) with f ∈ Hk. To compute the optimal centered projection

(E) for the RKHS H̃k, we only need to perform double centering on the kernel matrix K, i.e.,

K̃ = HKH, where H = I − 1
n11T and replace k(x, ·) by k̃(x, ·) = k(x, ·) − 1

n

∑n
i=1 k(xi, ·).

With the centering step, this procedure is equivalent to kernel PCA [3]. The steps to obtain

the lower-dimensional representation in matrix form are given in Algorithm 1.
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Algorithm 1 Dimensionality reduction with kernels

Input: Training data X1, . . . , Xn ∈ Sp−1, visualization data
Xnew

1 , . . . , Xnew
m ∈ Sp−1 (can be same as training data), kernel

function k, dimension l ∈ {1, . . . , p}, indicator whether to use
centering CenterK ∈ {True, False}

Output: l-dimensional representation Z = (Z1, . . . , Zm)> ∈
Rm×l

1: # Define centering function
2: function CenterKernelMatrix(K, K̃)
3: Kcenter ← K̃ − 1

n11TK − 1
nK̃11T + 1

n2 11TK11T

4: return Kcenter

5: end function

6: # Compute kernel matrix for training data
7: for i, j = 1, · · · , n do
8: Kij ← k(Xi, Xj)
9: end for

10: # Compute kernel matrix for visualization data
11: for i = 1, · · · ,m and j = 1, · · · , n do
12: Knew

ij ← k(Xnew
i , Xj)

13: end for

14: # Center kernel matrices
15: if CenterK then
16: Knew ← CenterKernelMatrix(K,Knew)
17: K ← CenterKernelMatrix(K,K)
18: end if

19: # Compute l-dimensional representation
20: V,Σ← eigenvalue decomposition of K
21: Z ← Knew(V1, . . . , Vl)(Σ:l)

− 1
2

22: return Z

B.1 Compositionally adjusted coordinate-wise contribution to each princi-

ple component

Given the optimal projection function Φopt, define the function F : Sp−1 → R` for all x ∈ Sp−1

by F (x) = Φopt(k(x, ·)). We then call the components F 1, . . . , F ` the principle components.

Our goal is now to understand how each principle component is affected by changes in the

different components of its arguments. For this, fix a principle component r ∈ {1, . . . , `} and
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consider for each j ∈ {1, . . . , p} the quantities

E[F r(ψj(X, c))− F r(X)],

where c ∈ (0, 1) and ψj the perturbation defined in S1 Appendix. This is very similar in

spirit as the CFI but with the derivative replaced by a difference and measures how much a

perturbation of size c in the j-th component effects the value of the r-th principle component.

It is easily estimated by

1

n

n∑
i=1

F r(ψj(Xi, c))− F r(Xi).
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