S6 Appendix: Proofs

A Proof of Proposition 2.1

Proof. We start with the CFI. Fix $j \in \{1, ..., p\}$ and $x \in \mathbb{S}^{p-1}$, then we can compute the derivative using the chain rule and the explicit form of the perturbation ψ as follows

$$
\frac{d}{dx}f(\psi_j(x,c)) = \left\langle \nabla f(\psi_j(x,c)), \frac{d}{dx}\psi_j(x,c) \right\rangle
$$
\n
$$
= \left\langle \nabla f(\psi_j(x,c)), \frac{d}{dx}s_c(x^1, \dots, x^{j-1}, cx^j, x^{j+1}, \dots, x^p)^\top \right\rangle
$$
\n
$$
= \left\langle \nabla f(\psi_j(x,c)), \frac{d}{dx}\frac{1}{\sum_{\ell\neq j}^p x^\ell + cx^j}(x^1, \dots, x^{j-1}, cx^j, x^{j+1}, \dots, x^p)^\top \right\rangle
$$
\n
$$
= \left\langle \nabla f(\psi_j(x,c)),
$$
\n
$$
\frac{-x^j}{(\sum_{\ell\neq j}^p x^\ell + cx^j)^2} \left(x^1, \dots, x^{j-1}, cx^j x^j - x^j (\sum_{\ell\neq j}^p x^\ell + cx^j), x^{j+1}, \dots, x^p \right)^\top \right\rangle.
$$

Evaluating, the derivative at $c = 1$ leads to

$$
\frac{d}{dc}f(\psi_j(x,c))|_{c=1} = \langle \nabla f(x), x^j(e_j - x) \rangle, \tag{A}
$$

where we used that $\psi_j(x, 1) = x$. Moreover, the gradient of f in the case of the log-contrast model is given by

$$
\nabla f(x) = \left(\frac{\beta_1}{x^1}, \dots, \frac{\beta_p}{x^p}\right)^\top.
$$
 (B)

Combining [\(A\)](#page-0-0) and [\(B\)](#page-0-1) together with the constraint $\sum_{k=1}^{p} \beta_k = 0$ implies that

$$
\frac{d}{dc}f(\psi_j(x,c))|_{c=1} = -x^j \sum_{k \neq j} \beta_k + \beta^j (1 - x^j) = \beta_j.
$$

Hence, taking the expectation leads to

$$
I_j^j = \mathbb{E}[\frac{d}{dc}f(\psi_j(X,c))|_{c=1}] = \beta_j,
$$

which proves the first part of the proposition.

Next, we show the result for the CPD. Fix $j \in \{1, \ldots, p\}$ and $z \in [0, 1]$. Then S^j_{ℓ} $\iint_f(z)$ for the log-contrast model can be computed as follows

$$
S_f^j(z) = \mathbb{E}[f(\phi_j(X, z))] - \mathbb{E}[f(X)]
$$

=
$$
\sum_{\ell=1}^p \beta_\ell \mathbb{E}[\log(\phi_j(X, z)^\ell)] - \mathbb{E}[f(X)]
$$

=
$$
\sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(sX^\ell)] + \beta_j \log(z) - \mathbb{E}[f(X)]
$$

=
$$
\beta_j \log(z) + \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(s)] + \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(X^\ell)] - \mathbb{E}[f(X)],
$$

where $s = (1-z)/(\sum_{\ell \neq j}^p X^{\ell})$. Using $\beta^{j} = -\sum_{\ell \neq j}^p \beta_{\ell}$ (which follows from the log-contrast model constraint on β) we can simplify this further and get

$$
S_f^j(z) = \beta_j \log(z) + \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(1-z)] - \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(\sum_{k \neq j}^p X^k)] + \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(X^{\ell})] - \mathbb{E}[f(X)]
$$

\n
$$
= \beta_j \log(z) - \beta_j \mathbb{E}[\log(1-z)] + \beta_j \mathbb{E}[\log(\sum_{k \neq j}^p X^k)] + \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(X^{\ell})] - \mathbb{E}[f(X)]
$$

\n
$$
= \beta_j \log\left(\frac{z}{1-z}\right) + \beta_j \mathbb{E}[\log(\sum_{k \neq j}^p X^k)] + \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(X^{\ell})] - \sum_{\ell=1}^p \beta_\ell \mathbb{E}[\log(X^{\ell})]
$$

\n
$$
= \beta_j \log\left(\frac{z}{1-z}\right) + c,
$$

with $c = \beta_j \mathbb{E}[\log(\sum_{k\neq j}^p X^k)] + \sum_{\ell \neq j}^p \beta_\ell \mathbb{E}[\log(X^\ell)] - \sum_{\ell=1}^p \beta_\ell \mathbb{E}[\log(X^\ell)]$. Finally, assume $\beta^j = 0$, then it holds that p p

$$
c = \sum_{\ell \neq j}^{p} \beta_{\ell} \mathbb{E}[\log(X^{\ell})] - \sum_{\ell \neq j}^{p} \beta_{\ell} \mathbb{E}[\log(X^{\ell})] = 0.
$$

This completes the proof of Proposition 2.1.

B Proof of Theorem 2.1

Proof. We first prove (i). To see this, we apply the triangle inequality to get that

$$
|\hat{I}_{\hat{f}_n}^j - I_{f^*}^j| \le \underbrace{|\hat{I}_{\hat{f}_n}^j - \hat{I}_{f^*}^j|}_{=:A_n} + \underbrace{|\hat{I}_{f^*}^j - I_{f^*}^j|}_{=:B_n}.
$$
 (C)

 \Box

Next, we consider the two terms A_n and B_n separately. We begin with A_n , by using the definition of the CFI together with [\(A\)](#page-0-0) from the proof of Proposition 2.1. This leads to

$$
A_n = \left| \frac{1}{n} \sum_{i=1}^n \left(\frac{d}{dc} \hat{f}_n(\psi(X_i, c)|_{c=1} - \frac{d}{dc} f^*(\psi(X_i, c)|_{c=1}) \right) \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^n \left\langle \nabla \hat{f}_n(X_i) - \nabla f^*(X_i), X_i^j(e_j - X_i) \right\rangle \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^n \left| \left\langle \nabla \hat{f}_n(X_i) - \nabla f^*(X_i), X_i^j(e_j - X_i) \right\rangle \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^n \left\| \nabla \hat{f}_n(X_i) - \nabla f^*(X_i) \right\|_2 \left\| X_i^j(e_j - X_i) \right\|_2
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^n \left\| \nabla \hat{f}_n(X_i) - \nabla f^*(X_i) \right\|_2,
$$

where for the last three steps we used the triangle inequality, the Cauchy-Schwartz inequality and that $\|X_i^j\|$ $\|s_i^j(e_j - X_i)\|_2 \leq 1$ since $X_i \in \mathbb{S}^{p-1}$, respectively. By assumption, it therefore holds that $A_n \to 0$ in probability as $n \to \infty$. For the B_n term, observe that using the same bounds it holds that

$$
\mathbb{E}\left[\left(\frac{d}{dc}f^*(\psi(X_i,c)|_{c=1})^2\right] = \mathbb{E}\left[\left(\left\langle \nabla f^*(X_i), X_i^j(e_j - X_i)\right\rangle\right)^2\right] \leq \mathbb{E}\left[\|\nabla f^*(X_i)\|_2^2\right].
$$

By assumption that $\mathbb{E} \left[\left\| \nabla f^*(X_i) \right\|_2^2 \right]$ $\binom{2}{2} < \infty$ this implies we can apply the weak law of large numbers to get for $n \to \infty$ that

$$
\hat{I}_{f^*}^j = \frac{1}{n} \sum_{i=1}^n \frac{d}{dc} f^*(\psi(X_i, c)|_{c=1} \xrightarrow{P} \mathbb{E} \left[\frac{d}{dc} f^*(\psi(X_i, c)|_{c=1} \right] = I_{f^*}^j.
$$

This immediately implies that $B_n \to 0$ in probability as $n \to \infty$. Combining the convergence of A_n and B_n in [\(C\)](#page-1-0) completes the proof of (i).

Next, we prove (ii). Fix $j \in \{1, ..., p\}$ and $z \in [0, 1]$ such that $z/(1-z) \in \text{supp}(X^j/\sum_{\ell \neq j} X^{\ell})$. By the definition of the perturbation ϕ_j we get that

$$
\phi_j(X, z) = s(X^1, \cdots, X^{j-1}, \frac{z}{1-z} \sum_{\ell \neq j} X^{\ell}, X^{j+1}, \cdots, X^p)
$$
 (D)

where $s = (1-z)/(\sum_{\ell \neq j}^p X^{\ell})$. Next, using the assumption that supp $(X) = \{x \in \mathbb{S}^{p-1} \mid x =$ $w/(\sum_j w^j)$ with $w \in \text{supp}(X^1) \times \cdots \times \text{supp}(X^p)$ and that $z/(1-z) \in \text{supp}(X^j/\sum_{\ell \neq j} X^{\ell})$ we get that

$$
\phi_j(X, z) \in \text{supp}(X^j)
$$
 (E)

almost surely.

By the triangle inequality it holds that

$$
|\hat{S}_{\hat{f}_n}^j(z) - S_{f^*}^j(z)| \leq \underbrace{|\hat{S}_{\hat{f}_n}^j(z) - \hat{S}_{f^*}^j(z)|}_{=:C_n} + \underbrace{|\hat{S}_{f^*}^j(z) - S_{f^*}^j(z)|}_{=:D_n}.
$$
 (F)

We now consider the two terms C_n and D_n separately. First, we apply the triangle inequality to bound the C_n term as follows.

$$
C_n = \left| \frac{1}{n} \sum_{i=1}^n (\hat{f}_n(\phi_j(X_i, z)) - f^*(\phi_j(X_i, z))) + \frac{1}{n} \sum_{i=1}^n (\hat{f}_n(X_i) - f^*(X_i)) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^n \left| \hat{f}_n(\phi_j(X_i, z)) - f^*(\phi_j(X_i, z)) \right| + \frac{1}{n} \sum_{i=1}^n \left| \hat{f}_n(X_i) - f^*(X_i) \right|
$$

\n
$$
\leq 2 \sup_{x \in \text{supp}(X)} \left| \hat{f}_n(x) - f^*(x) \right|,
$$

where for the last step we used a supremum bound together with [\(D\)](#page-2-0). Hence, using the assumption that $\sup_{x \in \text{supp}(X)} |\hat{f}_n(x) - f^*(x)| \overset{P}{\to} 0$ as $n \to \infty$, we get that $C_n \to \infty$ in probability as $n \to \infty$. Similarly, for the D_n term we get that

$$
D_n = \left| \frac{1}{n} \sum_{i=1}^n f^*(\phi_j(X_i, z)) - \mathbb{E}[f^*(\phi_j(X_i, z))] + \frac{1}{n} \sum_{i=1}^n f^*(X_i) - \mathbb{E}[f^*(X_i)] \right|
$$

$$
\leq \left| \frac{1}{n} \sum_{i=1}^n f^*(\phi_j(X_i, z)) - \mathbb{E}[f^*(\phi_j(X_i, z))] \right| + \left| \frac{1}{n} \sum_{i=1}^n f^*(X_i) - \mathbb{E}[f^*(X_i)] \right|.
$$

Since the X_1, \ldots, X_n and hence $\phi_j(X_1, z), \ldots, \phi_j(X_n, z)$ are i.i.d. and bounded we can apply the weak law of large numbers to get that $D_n \to 0$ in probability as $n \to \infty$.

Finally, combining the convergence of C_n and D_n with (F) proves (ii) and hence completes \Box the proof of Theorem 2.1.

C Proof of Proposition 2.2

Proof. For this proof, we denote by \mathbb{S}^{p-1} the open instead of the closed simplex.

First, since k_W is a positive definite kernel (see Section 2.1 in S2 Appendix for a proof), it holds that the RKHS \mathcal{H}_{k_W} can be expressed as the closure of

$$
\mathcal{F} := \Big\{ f: \mathbb{S}^{p-1} \times \mathbb{S}^{p-1} \to \mathbb{R} \Big| \exists n \in \mathbb{N}, z_1, \dots, z_n \in \mathbb{S}^{p-1}, \alpha_1, \dots, \alpha_n \in \mathbb{R} : f(\cdot) = \sum_{i=1}^n \alpha_i k_W(z_i, \cdot) \Big\}.
$$

We now show that any function in $\mathcal F$ has the expression given in the statement of the proposition. Let $f \in \mathcal{F}$ be arbitrary with the expansion

$$
f(\cdot) = \sum_{i=1}^{n} \alpha_i k_W(z_i, \cdot).
$$

Then, for all $x \in \mathbb{S}^{p-1}$ it holds that

$$
f(x) = \sum_{i=1}^{n} \alpha_i \sum_{j,\ell=1}^{p} W_{\ell,j} \log \left(\frac{z_i^{\ell}}{g(z_i)} \right) \log \left(\frac{x^j}{g(x)} \right)
$$

\n
$$
= \sum_{j=1}^{p} \left(\sum_{\ell=1}^{p} W_{\ell,j} \sum_{i=1}^{n} \alpha_i \log \left(\frac{z_i^{\ell}}{g(z_i)} \right) \right) \log \left(\frac{x^j}{g(x)} \right)
$$

\n
$$
= \sum_{j=1}^{p} \left(\sum_{\ell=1}^{p} W_{\ell,j} \widetilde{\beta}_{\ell} \right) \log \left(\frac{x^j}{g(x)} \right)
$$

\n
$$
= \sum_{j=1}^{p} \left(\sum_{\ell=1}^{p} W_{\ell,j} \widetilde{\beta}_{\ell} \right) \log \left(x^j \right) - \left(\sum_{j,\ell=1}^{p} W_{\ell,j} \widetilde{\beta}_{\ell} \right) \log \left(g(x) \right)
$$

\n
$$
= \sum_{j=1}^{p} \left(\sum_{\ell=1}^{p} W_{\ell,j} \widetilde{\beta}_{\ell} \right) \log \left(x^j \right) - \left(\sum_{\ell=1}^{p} \widetilde{\beta}_{\ell} \right) \log \left(g(x) \right), \tag{G}
$$

where in the third line we defined $\widetilde{\beta}_{\ell} := \sum_{i=1}^{n} \alpha_i \log \left(\frac{z_i^{\ell}}{g(z_i)} \right)$ and in the last equation we used that $\sum_{j=1}^p W_{\ell,j} = 1$ for all $\ell \in \{1, \ldots, p\}$ by construction of W. Furthermore, we get that

$$
\sum_{j=1}^{p} \tilde{\beta}_{j} = \sum_{i=1}^{n} \alpha_{i} \left(\sum_{j=1}^{p} \log (z_{i}^{j}) - p \log(g(z_{i})) \right) = \sum_{i=1}^{n} \alpha_{i} \left(\sum_{j=1}^{p} \log (z_{i}^{j}) - \sum_{j=1}^{p} \log (z_{i}^{j}) \right) = 0.
$$
 (H)

Now, combining this with [\(G\)](#page-4-0) and setting $\beta_j := \sum_{\ell=1}^p W_{\ell,j} \tilde{\beta}_{\ell}$ implies that

$$
f(x) = \beta^{\top} \log(x),
$$

where β does not depend on x.

It remains to show that β satisfies (i) $\sum_{j=1}^{p} \beta_j = 0$ and (ii) for all $\ell \in \{1, \ldots, m\}$ it holds for all $i, j \in P_\ell$ that $\beta_i = \beta_j$. For (i), we can use [\(H\)](#page-4-1) and directly compute

$$
\sum_{j=1}^p \beta_j = \sum_{j=1}^p \sum_{\ell=1}^p W_{\ell,j} \widetilde{\beta}_{\ell} = \sum_{\ell=1}^p \widetilde{\beta}_{\ell} = 0.
$$

Finally for (ii), fix $k \in \{1, ..., m\}$ and $i, j \in P_k$, then it holds that

$$
\beta_j = \sum_{\ell=1}^p W_{\ell,j} \widetilde{\beta}_{\ell} = \sum_{\ell=1}^p \sum_{r=1}^m \frac{1}{|P_r|} 1\!\!1_{\{\ell,j \in P_r\}} \widetilde{\beta}_{\ell} = \sum_{\ell=1}^p \frac{1}{|P_k|} \widetilde{\beta}_{\ell} = \sum_{\ell=1}^p \sum_{r=1}^m \frac{1}{|P_r|} 1\!\!1_{\{\ell,i \in P_r\}} \widetilde{\beta}_{\ell} = \sum_{\ell=1}^p W_{\ell,i} \widetilde{\beta}_{\ell} = \beta_i.
$$

This completes the proof of Proposition 2.2.

$$
\Box
$$