S6 Appendix: Proofs

A Proof of Proposition 2.1

Proof. We start with the CFL. Fix j € {1,...,p} and z € SP~!, then we can compute the

derivative using the chain rule and the explicit form of the perturbation v as follows
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Evaluating, the derivative at ¢ = 1 leads to
%f@/}j(xvc)”c:l = <Vf(x),$j(6j - SU)> ) (A)

where we used that 1;(z,1) = x. Moreover, the gradient of f in the case of the log-contrast

model is given by
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Combining and together with the constraint ZZ:1 B = 0 implies that

EF W2, 0)le=1 = =27 Y B+ (1 —af) = ;.
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Hence, taking the expectation leads to

I =E[L f(¥;(X,0)|e=1] = B;,

which proves the first part of the proposition.



Next, we show the result for the CPD. Fix j € {1,...,p} and z € [0,1]. Then S}(z) for

the log-contrast model can be computed as follows
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where s = (1 — 2)/( # X*%). Using g7 = — le?#j B¢ (which follows from the log-contrast

model constraint on [3) we can simplify this further and get

S4(z) = B;log( +ZB¢E log(1 —2)] = > BeEllog(3% ; X*)] + 37 BeEllog(X*)] — E[f(X)]
L#£37 l#£j

= Bjlog(z) — B;E[log(1 — 2)] + B;E[log(327 ; X*)] + 327 BeEllog(X*)] — E[f(X)]

= Bjlog [ —— | + B, E[log( bty X+ 2005 BeEllog(X )] = 327_, BeE[log(X*)]
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with ¢ = B;E[log(3-}; Xk)]—i-z BgIE[log(XZ)]— D BeE[log(X")]. Finally, assume 37 = 0,

then it holds that

c= Z BeE[log(X Z BeElog(X%)] = 0.
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This completes the proof of Proposition 2.1. O

B Proof of Theorem 2.1

Proof. We first prove (i). To see this, we apply the triangle inequality to get that

|fj£ — Il < |f} — [| + . — T (C)
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Next, we consider the two terms A, and B, separately. We begin with A,, by using the

definition of the CFI together with from the proof of Proposition 2.1. This leads to
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where for the last three steps we used the triangle inequality, the Cauchy-Schwartz inequality
and that HXZJ (ej — X;)||2 < 1 since X; € SP~1, respectively. By assumption, it therefore holds

that A,, — 0 in probability as n — oco. For the B,, term, observe that using the same bounds

it holds that
E [(%f*(@z;(x,», c)yczl)ﬂ =E [<<Vf*(Xi)>Xij(ej - Xi)>>2] <E [IIVf*(Xz-)Hg} :

By assumption that E [HV f*(Xl)||§] < oo this implies we can apply the weak law of large

numbers to get for n — oo that
= Z L ((Xi, o=t — B[ L (X5, 0)|e=1] = T

This immediately implies that B,, — 0 in probability as n — co. Combining the convergence

of A, and B,, in completes the proof of (i).

Next, we prove (ii). Fix j € {1,...,p} and z € [0, 1] such that z/(1—z) € supp(X7/ D0t X9,

By the definition of the perturbation ¢; we get that

$i(X,2) = s(X', - X7 A5, X XL XP) (D)
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where s = (1 — 2)/( Zﬁj X*%). Next, using the assumption that supp(X) = {z € SP™' |z =

w/(3; w’) with w € supp(X!) x --- x supp(X?)} and that z/(1 — z) € supp(Xj/Z#j X4

we get that

¢j(X, z) € supp(X?) (E)
almost surely.

By the triangle inequality it holds that
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We now consider the two terms C,, and D,, separately. First, we apply the triangle inequality

to bound the C), term as follows.

Co = |23 (Al (X 2)) — F(05(K02) + - D0 (fu(X) - f*(XZ.>>|
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where for the last step we used a supremum bound together with @ Hence, using the
assumption that sup,equpp(x) |fn(2) — f*(2)] 5 0asn — oo, we get that C,, — oo in

probability as n — oo. Similarly, for the D,, term we get that

Dn = %Zf*(%(Xiaz)) — E[f*(¢;(Xi,2))] + % > (X)) — B[ (X))
i=1 i=1
= %Zf*(%’(Xz’aZ))—]E[f*(dﬁj(Xz-,Z))] + %Zf*(XZ-)—]E[f*(Xi)} ,
i=1 i=1

Since the X7, ..., X, and hence ¢;(X1,2),...,¢;(Xy, 2) are i.i.d. and bounded we can apply

the weak law of large numbers to get that D,, — 0 in probability as n — co.

Finally, combining the convergence of C,, and D,, with proves (ii) and hence completes
the proof of Theorem 2.1. O



C Proof of Proposition 2.2

Proof. For this proof, we denote by SP~! the open instead of the closed simplex.

First, since kyy is a positive definite kernel (see Section 2.1 in S2 Appendix for a proof),

it holds that the RKHS Hj,, can be expressed as the closure of
= {f cSPINSPT S R|ImeN, 2z, ..,z €SP Ay, ,an €R:f() = o cikw (2, )}

We now show that any function in F has the expression given in the statement of the propo-

sition. Let f € F be arbitrary with the expansion

= Z aikw(zi, )
=1

Then, for all z € SP~! it holds that
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= i (ZP:W,Jﬁ > log (w ( y By ) log (g(x)), (G)
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where in the third line we defined Eg = ", a;log (%) and in the last equation we used

that 25:1 We; =1forall £ € {1,...,p} by construction of W. Furthermore, we get that

n

igj:Zai<élog(zg)—plog(g( ) Zal<ZIOg Zlog(zg’)>: . (H)

i=1 = j=1



Now, combining this with and setting §; = Zé’:l ngg implies that

f(a) = BT log(),

where 3 does not depend on x.
It remains to show that [ satisfies (i) Z§:1 Bj =0 and (ii) for all £ € {1,...,m} it holds

for all 4,j € Py that 3; = ;. For (i), we can use and directly compute

P PP B P
D_Bi=2_ 0 Weibe=) fi=0.
j=1 j=1£=1 =1

Finally for (ii), fix k € {1,...,m} and i, € Py, then it holds that

p
}ﬁe Z WeiBe = pi.
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This completes the proof of Proposition 2.2. O
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