
S6 Appendix: Proofs

A Proof of Proposition 2.1

Proof. We start with the CFI. Fix j ∈ {1, . . . , p} and x ∈ Sp−1, then we can compute the

derivative using the chain rule and the explicit form of the perturbation ψ as follows

d
dcf(ψj(x, c)) =

〈
∇f(ψj(x, c)),

d
dcψj(x, c)

〉
=
〈
∇f(ψj(x, c)),

d
dcsc(x

1, · · · , xj−1, cxj , xj+1, · · · , xp)>
〉

=

〈
∇f(ψj(x, c)),

d
dc

1∑p
` 6=j x

` + cxj
(x1, · · · , xj−1, cxj , xj+1, · · · , xp)>

〉

=

〈
∇f(ψj(x, c)),

−xj

(
∑p
6̀=j x

` + cxj)2

(
x1, · · · , xj−1, cxjxj − xj(

∑p
`6=j x

` + cxj), xj+1, · · · , xp
)>〉

.

Evaluating, the derivative at c = 1 leads to

d
dcf(ψj(x, c))|c=1 =

〈
∇f(x), xj(ej − x)

〉
, (A)

where we used that ψj(x, 1) = x. Moreover, the gradient of f in the case of the log-contrast

model is given by

∇f(x) =

(
β1
x1
, . . . ,

βp
xp

)>
. (B)

Combining (A) and (B) together with the constraint
∑p

k=1 βk = 0 implies that

d
dcf(ψj(x, c))|c=1 = −xj

∑
k 6=j

βk + βj(1− xj) = βj .

Hence, taking the expectation leads to

Ijj = E[ d
dcf(ψj(X, c))|c=1] = βj ,

which proves the first part of the proposition.

1



Next, we show the result for the CPD. Fix j ∈ {1, . . . , p} and z ∈ [0, 1]. Then Sj
f (z) for

the log-contrast model can be computed as follows

Sj
f (z) = E[f(φj(X, z))]− E[f(X)]

=

p∑
`=1

β`E[log(φj(X, z)
`)]− E[f(X)]

=

p∑
6̀=j

β`E[log(sX`)] + βj log(z)− E[f(X)]

= βj log(z) +

p∑
6̀=j

β`E[log(s)] +

p∑
` 6=j

β`E[log(X`)]− E[f(X)],

where s = (1 − z)/(
∑p
6̀=j X

`). Using βj = −
∑p

` 6=j β` (which follows from the log-contrast

model constraint on β) we can simplify this further and get

Sj
f (z) = βj log(z) +

p∑
6̀=j

β`E[log(1− z)]−
p∑

`6=j

β`E[log(
∑p

k 6=j X
k)] +

∑p
` 6=j β`E[log(X`)]− E[f(X)]

= βj log(z)− βjE[log(1− z)] + βjE[log(
∑p

k 6=j X
k)] +

∑p
` 6=j β`E[log(X`)]− E[f(X)]

= βj log

(
z

1− z

)
+ βjE[log(

∑p
k 6=j X

k)] +
∑p

`6=j β`E[log(X`)]−
∑p

`=1 β`E[log(X`)]

= βj log

(
z

1− z

)
+ c,

with c = βjE[log(
∑p

k 6=j X
k)]+

∑p
6̀=j β`E[log(X`)]−

∑p
`=1 β`E[log(X`)]. Finally, assume βj = 0,

then it holds that

c =

p∑
` 6=j

β`E[log(X`)]−
p∑

`6=j

β`E[log(X`)] = 0.

This completes the proof of Proposition 2.1.

B Proof of Theorem 2.1

Proof. We first prove (i). To see this, we apply the triangle inequality to get that

|Îj
f̂n
− Ijf∗ | ≤ |Îj

f̂n
− Îjf∗ |︸ ︷︷ ︸

=:An

+ |Îjf∗ − Ijf∗ |︸ ︷︷ ︸
=:Bn

. (C)
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Next, we consider the two terms An and Bn separately. We begin with An, by using the

definition of the CFI together with (A) from the proof of Proposition 2.1. This leads to

An =

∣∣∣∣∣ 1n
n∑

i=1

(
d
dc f̂n(ψ(Xi, c)|c=1 − d

dcf
∗(ψ(Xi, c)|c=1

)∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

〈
∇f̂n(Xi)−∇f∗(Xi), X

j
i (ej −Xi)

〉∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣〈∇f̂n(Xi)−∇f∗(Xi), X
j
i (ej −Xi)

〉∣∣∣
≤ 1

n

n∑
i=1

∥∥∇f̂n(Xi)−∇f∗(Xi)
∥∥
2

∥∥Xj
i (ej −Xi)

∥∥
2

≤ 1

n

n∑
i=1

∥∥∇f̂n(Xi)−∇f∗(Xi)
∥∥
2
,

where for the last three steps we used the triangle inequality, the Cauchy-Schwartz inequality

and that ‖Xj
i (ej −Xi)‖2 ≤ 1 since Xi ∈ Sp−1, respectively. By assumption, it therefore holds

that An → 0 in probability as n→∞. For the Bn term, observe that using the same bounds

it holds that

E
[(

d
dcf
∗(ψ(Xi, c)|c=1

)2]
= E

[(〈
∇f∗(Xi), X

j
i (ej −Xi)

〉)2]
≤ E

[
‖∇f∗(Xi)‖22

]
.

By assumption that E
[
‖∇f∗(Xi)‖22

]
< ∞ this implies we can apply the weak law of large

numbers to get for n→∞ that

Îjf∗ =
1

n

n∑
i=1

d
dcf
∗(ψ(Xi, c)|c=1

P−→ E
[
d
dcf
∗(ψ(Xi, c)|c=1

]
= Ijf∗ .

This immediately implies that Bn → 0 in probability as n→∞. Combining the convergence

of An and Bn in (C) completes the proof of (i).

Next, we prove (ii). Fix j ∈ {1, . . . , p} and z ∈ [0, 1] such that z/(1−z) ∈ supp(Xj/
∑

`6=j X
`).

By the definition of the perturbation φj we get that

φj(X, z) = s(X1, · · · , Xj−1, z
1−z

∑
`6=j X

`, Xj+1, · · · , Xp) (D)
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where s = (1 − z)/(
∑p

` 6=j X
`). Next, using the assumption that supp(X) = {x ∈ Sp−1 | x =

w/(
∑

j w
j) with w ∈ supp(X1) × · · · × supp(Xp)} and that z/(1 − z) ∈ supp(Xj/

∑
`6=j X

`)

we get that

φj(X, z) ∈ supp(Xj) (E)

almost surely.

By the triangle inequality it holds that

|Ŝj

f̂n
(z)− Sj

f∗(z)| ≤ |Ŝj

f̂n
(z)− Ŝj

f∗(z)|︸ ︷︷ ︸
=:Cn

+ |Ŝj
f∗(z)− Sj

f∗(z)|︸ ︷︷ ︸
=:Dn

. (F)

We now consider the two terms Cn and Dn separately. First, we apply the triangle inequality

to bound the Cn term as follows.

Cn =

∣∣∣∣∣ 1n
n∑

i=1

(f̂n(φj(Xi, z))− f∗(φj(Xi, z))) +
1

n

n∑
i=1

(f̂n(Xi)− f∗(Xi))

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣f̂n(φj(Xi, z))− f∗(φj(Xi, z))
∣∣∣+

1

n

n∑
i=1

∣∣∣f̂n(Xi)− f∗(Xi)
∣∣∣

≤ 2 sup
x∈supp(X)

∣∣∣f̂n(x)− f∗(x)
∣∣∣ ,

where for the last step we used a supremum bound together with (D). Hence, using the

assumption that supx∈supp(X) |f̂n(x) − f∗(x)| P→ 0 as n → ∞, we get that Cn → ∞ in

probability as n→∞. Similarly, for the Dn term we get that

Dn =

∣∣∣∣∣ 1n
n∑

i=1

f∗(φj(Xi, z))− E[f∗(φj(Xi, z))] +
1

n

n∑
i=1

f∗(Xi)− E[f∗(Xi)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

f∗(φj(Xi, z))− E[f∗(φj(Xi, z))]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑

i=1

f∗(Xi)− E[f∗(Xi)]

∣∣∣∣∣ .
Since the X1, . . . , Xn and hence φj(X1, z), . . . , φj(Xn, z) are i.i.d. and bounded we can apply

the weak law of large numbers to get that Dn → 0 in probability as n→∞.

Finally, combining the convergence of Cn and Dn with (F) proves (ii) and hence completes

the proof of Theorem 2.1.
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C Proof of Proposition 2.2

Proof. For this proof, we denote by Sp−1 the open instead of the closed simplex.

First, since kW is a positive definite kernel (see Section 2.1 in S2 Appendix for a proof),

it holds that the RKHS HkW can be expressed as the closure of

F :=
{
f : Sp−1×Sp−1 → R

∣∣∣∃n ∈ N, z1, . . . , zn ∈ Sp−1, α1, . . . , αn ∈ R : f(·) =
∑n

i=1 αikW (zi, ·)
}
.

We now show that any function in F has the expression given in the statement of the propo-

sition. Let f ∈ F be arbitrary with the expansion

f(·) =
n∑

i=1

αikW (zi, ·).

Then, for all x ∈ Sp−1 it holds that

f(x) =
n∑

i=1

αi

p∑
j,`=1

W`,j log
( z`i
g(zi)

)
log
( xj

g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j

n∑
i=1

αi log
( z`i
g(zi)

))
log
( xj

g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j β̃`

)
log
( xj

g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j β̃`

)
log
(
xj
)
−
( p∑

j,`=1

W`,j β̃`

)
log
(
g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j β̃`

)
log
(
xj
)
−
( p∑

`=1

β̃`

)
log
(
g(x)

)
, (G)

where in the third line we defined β̃` :=
∑n

i=1 αi log
(

z`i
g(zi)

)
and in the last equation we used

that
∑p

j=1W`,j = 1 for all ` ∈ {1, . . . , p} by construction of W . Furthermore, we get that

p∑
j=1

β̃j =
n∑

i=1

αi

( p∑
j=1

log
(
zji
)
− p log(g(zi))

)
=

n∑
i=1

αi

( p∑
j=1

log
(
zji
)
−

p∑
j=1

log
(
zji
))

= 0. (H)
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Now, combining this with (G) and setting βj :=
∑p

`=1W`,j β̃` implies that

f(x) = β> log(x),

where β does not depend on x.

It remains to show that β satisfies (i)
∑p

j=1 βj = 0 and (ii) for all ` ∈ {1, . . . ,m} it holds

for all i, j ∈ P` that βi = βj . For (i), we can use (H) and directly compute

p∑
j=1

βj =

p∑
j=1

p∑
`=1

W`,j β̃` =

p∑
`=1

β̃` = 0.

Finally for (ii), fix k ∈ {1, . . . ,m} and i, j ∈ Pk, then it holds that

βj =

p∑
`=1

W`,j β̃` =

p∑
`=1

m∑
r=1

1

|Pr|
1{`,j∈Pr}β̃` =

p∑
`=1

1

|Pk|
β̃` =

p∑
`=1

m∑
r=1

1

|Pr|
1{`,i∈Pr}β̃` =

p∑
`=1

W`,iβ̃` = βi.

This completes the proof of Proposition 2.2.
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