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Metric TALON FLAIR Bambu StringTie IsoQuant

All

Total 164738 48470 41871 38216 31553

Recall, % 59.0 70.6 80.0 81.1 85

Precision, % 12.7 51.6 67.8 75.2 95.6

F1-score 0.21 0.60 0.73 0.78 0.90

Known

Total 21298 24836 41798 29034 27705

Recall, % 61.3 73.2 93.4 85.5 88.5

Precision, % 87.1 89.2 67.6 89.1 96.7

F1-score 0.72 0.80 0.78 0.87 0.92

Novel

Total 143440 23634 73 9182 3848

Recall, % 44.0 38.5 1.0 51.2 62.6

Precision, % 1.6 8.6 69.9 29.6 86.3

F1-score 0.03 0.14 0.02 0.38 0.73
Supplementary Table 1. Results for ONT R10.4 mouse simulated data. All tools were launched using
the same BAM file and the reduced gene annotation with 15% of expressed transcripts excluded. Results
are provided for the following experiments. All transcripts: the entire output annotation is compared
against the complete set of 35,684 expressed transcripts (both excluded and preserved in the reduced
annotation); Known: compares output transcripts marked as known to a set of 30,373 expressed
transcripts preserved in the annotation; Novel: compares transcript models marked as novel to a set of
5,311 transcripts hidden from the annotation. The best values are indicated with bold.
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Metric TALON FLAIR Bambu StringTie IsoQuant

All

Total 178915 39515 43219 39524 32045

Recall, % 64.5 69.4 80.6 82.1 85.7

Precision, % 12.8 62.3 66.2 73.7 94.9

F1-score 0.21 0.66 0.73 0.78 0.90

Known

Total 23967 22480 43110 30427 28134

Recall, % 67.2 71.6 94.1 87 89.3

Precision, % 84.8 96.4 66 86.5 96

F1-score 0.75 0.82 0.78 0.87 0.93

Novel

Total 154948 17035 109 9097 3911

Recall, % 47.1 37.9 1.3 49.6 63.2

Precision, % 1.6 11.8 64.2 28.9 85.7

F1-score 0.03 0.18 0.03 0.37 0.73
Supplementary Table 2. Results for ONT R9.4 mouse simulated data. All tools were launched using
the same BAM file and the reduced gene annotation with 15% of expressed transcripts excluded. Results
are provided for the following experiments. All transcripts: the entire output annotation is compared
against the complete set of 35,684 expressed transcripts (both excluded and preserved in the reduced
annotation); Known: compares output transcripts marked as known to a set of 30,373 expressed
transcripts preserved in the annotation; Novel: compares transcript models marked as novel to a set of
5,311 transcripts hidden from the annotation. The best values are indicated with bold.
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Transcripts Metric TALON FLAIR Bambu StringTie IsoQuant

All

Total 58777 26032 22180 31580 33549

Recall, % 87.7 68.9 59.2 85.8 93.4

Precision, % 53 93.9 94.6 96.3 98.7

F1-score 0.66 0.79 0.73 0.91 0.96

Known

Total 27725 21634 21144 26948 29235

Recall, % 89.9 71.2 65.9 88.4 95.9

Precision, % 98 99.5 94.3 99.3 99.2

F1-score 0.94 0.83 0.78 0.94 0.98

Novel

Total 31052 4398 1036 4632 4314

Recall, % 73.4 40.5 18.7 63.6 76.8

Precision, % 12.5 48.9 95.8 72.7 94.4

F1-score 0.21 0.44 0.31 0.68 0.85
Supplementary Table 3. Results for PacBio mouse simulated data. All tools were launched using the
same BAM file and the reduced gene annotation with 15% of expressed transcripts excluded. Results are
provided for the following experiments. All transcripts: the entire output annotation is compared against
the complete set of 35,684 expressed transcripts (both excluded and preserved in the reduced annotation);
Known: compares output transcripts marked as known to a set of 30,373 expressed transcripts preserved
in the annotation; Novel: compares transcript models marked as novel to a set of 5,311 transcripts hidden
from the annotation. The best values are indicated with bold.

PacBio ONT R10.4 ONT R9.4

StringTie IsoQuant StringTie IsoQuant StringTie IsoQuant

Transcripts 30,318 29,103 36,275 24,287 41,791 23,397

Recall, % 80.1 79.3 65.1 58.7 62.2 57.5

Precision, % 93.8 96.7 63.6 85.7 52.8 87.3

F1-score 0.86 0.87 0.64 0.70 0.57 0.69

Supplementary Table 4. Annotation-free transcript discovery on mouse simulated data. Comparison
between StringTie and IsoQuant on 3 mouse simulated datasets: PacBio, ONT R10.4 and ONT R9.4. The
true set used during the simulation contains 35,684 transcripts. The best values are indicated with bold.
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Metric TALON FLAIR Bambu StringTie IsoQuant

All

Total 174 141 42 48 53

Recall, % 63.8 47.8 60.9 59.4 75.4

Precision, % 25.3 23.4 100 85.4 98.1

F1-score 0.36 0.31 0.76 0.70 0.85

Known

Total 41 28 42 39 42

Recall, % 76.7 60.5 97.7 90.7 97.7

Precision, % 80.5 92.9 100 100 100

F1-score 0.79 0.73 0.99 0.95 0.99

Novel

Total 133 113 0 9 11

Recall, % 42.3 7.7 0 7.7 38.5

Precision, % 8.3 1.8 0 22.2 90.9

F1-score 0.14 0.03 0.00 0.11 0.54
Supplementary Table 5. Results on real ONT R10.4 data containing Lexogen SIRV Spike-ins.
Results were obtained using ONT cDNA sequencing data and the incomplete SIRV annotation provided
by Lexogen that has 26 out of 69 transcripts hidden. Results are provided for the following experiments.
All transcripts: the entire output annotation is compared against the complete set of 69 SIRV transcripts;
Known: compares output transcripts marked as known to a set of 43 SIRV transcripts preserved in the
annotation; Novel: compares transcript models marked as novel to a set of 23 SIRV transcripts hidden
from the annotation. The best values are indicated with bold.
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Data Transcripts TALON FLAIR Bambu StringTie IsoQuant

ONT cDNA

# Total transcripts 76525 170670 92869 118803 61279

Supported by all other tools, % 16.6 7.4 13.6 10.7 20.7

Supported by 3 other tools, % 9.0 3.9 10.1 7.0 14.9

Supported by 1-2 other tools, % 17.1 14.6 21.4 25.0 39.5

Supported by no other tool, % 57.3 74.1 54.9 57.3 24.9

# Potentially missed 3193 3408 703 1802 999

ONT dRNA

# Total transcripts 92023 72389 61971 53890 33310

Supported by all other tools, % 17.0 21.6 25.2 29.0 46.9

Supported by 3 other tools, % 10.0 7.9 13.2 11.5 23.2

Supported by 1-2 other tools, % 20.1 16.6 20.5 25.1 26.3

Supported by no other tool, % 52.9 53.9 41.1 34.3 3.5

# Potentially missed 75 3533 1089 3040 1521

PacBio CCS

# Total transcripts 46914 67262 53931 57096 32088

Supported by all other tools, % 24.5 17.1 21.3 20.2 35.9

Supported by 3 other tools, % 15.3 6.8 11.6 8.4 19.7

Supported by 1-2 other tools, % 30.0 17.8 18.2 24.3 35.9

Supported by no other tool, % 30.2 58.3 48.9 47.1 8.5

# Potentially missed 97 2718 1051 2464 951
Supplementary Table 6. Consistency between annotations obtained from real data. Percentages are
given with respect to the total number of transcripts reported by the tool. The best values are indicated
with bold.
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Data Metric StingTie IsoQuant

PacBio

Total transcripts 30554 33058

Correct novel transcripts 28 54

% of novel transcripts 36.8 71.1%

ONT spatial

Total transcripts 132441 72509

Correct novel transcripts 20 27

% of novel transcripts 26.3 35.5%

ONT single-cell

Total transcripts 186760 86187

Correct novel transcripts 23 37

% of novel transcripts 30.3 48.7%
Supplementary Table 7. Results on mouse brain sequencing data. Results of StringTie and IsoQuant
on real PacBio and ONT mouse data. All datasets were initially sequenced as single-cell or spatial data,
but treated as bulk in this experiment. The percentage of correct novel transcripts reported were computed
against the set of 76 novel transcripts verified by the GENCODE team. As in the original study, a
GENCODE v21 mouse comprehensive annotation was used in this experiment. The best values are
indicated with bold.
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Sample Platform # reads, M Properties Accession number / link

Simulated data

M. musculus

PacBio 6.0

Realistic
expression

profile
10.5281/zenodo.7121404

ONT cDNA
R9.4

30.0

ONT cDNA
R10.4

30.0

H. sapiens
PacBio 4.0

ONT cDNA 20.0

Real data

Lexogen SIRVs ONT cDNA 1.2
https://data.cab.spbu.ru/index.php/s/dgc
aSaGME2xF7ed?path=%2FIsoQuant

H. sapiens GM12878 PacBio 4.7 ENCFF450VAU, ENCFF694DIE

H. sapiens NA12878
ONT cDNA 44.0 https://github.com/nanopore-wgs-conso

rtium/NA12878/blob/master/RNA.mdONT dRNA 25.2

M. musculus brain
sample

PacBio 8.3 Single-cell
data treated as

bulk
GSE158450

ONT cDNA 31.4

ONT cDNA 144.9
Spatial data

treated as bulk
GSE178175

Supplementary Table 8. Datasets used in this work.
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Software Version Common options PacBio options ONT options

minimap2 2.18 -a -Y --junc-bed <junctions.bed> -t 20 -k 15 -x splice:hq -k 14 -x splice

uLTRA 0.0.4.1 <annotation.gtf> Not used --ont

deSALT 1.5.6 aln -t 20 Not used -l 14 -s 2 -x
ont2d

TALON 5.0 -t 20

FLAIR 1.5 -t 20

Bambu 2.0.0 ncore=20

StringTie 2.2.0 -L -p 20

IsoQuant 3.0 --complete_genedb -t 20 -d pacbio_ccs -d nanopore

SQANTI 4.2 sqanti3_qc.py --force_id_ignore
--aligner_choice minimap2
--isoAnnotLite -t 20

gffcompare 0.12.2
Supplementary Table 9. Command line options and software versions used in this work. TALON,
FLAIR, Bambu, StringTie, and IsoQuant were run using the same reference genome, reference
annotation, and BAM file as an input. For the annotation-free benchmarks the same BAM files were used.
Complete command lines are available in the IsoQuant repository in misc/all_comands.sh.
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Supplementary Figure 1. Novel transcripts obtained from ONT mouse simulated data. a. Precision
of novel transcripts generated by 5 tools with the respect to their TPM values. b. Recall of novel
transcripts generated by 5 tools with the respect to their TPM values.

Supplementary Figure 2. Truncation probabilities for real and simulated ONT data. a. Empirical 5’
truncation probability distributions for real ONT data from mouse brain sample (blue), data generated
with the unmodified NanoSim (yellow), and data simulated using NanoSim with improved truncation
procedure (red). The distributions were estimated by mapping reads onto the mouse reference
transcriptome using minimap2 with -x map-ont option. b. Same as (a) but for the 3’ end.
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Supplementary Figure 3. Constructing isoform profiles. a. An example of splice junction profile
construction for a gene having 3 isoforms (green, orange and purple). First, 9 annotated splice junctions
are extracted and sorted by their coordinate (gray intervals in the middle). Each isoform is then
represented as a vector of length 9 where each position specifies whether the respective splice junction is
included in the isoform (1) or not (-1). b. An example of exon profile construction for the same gene as in
(a). First, annotated exons are splitted into a minimal set of 9 non-overlapping fragments and sorted by
their coordinate (gray bars in the middle). Each isoform is then represented as a vector of length 9 where
each position specifies whether the respective part of the exon is covered by the isoform (1) or not (-1).
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Supplementary Figure 4. Matching alignments against annotated isoforms. Exons and splice
junctions from a read alignment (gray on top) are matched against the annotated exons and splice
junctions. Known exons and splice junctions found in the alignment are colored blue, absent are
highlighted with red. Read splice junction and exon profiles (gray vectors) are compared against the
respective isoform profiles (colored vectors below) and distance between them is calculated as the
number of distinct positions in which the read profile has a non-zero value.

Supplementary Figure 5. Typical misalignments. Read alignments are colored gray, the correct original
isoform is colored orange, misalignments are highlighted with red. A short exon is skipped by the
alignment and its corresponding sequences are attached to the adjacent exons (top read). A 5’ fragment of
the exon is incorrectly aligned near the 3’ end of the preceding exon, and thus the splice junction appears
to be shifted (middle read). The alignment contains a false terminal microexon at 3’ end (bottom read).
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Supplementary Figure 6. Intron graph construction. a. An example of an intron graph constructed for
a known gene having 3 isoforms (green, orange and purple). Each splice junction corresponds to an
internal vertex in the graph (drawn as white rectangles), while graph edges connect adjacent splice
junctions. Terminal vertices of the graph (drawn as circles) correspond to start and end positions of the
transcripts. Each transcript can be represented as a path in the graph (colored lines). b. An example of an
intron graph constructed from read alignments (without terminal vertices). White rectangles represent the
correct splice junctions with a high read support, light blue and yellow vertices represent false splice
junctions forming tips and bulges respectively. For each false splice junction that originates due to splice
site misalignments, dashed arrows indicate the respective true splice junction that has both splice sites
aligned correctly.
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Supplementary Figure 7. Detection of terminal vertices and transcript reconstruction. In this
example the gene is assumed to be on the forward strand. a. PolyA positions for each terminal splice
junction are clustered and attached as terminal vertices in the simplified intron graph. b. Terminal
non-polyA positions are not attached because the respective splice junctions have adjacent polyA vertices
with larger genomic positions (right side). Leftmost splice junction is connected with a vertex
representing the leftmost start position of all alignments (left side). Starting positions for other internal
vertices are not selected since they are located either within or nearby 3’ of the preceding exons (in the
middle). c. Paths representing full-length transcripts are constructed via read alignment traversal (color
lines along the graph). d. Transcript ends are corrected using only consistent read alignments.
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Supplementary Note 1: Investigating IsoQuant algorithms
The IsoQuant pipeline consists of several steps that involve multiple various algorithms. To provide more
insights on the algorithm we evaluated the quality of novel transcripts generated by IsoQuant under
different conditions.

We ran IsoQuant on the ONT R9.4 dataset and evaluated the quality of novel transcripts. We separately
turned off various important steps of the algorithm, such as (i) splice site correction, (ii) transcript
filtering based on relative read support, and (iii) intron clustering and graph simplification. As the
Supplementary Figure 8 shows, of these 3 procedures the most dramatic effect on precision is caused by
turning off clusterization and simplification procedures. Moreover, turning off all three simultaneously
had a larger effect than the sum of the separate “turn-offs”, suggesting that each of the three procedures
can partially correct the mistakes of the other ones.

Supplementary Figure 8. Effect of turning off different IsoQuant procedures on overall
performance. Recall (blue) and precision (red) are given for the novel transcripts generated by IsoQuant
on ONT R9.4 simulated data with the reduced gene annotation.

Delta, bp 0 3 6 (default) 12

All

Total 32,371 31,629 31,553 31,506

Recall, % 86 85.1 85 84.9

Precision, % 94.2 95.5 95.6 95.6

F1-score 0.90 0.90 0.90 0.90

Novel

Total 4,031 3,875 3,848 3,820

Recall, % 63.4 62.9 62.6 62.1

Precision, % 83.4 86 86.3 86.2

F1-score 0.72 0.73 0.73 0.72
Supplementary Table 10. IsoQuant performance on mouse ONT simulated data with different Delta
values. The best values are indicated with bold.
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IsoQuant has multiple internal parameters. One of the most important ones (Delta) defines allowed
variability between splice junctions in reads. To understand the effect of this parameters we ran IsoQuant
on mouse ONT simulated data with 4 different Delta values: 0 bp (no variation is allowed, each splice
junction in the alignment is treated is the true one), 3 bp, 6 bp (default for ONT data) and 12 bp
(Supplementary Table 10). Expectedly, for Delta=0 bp precision is lower compared to other values as any
erroneously detected splice site may potentially be reported in the resulting annotation. At the same time,
larger Delta values slightly decrease recall, as potential overcorrection of some splice sites may take
place.

To allow a user to obtain annotations with higher recall in the cost of precision, we also implemented
sensitive modes for both PacBio and ONT data. This will allow a user to change the behavior of the
algorithm without tweaking multiple parameters. Supplementary Table 11 shows IsoQuant performance
on mouse simulated data in default and sensitive modes.

Metric Default PacBio Sensitive PacBio Default ONT Sensitive ONT

All

Total 33,549 33,857 31,553 32,010

Recall, % 93.4 98.5 85 85.7

Precision, % 98.7 94 95.6 95

F1-score 0.96 0.96 0.90 0.90

Novel

Total 4,314 4,585 3,848 3,820

Recall, % 76.8 80.2 62.6 65.3

Precision, % 94.4 92.8 86.3 82.6

F1-score 0.85 0.86 0.73 0.73
Supplementary Table 11. IsoQuant performance on mouse simulated data in default and sensitive
mode. The best values are indicated with bold.
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Supplementary Note 2: Varying the fraction of hidden transcripts
Since it is not clear how many novel isoforms may be present in the real RNA sample, we created several
reduced human gene annotations with different fractions of excluded expressed transcripts: 10%, 15%,
20% and 25%. We launched each tool providing the same set of human simulated ONT reads, but
different reduced annotations. Expectedly, for all tools both precision and recall of the entire output
annotations gradually decrease as the proportion of hidden isoforms grows (Supplementary Figure 9a,b).
Interestingly, the quality of novel transcripts alone hardly depends on this parameter. Moreover, some of
the tools tend to predict transcripts even more accurately when a larger portion of reads represents
unknown isoforms (Supplementary Figure 9c,d). It is worth noting that on this data IsoQuant also
demonstrates the highest precision and recall on both novel and known transcripts independently of
fraction of the annotation hidden.

Supplementary Figure 9. Results for human ONT simulated data with the different reduced
annotations. a. Precision of the entire output annotations for all 5 tools with respect to the percent of
excluded transcripts. b. Same as (a), but for recall values. c. Precision of novel transcripts produced by all
5 tools with respect to the percent of excluded transcripts. d. Same as (c), but for recall values.
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Supplementary Note 3: Varying simulation parameters
Simulation process takes an important role in the benchmarking process. Thus, understanding simulation
parameters is essential for quality assessment. Beside transcript expression profiles that can be obtained
using real data, simulation has two important parameters: sequencing error model and read truncation
model. Here we first fixed the error model (ONT cDNA provided in NanoSim package) and varied read
truncation probabilities by using (i) default NanoSim truncation, (ii) R9.4 truncation, (iii) R10.4
truncation and no truncation at all (see Supplementary Figure 2 for details). As Supplementary Table 12
shows, annotations obtained with the default NanoSim truncation are significantly worse as NanoSim
dramatically over-truncates read sequences.

Further, we simulated data with different error models and fixed truncation probabilities. NanoSim
package includes the default ONT cDNA error model, which was obtained using public human NA12878
ONT cDNA reads sequenced with r9.4 chemistry and has 15.9% overall error rate. We also trained
NanoSim on our ONT R9.4 and R10.4 datasets and generated 2 models with error rates 11.5% and 2.8%
respectively. As Supplementary Table 13 demonstrates, more accurate reads do increase precision of
discovered transcript models. However, the effect looks rather marginal, as IsoQuant was initially
designed to handle error-prone ONT data.

Truncation
Default NanoSim

truncation R9.4 truncation R10.4 truncation No truncation

All

Total 24118 32243 32438 32373

Recall, % 58.7 85.9 86 85.9

Precision, % 86.4 94.6 94.1 94.1

F1-score 0.70 0.90 0.90 0.90

Novel

Total 2556 3908 3999 3974

Recall, % 21.9 63.2 63.1 62.7

Precision, % 45.3 85.7 83.6 83.7

F1-score 0.30 0.73 0.72 0.72
Supplementary Table 12. IsoQuant results on mouse ONT simulated data for fixed error model, but
different truncation probabilities used during the simulation.
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Error model R10.4 R9.4 (new basecalling) R9.4 (NanoSim)

Error rate 2.8% 11.5% 15.9%

All

Total 31553 32313 32438

Recall, % 85 86.3 86

Precision, % 95.6 94.7 94.1

F1-score 0.90 0.90 0.90

Novel

Total 3848 4002 3999

Recall, % 62.6 64 63.1

Precision, % 86.3 84.8 83.6

F1-score 0.73 0.73 0.72
Supplementary Table 13. IsoQuant results on mouse ONT simulated data for fixed truncation
probabilities, but different error models.
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Supplementary Note 4: Evaluating read-to-isoform assignment
Besides transcript prediction, IsoQuant is also capable of assigning aligned reads to the annotated
transcripts. As the assignment is performed independently for each input sequence, we evaluated
read-to-isoform assignment using PacBio and ONT reads simulated with the uniform expression profile
(i.e., 10 reads per every annotated transcripts). We also benchmarked IsoQuant on reference transcript
sequences and compared its performance with SQANTI3, which is designed specially for classifying
transcript sequences. Both tools were provided with the comprehensive GENCODE annotation.

Precision and recall of the assigned reads were computed as follows. A read that is uniquely assigned to
its correct isoform of origin was treated as a true positive call, while a unique assignment to a wrong
isoform — as a false positive. Reads reported as ambiguous or inconsistent, as well as unassigned
alignments were counted as false negatives. To compute precision and recall for the assignment algorithm
alone (without taking into account mismapped reads), the same metrics were calculated only for the
subset of reads that map to a correct gene of origin. The script for read-to-isoform assignment is located in
the IsoQuant repository in misc/assess_assignment_quality.py.

Both IsoQuant and SQANTI3 classify reference transcripts with nearly perfect precision, while IsoQuant
shows minor gain in recall. For simulated PacBio data, IsoQuant shows nearly the same performance
compared to the reference transcripts, which can be explained by the relatively low error rate of PacBio
CCS reads. For ONT data, however, assignment recall significantly drops down to 74.6%, most likely due
to elevated error rate and higher percentage of truncated reads, which cannot be assigned to a known
isoform unambiguously. Importantly, precision remains at a high level of 97.5% showing that IsoQuant
can accurately assign long error-prone reads. Indeed, overall precision and recall values are slightly lower
than the ones for the assignment algorithm alone, which indicates that in some cases incorrectly assigned
or unassigned reads are caused by incorrect alignments (Supplementary Table 14).

Data Reference transcripts PacBio ONT

Tool SQANTI3 IsoQuant IsoQuant IsoQuant

Assignment precision 98.7 99.6 99.4 97.5

Assignment recall 91.3 97.6 96.9 74.6

Overall precision 97.5 98.2 98.9 96.3

Overall recall 89.1 95.6 92.3 70.3
Supplementary Table 14. Read-to-isoform assignment. Sequence assignment precision and recall for
SQANTI3 (reference transcript only) and IsoQuant on mouse reference transcripts, PacBio CCS and ONT
simulated data. Assignment precision and recall were calculated relative to the subset of sequences that
map to their genes of origin. Overall statistics were computed using the entire set of input sequences.
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Supplementary Note 5: Benchmarking transcript quantification
For quantification analysis we used simulated PacBio and ONT data with realistic expression profiles
(35,684 expressed transcripts). The tools were provided with the respective comprehensive GENCODE
annotation. As the novel isoform discovery algorithms are benchmarked in other experiments, here we
estimated abundances only for the reference transcripts. StringTie was launched with the “-e” option,
which turns off the detection of novel transcripts. IsoQuant was run with the default parameters and the
reference transcript abundance table was used for further analysis (“*.transcript_tpm.tsv”). Reported TPM
(transcript per million) values were compared with the true TPM values of the respective reference
transcripts by computing: (i) Pearson correlation coefficient, (ii) the number of transcripts having TPM
values within 10% (20%) range from the true reference values, (iii) the number transcripts that were
falsely reported with non-zero expression, and (iv) the number of expressed transcripts with 0 TPM
reported. When computing Pearson correlation coefficient both false reported and missed transcripts were
included in the analysis. The script for computing these metrics can be found in
misc/assess_quantification.py.

When using PacBio data IsoQuant reports accurate abundances with 93.8% of predicted TPM values
falling within 20% range of their respective true TPM used during the simulation. StringTie, which was
selected for this comparison as the tool with one the highest overall transcript precision, reports slightly
less accurate expression levels: 77.7% of its TPM values fall within the 20% range and 15.7% of
expressed transcripts are not reported at all. In contrast, IsoQuant missed only 2.5% of the expressed
transcripts (Supplementary Table 15). For ONT data the reported expression levels appear to be less
accurate as only 51.6% of TPM values reported by IsoQuant fall within the 20% range (and 41.4% for
StringTie). Similarly to PacBio data, IsoQuant reports zero TPM for significantly fewer number of
expressed transcripts (4.4% vs 20.7% for StringTie), but falsely reports more unexpressed transcripts
(Supplementary Table 15).

PacBio ONT

StringTie IsoQuant StringTie IsoQuant

# Transcripts with TPM > 0 30,246 34,919 30,951 40,091

Correlation coefficient 0.904 0.944 0.880 0.893

Within 10% range, % 67.4 91.9 26.6 35.6

Within 20% range, % 77.7 93.8 41.4 51.6

Missed, % 15.7 2.5 20.7 4.4

# Falsely detected 156 144 2667 5962
Supplementary Table 15. Quantification statistics for StringTie and IsoQuant on mouse simulated
PacBio and ONT data when the full reference annotation is used. Percentage was computed with
respect to true expressed transcripts. The best values are indicated with bold.
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Supplementary Note 6: Testing IsoQuant with different spliced aligners
As the choice of the alignment software can dramatically affect the analysis quality, we evaluated
IsoQuant with respect to (i) transcript model construction and (ii) read-to-isoform assignment with three
different aligners: minimap21, deSALT2, and uLTRA3. Since PacBio reads are accurate and are typically
aligned correctly, for this experiment we used only mouse ONT R9.4 simulated data. The difference
between the aligners in terms of read assignment is marginal. However, minimap2 allows to predict more
precise transcript novel models. The vast majority of false positives in annotations obtained with uLTRA
and deSALT alignments are mono-exonic transcripts that in IsoQuant are filtered using read mapping
quality values, which seem to be less reliable for these two aligners. For multi-exonic transcripts however,
both uLTRA and deSALT show false-positive rates comparable to minimap2. Importantly, minimap2 has
significantly lower RAM requirements and running time, thus justifying the choice for the default aligner
in the IsoQuant package.

minimap2 deSALT uLTRA

Read-to-isoform assignment

Assignment recall 74.6 73.9 74.2

Assignment precision 97.5 97.5 97.1

Overall recall 70.3 70.4 70.1

Overall precision 96.3 95.8 95.7

Transcript model construction

Recall of novel transcripts 63.2 60.3 60.9

Precision of novel transcripts 85.7 21.8 68.3

Overall recall 85.7 85.5 86.9

Overall precision 94.9 68.4 89.9

Computational performance

Running time 9h 29m 17h 43m 80h 43m

Peak RAM, Gb 24 78 180
Supplementary Table 16. IsoQuant performance on mouse simulated ONT R9.4 data with different
spliced aligners. Read-to-isoform analysis was assessed on data with uniform coverage. Transcript model
construction and computational performance were evaluated on simulated data with the realistic coverage
profile and the reduced gene annotation with 15% of isoforms hidden. The best values are indicated with
bold.
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Supplementary Note 7: Computational performance
While accuracy of delivered results often plays the most important role in the tool selection,
computational performance and usability can be a significant criteria as well. Thus, we estimated running
time and peak RAM consumption by all five tools used in this work on real human NA12878 ONT cDNA
data. StringTie2, which is implemented in C++, dramatically outperforms all other tools by both
parameters. Other tools show broadly comparable running time and memory consumption, with IsoQuant
being slightly faster, but more greedy compared to FLAIR and Bambu (Supplementary Table 17).
Importantly, minimap2, while being the fastest long-read spliced aligner among tested ones, takes more
time than 4 out of 5 transcript construction tools assessed in this work. Since read mapping is a common
step for every reference-based analysis, the difference in total running time of these 5 pipelines is less
noticeable than for transcript discovery tools alone.

Tool Wall clock time CPU time RAM peak, Gb

Transcript construction

TALON 10h 27m 24h 56m 62

FLAIR 3h 04m 24h 10m 11

Bambu 3h 01m 8h 36m 20

StringTie 19m 57m 2

IsoQuant 2h 41m 23h 8m 24

Alignment

minimap2 4h 46m 90h 58m 35
Supplementary Table 17. Computational performance. Running time and peak RAM for different
tools on real human NA12878 ONT cDNA sequencing data. CPU time stands for total user and system
processor time taken. All tools were launched on the same machine (120 cores, 1.5 TB RAM) in 20
threads.
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Supplementary Note 8: Analysis of incorrectly reconstructed novel isoforms
To better understand what kind of errors are produced by each tool, we examined the output of
gffcompare that provides the relationship between each reported isoform and the closest reference
transcript. In simulated datasets (both PacBio and ONT), most errors in each tool were caused by using
wrong splice junctions. Surprisingly, TALON outputs many isoforms that match with the reference
transcripts on the opposite strand. Such behavior usually suggests mapping error, however, all tools were
provided with the same BAM file, but this type of error was revealed predominantly in TALON.

Another major source of errors is isoform truncation, that is typical especially for TALON and FLAIR
tools. Intron retention events were observed quite rarely, most of such events were produced by TALON
using ONT data. IsoQuant errors were caused almost purely by using erroneous splice junctions. Bambu
outputs a very low number of novel isoforms, so it is hard to characterize its typical errors.

Supplementary Figure 10. Analysis of gffcompare output on ONT R10.4 (left) and PacBio (right)
simulated datasets.
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