Homoeologous non-reciprocal translocation explains a major QTL for seed lignin content in oilseed rape (*Brassica napus* L.)

Hanna Marie Schilbert^{1,2,†}, Karin Holzenkamp^{3,†}, Prisca Viehöver¹, Daniela Holtgräwe¹, Christian Möllers³

¹ Genetics and Genomics of Plants, CeBiTec and Faculty of Biology, Bielefeld University, Bielefeld, Germany

² Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Germany

³ Department of Crop Sciences, Division of Crop Plant Genetics, Georg-August-University, Göttingen, Germany

† These authors contributed equally to this work.

Corresponding author: Hanna Marie Schilbert; hschilbe@cebitec.uni-bielefeld.de

Theoretical and Applied Genetics

Supplementary Figure 1: Oligonucleotide design strategies for validation of the HNRT border sequences. (A) The subgenome-specific for SGDH14, (B) the subgenome-specific for Express 617 and (C) not subgenome-specific oligonucleotide design strategies used for the validation of the border sequences are shown, (D) subgenome-specific oligonucleotide design to determine if the *PAL4* gene of the A and/or the C chromosome is present. Oligonucleotides are marked as black arrows. Each strategy was applied for the left and right border, respectively.

Supplementary Table 1: Oligonucleotides used in this study for the three different strategies and for the amplification of *PAL4*. PCR products were sequenced to confirm the correct gene was amplified. The oligonucleotides written in bold and italics indicate the positions which are different between the subgenome-specific primers on the A and C chromosome.

Strategy	Oligonucleotide name	Strand	Sequence (5' to 3')	Annealing Temp. [°C]
A – left border	SGDH14_spec_fw_L	forward	GTC CA TTTCCTTCACTCCTC	60
A – left border	SGDH14_spec_rev_L	reverse	GATGAGGAGTATC AT CACGTC	00
A – right border	SGDH14_spec_fw_R	forward	TCAGA C GGC AG CGTTTAC	60
A – right border	SGDH14_spec_rev_R	reverse	TTGCCACCACCACC T AC	00
B – left border	Exp_spec_fw_L	forward	GTC CA TTTCCTTCACTCCTC	60
B – left border	Exp_spec_rev_L	reverse	TAGCAATGCCCTC G AT T TG	00
B – right border	Exp_spec_fw_R	forward	TGGTCAGATG G C TC CGTTTAC	60
B – right border	Exp_spec_rev_R	reverse	TTGCCACCACCACC T AC	00
C – left border	Not_spec_fw_L	forward	GATGGTTTGCCTGTTCCC	56
C – left border	Not_spec_rev_L	reverse	TCGCTGAATAGTCGCAAG	50
C – right border	Not_spec_fw_R	forward	AACCAAATCCGTTGATGC	56
C – right border	Not_spec_rev_R	reverse	TTGCGTGACTGCTCCAAG	50
D – PAL4	PAL_nspec_fw_1	forward	TTTAACGTAAGAGCTTCCATG	55
D – PAL4	PAL_nspec_rev_2	reverse	TCACGCTACCTAAGTCGG	55

Supplementary Table 2: PCR program for the different subgenomes-specific strategies (A, B) and not subgenome-specific strategy (C), as well as for the amplification of the *PAL4* gene (D).

Steps	Temp. [°C]	Time [sec]	No. of Cycles			
PCR program for strategy A and C; PAL4						
initial denaturation	95	60	1x			
denaturation	95	15				
annealing	54, 56, 58, 60	15	35x			
elongation	72	30				
final elongation	72	180	1x			
hold	8	infinite				
PCR program for strategy B						
Steps	Temp. [°C]	Time [sec]	No. of Cycles			
initial denaturation	95	180	1x			
denaturation	95	30				
annealing	70 _ 0.7°C decrease each cycle	45	15x			
elongation	72	45				
denaturation	95	30				
annealing	60 or 61	45	25x			
elongation	72	45				
elongate	72	300	1x			
halt reaction	4	300	1x			
hold	20	infinite	1x			