Supplementary materials

Title: Safety and effectiveness of ataluren in patients with nonsense mutation DMD in the STRIDE Registry compared with the CINRG Duchenne Natural History Study (2015–2022): 2022 interim analysis

Authors: Eugenio Mercuri^{1,2} · Andrés Nascimento Osorio³ · Francesco Muntoni^{4,5} · Filippo Buccella⁶ · Isabelle Desguerre⁷ · Janbernd Kirschner⁸ · Már Tulinius⁹ · Maria Bernadete Dutra de Resende¹⁰ · Lauren P Morgenroth¹¹ · Heather Gordish-Dressman¹² · Shelley Johnson¹³ · Allan Kristensen¹³ · Christian Werner¹⁴ · Panayiota Trifillis¹³ · Erik K Henricson¹⁵ · Craig M McDonald¹⁵ on behalf of the STRIDE and CINRG DNHS investigators

Affiliations:

¹Department of Pediatric Neurology, Catholic University, Rome, Italy

²Centro Clinico Nemo, Fondazione Policlinico Agostino Gemelli IRCCS, Rome Italy ³Neuromuscular Unit, Department of Neurology, and Research in Neuromuscular Diseases, Institut de Recerca I Sant Joan de Déu, Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain

⁴UCL Great Ormond Street Institute of Child Health, London, UK

⁵National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK

⁶Parent Project APS, Rome, Italy

⁷Hôpital Necker – Enfants Malades, Paris, France

⁸Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany

⁹Department of Pediatrics, Gothenburg University, Queen Silvia Children's Hospital, Gothenburg, Sweden

¹⁰Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo SP, Brazil

¹¹Therapeutic Research in Neuromuscular Disorders Solutions (TRiNDS), Pittsburgh, PA, USA

¹²Center for Genetic Medicine, Children's National Health System and the George Washington, Washington, DC, USA

¹³PTC Therapeutics Inc., South Plainfield, NJ, USA

¹⁴PTC Therapeutics Germany GmbH, Frankfurt, Germany

¹⁵University of California Davis School of Medicine, Davis, CA, USA

Corresponding author and email address: Eugenio Mercuri;

eugeniomaria.mercuri@unicatt.it

		Patients enrolled as of March 31, 2022 <i>N</i> = 307
Country	Number of sites	Number of patients
Austria	2	4
Brazil	1	15
Czech Republic	2	10
France	17	56
Germany	9	34
Greece	2	6
Hungary	1	2
Israel	3	8
Italy	12	67
Latvia	1	2
Portugal	2	8
Romania	2	14
Sweden	2	13
UK	10	68

Supplementary Table 1 Number of patients enrolled in STRIDE by country

STRIDE Strategic Targeting of Registries and International Database of Excellence

	All patients
Race, <i>n</i> (%)	N = 290
White	213 (73.4)
Arab/Middle Eastern	8 (2.8)
Arab/Middle Eastern, Asian	1 (0.3)
Asian	6 (2.1)
Black	3 (1.0)
Mixed race, black/white	1 (0.3)
North African	1 (0.3)
Latin	1 (0.3)
Unknown	4 (1.4)

Supplementary Table 2 Patient race in the STRIDE Registry evaluable population

STRIDE Strategic Targeting of Registries and International Database of Excellence

	All patients
	N = 22
Baseline ^a weight, kg	47
n Maria (OD)	1/
Mean (SD)	16.3 (2.4)
95% CI	15.0, 17.5
Median	16.5
Min, max	11.8, 20.0
Baseline ^a height, cm	
n	16
Mean (SD)	99.1 (7.8)
95% CI	94.9, 103.3
Median	99.1
Min, max	84.0, 111.0
Baseline ^a BMI, kg/m ²	
n	15
Mean (SD)	16.1 (1.4)
95% CI	15.3, 16.9
Median	16.1
Min, max	13.7, 18.7
Age at first symptoms, years	
n	20
Mean (SD)	1.7 (1.1)
95% CI	1.2, 2.2
Median	1.8
Min, max	0.3, 4.0
Age at muscle biopsy, years	
n	5
Mean (SD)	2.3 (0.9)
95% CÌ	1.1.3.4
Median	2.8
Min. max	0.9. 3.0
Age at genetic confirmation of nmDMD	
diagnosis vears	
n	22
Mean (SD)	19(09)
95% CI	15 24
Median	1.65
Min max	04 35
Previously enrolled in ataluren clinical	0.7, 0.0
trial n (%)	
No	22 (100 0)
Ves	0(0.0)
Age at informed consent years	0 (0.0)
n	22
II Moon (SD)	
1000	4.1 (1.1)
9070 GI Modion	3.0, 4.0 4.0
	4.U
win, max	2.1, 0.7

Supplementary Table 3 Demographics and characteristics of patients aged ≥ 2 to < 5 years in the STRIDE Registry evaluable population

BMI body mass index, *CI* confidence interval, *nmDMD* nonsense mutation Duchenne muscular dystrophy, *SD* standard deviation, *STRIDE* Strategic Targeting of Registries and International Database of Excellence

^aBaseline data are data collected at the first visit captured in the STRIDE Registry

	All patients N = 81
Baseline ^a weight ko	
n	70
Mean (SD)	36 6 (15 2)
95% CI	33.0 40.2
Median	35.3
Min max	13.5 78.0
Baseline ^a height cm	10.0, 70.0
n	53
Mean (SD)	130 7 (15 0)
95% CI	126 3 135 1
Median	128.0
Min max	94 3 168 0
Baseline ^a BML ka/m ²	94.3, 100.0
n	53
Mean (SD)	20.8 (5.7)
95% CI	10 2 22 4
95% Cl Median	10.2, 22.4
Min max	13.0 /0.1
Age at first symptoms, years	13.9, 40.1
n	76
Mean (SD)	20(10)
	2.5 (1.5)
95% Cl Median	2.0, 0.0
Min max	0.1 8 0
Age at muscle biopsy, years	0.1, 0.0
Age at muscle blopsy, years	50
II Moon (SD)	59
	J.U (2.5)
95% Cl Median	4.4, 5.0
Min max	4.0
Age at genetic confirmation of nmDMD	1.2, 11.1
diagnosis vears	
n	77
II Mean (SD)	6 1 (3 6)
05% CI	53 60
95% Cl Median	5.6
Min max	0.02.22.0
Proviously aprolled in ataluran clinical	0.02, 23.0
trial n (%)	
$\frac{1}{1} \frac{1}{2} \frac{1}$	46 (56 8)
Voc	35 (13 2)
Age at informed concent years	33 (43.2)
Age at informed consent, years	91
II Maan (SD)	01
	12.0 (3.8) 12.0 12.7
9070 UI Modian	12.0, 13.7
iviii, iliax	J.J, 20.J

Supplementary Table 4 Demographics and characteristics of patients aged 5 years or older in the STRIDE Registry non-ambulatory population

Age at first visit captured within the	
registry, years	
n	81
Mean (SD)	12.9 (3.8)
95% CI	12.0, 13.7
Median	12.1
Min, max	5.3, 28.3
Age at cutoff date, years	
n	81
Mean (SD)	17.2 (3.5)
95% CI	16.4, 18.0
Median	17.1
Min, max	10.1, 29.1
Age at ataluren start date, years	
n	81
Mean (SD)	11.7 (4.1)
95% CI	10.8, 12.6
Median	10.8
Min. max	5.3. 24.2

BMI body mass index, *CI* confidence interval, *nmDMD* nonsense mutation Duchenne muscular dystrophy, *SD* standard deviation, *STRIDE* Strategic Targeting of Registries and International Database of Excellence

^aBaseline data are data collected at the first visit captured in the STRIDE Registry

	Propensity-matched population		
Demographic/characteristic	STRIDE	CINRG	
	(<i>N</i> = 261)	(<i>N</i> = 261)	
Age at first assessment, years			
Mean (SD)	9.3 (4.0)	10.1 (5.3)	
SE	0.2	0.3	
95% Cl	8.8, 9.7	9.5, 10.8	
Median	8.5	8.8	
Min, max	2.1, 23.6	2.1, 28.0	
<i>p</i> value	0.03	313	
Age at last assessment, years			
Mean (SD)	13.1 (4.4)	14.6 (6.3)	
SE	0.3	0.4	
95% CI	12.6, 13.6	13.9, 15.4	
Median	12.9	14.4	
Min, max	2.1, 25.5	4.5, 33.1	
<i>p</i> value	0.00	012	
Any steroid use duration, <i>n</i> (%)			
< 1 month or corticosteroid-naive	30 (11.5)	28 (10.7)	
≥ 1 to < 12 months	13 (5.0)	17 (6.5)	
≥ 12 months	218 (83.5)	216 (82.8)	
<i>p</i> value	0.7366		
Lifetime steroid use, <i>n</i> (%)			
< 1 month or corticosteroid-naive	27 (10.3)	26 (10.0)	
≥ 1 to < 12 months	12 (4.6)	14 (5.4)	
≥ 12 months	222 (85.1) 221 (84.7)		
<i>p</i> value	0.9162		
Weight, kg			
n	220	260	
Mean (SD)	30.2 (13.5)	33.7 (18.7)	
95% CI	28.4, 32.0	31.4, 36.0	
Median	25.6 27.6		
Min. max	11.8. 78.0	13.4. 106.1	
<i>p</i> value	0.0	179	
Height. cm	0.0		
n	187	259	
Mean (SD)	121 9 (16 4)	130 8 (21 2)	
95% Cl	119.5 124.3	128 2 133 4	
Median	120.2, 124.0 120.2, 133. 121.0 126.8		
Min max	84 0 177 0	90 1 180 7	
<i>p</i> value	< 0.0001		
BMI, kg/m ²	010		
n	186	183	
Mean (SD)	19.0 (4.5)	18.1 (3.8)	
95% CI	18.4. 19.7	17.6. 18.7	
Median	17.6	17.1	
Min. max	13.0. 40.1	10.8. 32.8	
<i>p</i> value	0.0404		

Supplementary Table 5 Additional demographics and characteristics for the propensityscore matched STRIDE Registry and CINRG DNHS populations *CI* confidence interval, *CINRG DNHS* Cooperative International Neuromuscular Research Group Duchenne Natural History Study, *SD* standard deviation, *STRIDE* Strategic Targeting of Registries and International Database of Excellence

	All patients N = 268
Patients receiving concomitant	N - 200
medication. n (%)	261 (97 4)
Corticosteroids	244 (91 0)
Deflazacort	143 (53.4)
Dexamethasone	1 (0.4)
Eluticasone propionate	1 (0.4)
Mometasone furoate	1 (0.4)
Prednisolone	71 (26.5)
Prednisone	58 (21.6)
Vitamin D and vitamin D analog	217 (81.0)
Calcifediol	20 (7.5)
Calcitriol	2(0.7)
Cholecalciferol	106 (39.6)
Ergocalciferol	5 (1.9)
Vitamin D (not otherwise specified)	9 (34.0)
ACE inhibitors	134 (50.0)
Captopril	2 (0.7)
Enalapril maleate	42 (15.7)
Lisinopril	10 (3.7)
Perindopril	42 (15.7)
Perindopril arginine	30 (11.2)
Perindopril erbumine	4 (1.5)
Ramipril	11 (4.1)
Calcium	68 (25.4)
Calcium	32 (11.9)
Calcium carbonate	33 (12.3)
Calcium carbonate; calcium lactate	1 (0.4)
gluconate	
Calcium citrate	1 (0.4)
Calcium phosphate	1 (0.4)
Proton-pump inhibitors	59 (22.0)
Esomeprazole	2 (0.7)
Esomeprazole magnesium	6 (2.2)
Lansoprazole	12 (4.5)
Omeprazole	35 (13.1)
Omeprazole magnesium	1 (0.4)
Omeprazole sodium	1 (0.4)
Pantoprazole	1 (0.4)
Pantoprazole sodium sesquihydrate	3 (1.1)
Rabeprazole sodium	1 (0.4)
Beta-blocking agents, selective	30 (11.2)
Bisoprolol	21 (7.8)
Bisoprolol fumarate	5 (1.9)
Bisoprolol succinate	3 (1.1)
Bisoprolol tartrate	1 (0.4)
Osmotically acting laxatives	27 (10.1)
Lactulose	1 (0.4)
Macrogol	1 (0.4)
Macrogol 3350	1 (0.4)

Supplementary Table 6 Concomitant medication use (> 10% in medication class) in patients aged 5 years or older in the STRIDE Registry evaluable population

Macrogol 3350; potassium chloride;	13 (4.9)
Macrogol 4000	9 (3.4)
Macrogol; potassium chloride; sodium	1 (0.4)
bicarbonate; sodium chloride	
Mannitol	1 (0.4)

Concomitant medications were coded using the WHO Drug Dictionary (September 2017). Concomitant medications are defined as any medications that patients started on or after the study treatment start date. Patients may have more than one medication per ATC system level 3 category and preferred term. At each level of patient summarization, a patient is counted once if the patient reported one or more medications. *ACE* angiotensin-converting enzyme, *ATC* Anatomical Therapeutic Classification, *STRIDE* Strategic Targeting of Registries and International Database of Excellence, *WHO* World Health Organization

	Corticos		
	Yes	Νο	All
	<i>N</i> = 14	N = 8	N = 22
Number of TEAEs ^a	13	1	14
Patients with at least one of the			
following, <i>n</i> (%)			
TEAE	6 (42.9)	1 (12.5)	7 (31.8)
TEAE related to ataluren	1 (7.1)	0 (0.0)	1 (4.5)
TEAE leading to discontinuation	0 (0.0)	0 (0.0)	0 (0.0)
of ataluren		. ,	
SAE	2 (14.3)	0 (0.0)	2 (9.1)
TEAE with maximum severity ^b			
Not reported	0 (0.0)	0 (0.0)	0 (0.0)
Unknown	0 (0.0)	0 (0.0)	0 (0.0)
Mild	4 (28.6)	1 (12.5)	5 (22.7)
Moderate	1 (7.1)	0 (0.0)	1 (4.5)
Severe	1 (7.1)	0 (0.0)	1 (4.5)
Life threatening	0 (0.0)	0 (0.0)	0 (0.0)
Patients with at least one of the			
following, <i>n</i> (%) ^{c,d}			
Injury, poisoning and	2 (14.3)	0 (0.0)	2 (9.1)
procedural complications			
Infections and infestations	3 (21.4)	1 (12.5)	4 (18.2)
Upper respiratory tract infection	2 (14.3)	0 (0.0)	2 (9.1)
Investigations	2 (14.3)	0 (0.0)	2 (9.1)

Supplementary Table 7 TEAEs^a experienced by patients aged ≥ 2 to < 5 in the as-treated population of the STRIDE Registry

AE adverse event, TEAE treatment-emergent adverse event, SAE serious adverse event, STRIDE Strategic Targeting of Registries and International Database of Excellence aTEAE is defined as any AE with a start date on or after the first date of ataluren use or worsened after initiation of ataluren treatment and does not necessarily have a causal relationship with ataluren. Events with missing severity are not reported

^bFor patients with two or more TEAEs, the event with the maximum severity was reported. The order of severity is 'not reported', 'unknown', 'mild', 'moderate', 'severe' and 'life threatening'

^cAEs were coded using the Medical Dictionary for Regulatory Activities (version 20.1) ^dA patient who reported at least one occurrence with the same preferred term was counted only once for that term.

	First available assessment result, <i>n</i> (%				ó)	
	Extreme assessment result, <i>n</i> (%) ^a	Normal Abnormal, not Abnormal, Total				
			clinically	clinically		
			significantb	significantb		
HDL	Normal	94 (52.5)	12 (6.7)	0 (0.0)	106 (59.2)	
	Abnormal, not clinically significant ^b	40 (22.3)	27 (15.1)	1 (0.6)	68 (38.0)	
	Abnormal, clinically significant ^b	3 (1.7)	1 (0.6)	1 (0.6)	5 (2.8)	
	Total	137 (76.5)	40 (22.3)	2 (1.1)	179 (100.0)	
LDL	Normal	91 (54.2)	7 (4.2)	0 (0.0)	98 (58.3)	
	Abnormal, not clinically significant ^b	35 (20.8)	26 (15.5)	2 (1.2)	63 (37.5)	
	Abnormal, clinically significant ^b	2 (1.2)	2 (1.2)	3 (1.8)	7 (4.2)	
	Total	128 (76.2)	35 (20.8)	5 (3.0)	168 (100.0)	
Triglycerides	Normal	89 (40.8)	11 (5.0)	1 (0.5)	101 (46.3)	
	Abnormal, not clinically significant ^b	54 (24.8)	48 (22.0)	1 (0.5)	103 (47.2)	
	Abnormal, clinically significant ^b	7 (3.2)	2 (0.9)	5 (2.3)	14 (6.4)	
	Total	150 (68.8)	61 (28.0)	7 (3.2)	218 (100.0)	
Total	Normal	98 (44.5)	10 (4.5)	1 (0.5)	109 (49.5)	
cholesterol						
	Abnormal, not clinically significant ^b	61 (27.7)	33 (15.0)	1 (0.5)	95 (43.2)	
	Abnormal, clinically significant ^b	8 (3.6)	5 (2.3)	3 (1.4)	16 (7.3)	
	Total	167 (75.9)	48 (21.8)	5 (2.3)	220 (100.0)	

Supplementary Table 8 Lipid profile of patients aged 5 years or older in the as-treated population of the STRIDE Registry (*N* = 284) at the first available and extreme assessments

HDL high-density lipoprotein, LDL low-density lipoprotein, STRIDE Strategic Targeting of Registries and International Database of Excellence ^aThe extreme assessment result is the number and percentage of patients whose lipid profile shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

		First available assessment result, <i>n</i> (%)				
	Extreme assessment result, <i>n</i> (%) ^a	Normal Abnormal, not Abnormal, Total				
			clinically	clinically		
			significantb	significantb		
HDL	Normal	3 (21.4)	0 (0.0)	0 (0.0)	3 (21.4)	
	Abnormal, not clinically significant ^b	5 (35.7)	4 (28.6)	1 (7.1)	10 (71.4)	
	Abnormal, clinically significant ^b	0 (0.0)	1 (7.1)	0 (0.0)	1 (7.1)	
	Total	8 (57.1)	5 (35.7)	1 (7.1)	14 (100.0)	
LDL	Normal	7 (53.8)	1 (7.7)	0 (0.0)	8 (61.5)	
	Abnormal, not clinically significant ^b	4 (30.8)	1 (7.7)	0 (0.0)	5 (38.5)	
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
	Total	11 (84.6)	2 (15.4)	0 (0.0)	13 (100.0)	
Triglycerides	Normal	8 (53.3)	0 (0.0)	0 (0.0)	8 (53.3)	
	Abnormal, not clinically significant ^b	5 (33.3)	0 (0.0)	0 (0.0)	5 (33.3)	
	Abnormal, clinically significant ^b	0 (0.0)	2 (13.3)	0 (0.0)	2 (13.3)	
	Total	13 (86.7)	2 (13.3)	0 (0.0)	15 (100.0)	
Total	Normal	7 (46.7)	1 (6.7)	0 (0.0)	8 (53.3)	
cholesterol						
	Abnormal, not clinically significant ^b	4 (26.7)	1 (6.7)	0 (0.0)	5 (33.3)	
	Abnormal, clinically significant ^b	1 (6.7)	1 (6.7)	0 (0.0)	2 (13.3)	
	Total	12 (80.0)	3 (20.0)	0 (0.0)	15 (100.0)	

Supplementary Table 9 Lipid profile of patients aged 5 years or older in the as-treated population of the STRIDE Registry at the first available and extreme assessments who did not use corticosteroids (N = 25)

HDL high-density lipoprotein, LDL low-density lipoprotein, STRIDE Strategic Targeting of Registries and International Database of Excellence ^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

Supplementary Table 10	ECG and heart rhythm results of patients aged 5 years or older in the as-treated population of the STRIDE Registry
(N = 284) at the first availa	ble and extreme assessments

		First available assessment result, <i>n</i> (%)					
ECG	Extreme assessment result, <i>n</i> (%) ^a	Normal	Abnormal, not clinically significant⁵	Abnormal, clinically significant ^b	Total		
	Patients wh	o used corticos	teroids (<i>N</i> = 259)				
	Normal	84 (48.0)	7 (4.0)	0 (0.0)	91 (52.0)		
	Abnormal, not clinically significant ^b	47 (26.9)	32 (18.3)	1 (0.6)	80 (45.7)		
	Abnormal, clinically significant ^b	3 (1.7)	1 (0.6)	0 (0.0)	4 (2.3)		
	Total	134 (76.6)	40 (22.9)	1 (0.6)	175 (100.0)		
	Patients who	did not use corti	costeroids (N = 25)				
	Normal	11 (73.3)	0 (0.0)	0 (0.0)	11 (73.3)		
	Abnormal, not clinically significant ^b	4 (26.7)	0 (0.0)	0 (0.0)	4 (26.7)		
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
	Total	15 (100)	0 (0.0)	0 (0.0)	15 (100.0)		
Heart rhythm	Extreme assessment result, <i>n</i> (%)ª	Normal	Abnormal	Not calculable	Total		
	Patients wh	o used corticos	teroids (<i>N</i> = 259)				
	Normal	131 (78.0)	7 (4.2)	0 (0.0)	138 (82.1)		
	Abnormal	23 (13.7)	7 (4.2)	0 (0.0)	30 (17.9)		
	Total	154 (91.7)	14 (8.3)	0 (0.0)	168 (100.0)		
Patients who did not use corticosteroids (N = 25)							
	Normal	14 (87.5)	0 (0.0)	0 (0.0)	14 (87.5)		
	Abnormal	2 (12.5)	0 (0.0)	0 (0.0)	2 (12.5)		
	Total	16 (100.0)	0 (0.0)	0 (0.0)	16 (100.0)		

ECG electrocardiogram, STRIDE Strategic Targeting of Registries and International Database of Excellence

^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

		First available assessment result, <i>n</i> (%)			
Hypertensive status	Extreme assessment result, <i>n</i> (%) ^a	Normal	Pre-hypertensive	Hypertensive	Total
	Patients who used cort	icosteroids ((N = 259)		
	Normal	53 (22.6)	7 (3.0)	3 (1.3)	63 (26.8)
	Pre-hypertensive	21 (8.9)	5 (2.1)	7 (3.0)	33 (14.0)
	Hypertensive	65 (27.7)	24 (10.2)	50 (21.3)	139 (59.1)
	Total	139 (59.1)	36 (15.3)	60 (25.5)	235 (100.0)
	Patients who did not use o	corticosteroi	ids (<i>N</i> = 25)		
	Normal	5 (29.4)	0 (0.0)	0 (0.0)	5 (29.4)
	Pre-hypertensive	2 (11.8)	1 (5.9)	0 (0.0)	3 (17.6)
	Hypertensive	6 (35.5)	2 (11.8)	1 (5.9)	9 (52.9)
	Total	13 (76.5)	3 (17.6)	1 (5.9)	17 (100.0)
Resting pulse rate, bpm	Extreme assessment result, <i>n</i> (%) ^a	Low	Normal	Elevated	Total
	Patients who used cort	icosteroids ((N = 259)		
Shift to the highest					
	Low	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Normal	4 (2.4)	140 (84.8)	4 (2.4)	148 (89.7)
	Elevated	0 (0.0)	13 (7.9)	4 (2.4)	17 (10.3)
	Total	4 (2.4)	153 (92.7)	8 (4.8)	165 (100.0)
Shift to the lowest					
	Low	1 (0.6)	18 (10.9)	0 (0.0)	19 (11.5)
	Normal	3 (1.8)	133 (80.6)	6 (3.6)	142 (86.1)
	Elevated	0 (0.0)	2 (1.2)	2 (1.2)	4 (2.4)
	Total	4 (2.4)	153 (92.7)	8 (4.8)	165 (100.0)
	Patients who did not use o	corticosteroi	ids (<i>N</i> = 25)		
Shift to the highest					
	Low	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Normal	2 (11.8)	13 (76.5)	1 (5.9)	16 (94.1)

Supplementary Table 11 Hypertensive status and resting pulse rate of patients aged 5 years or older in the as-treated population of the STRIDE Registry (N = 284) at the first available and extreme assessments

Elevated	0 (0.0)	1 (5.9)	0 (0.0)	1 (5.9)
Total	2 (11.8)	14 (82.4)	1 (5.9)	17 (100.0)
Shift to the lowest				
Low	1 (5.9)	2 (11.8)	1 (5.9)	4 (23.5)
Normal	1 (5.9)	12 (70.6)	0 (0.0)	13 (76.5)
Elevated	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Total	2 (11.8)	14 (82.4)	1 (5.9)	17 (100.0)

STRIDE Strategic Targeting of Registries and International Database of Excellence

^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

			First available asse	First available assessment result, <i>n</i> (%)		
	Extreme assessment result, <i>n</i> (%) ^a	Normal	Abnormal, not clinically significant ^b	Abnormal, clinically significant ^b	Total	
AST	Normal	1 (0.5)	1 (0.5)	0 (0.0)	2 (1.1)	
	Abnormal, not clinically significant ^b	6 (3.3)	123 (67.2)	17 (9.3)	146 (79.8)	
	Abnormal, clinically significant ^b	0 (0.0)	20 (10.9)	15 (8.2)	35 (19.1)	
	Total	7 (3.8)	144 (78.7)	32 (17.5)	183 (100.0)	
ALT	Normal	1 (0.4)	3 (1.3)	0 (0.0)	4 (1.8)	
	Abnormal, not clinically significant ^b	2 (0.9)	161 (71.9)	17 (7.6)	180 (80.4)	
	Abnormal, clinically significant ^b	0 (0.0)	24 (10.7)	16 (7.1)	40 (17.9)	
	Total	3 (1.3)	188 (83.9)	33 (14.7)	224 (100.0)	
GGT	Normal	103 (53.9)	8 (4.2)	0 (0.0)	111 (58.1)	
	Abnormal, not clinically significant ^b	58 (30.4)	19 (9.9)	0 (0.0)	77 (40.3)	
	Abnormal, clinically significant ^b	1 (0.5)	2 (1.0)	0 (0.0)	3 (1.6)	
	Total	162 (84.8)	29 (15.2)	0 (0.0)	191 (100.0)	
Total bilirubin	Normal	129 (77.2)	7 (4.2)	0 (0.0)	136 (81.4)	
	Abnormal, not clinically significant ^b	20 (12.0)	9 (5.4)	1 (0.6)	30 (18.0)	
	Abnormal, clinically significant ^b	1 (0.6)	0 (0.0)	0 (0.0)	1 (0.6)	
	Total	150 (89.8)	16 (9.6)	1 (0.6)	167 (100.0)	
Serum creatinine	Normal	23 (9.9)	7 (3.0)	1 (0.4)	31 (13.3)	
	Abnormal, not clinically significant ^b	55 (23.6)	135 (57.9)	2 (0.9)	192 (82.4)	
	Abnormal, clinically significant ^b	3 (1.3)	7 (3.0)	0 (0.0)	10 (4.3)	
	Total	81 (34.8)	149 (63.9)	3 (1.3)	233 (100.0)	
BUN	Normal	117 (68.4)	3 (1.8)	0 (0.0)	120 (70.2)	
	Abnormal, not clinically significant ^b	41 (24.0)	10 (5.8)	0 (0.0)	51 (29.8)	
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
	Total	158 (92.4)	13 (7.6)	0 (0.0)	171 (100.0)	

Supplementary Table 12 Hepatic enzyme and renal profile of patients aged 5 years or older in the as-treated population of the STRIDE Registry (N = 284) at the first available and extreme assessments

Cystatin C	Normal	63 (75.9)	2 (2.4)	0 (0.0)	65 (78.3)
	Abnormal, not clinically significant ^b	11 (13.3)	6 (7.2)	0 (0.0)	17 (20.5)
	Abnormal, clinically significant ^b	1 (1.2)	0 (0.0)	0 (0.0)	1 (1.2)
	Total	75 (90.4)	8 (9.6)	0 (0.0)	83 (100.0)

ALT alanine transaminase, AST aspartate aminotransferase, BUN blood urea nitrogen, GGT gamma-glutamyl transferase, STRIDE Strategic Targeting of Registries and International Database of Excellence

^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

			essment result, <i>n</i> (%		
	Extreme assessment result, <i>n</i> (%) ^a	Normal	Abnormal, not clinically significant ^ь	Abnormal, clinically significant ^b	Total
HDL	Normal	5 (45.5)	0 (0.0)	0 (0.0)	5 (45.5)
	Abnormal, not clinically significant ^b	2 (18.2)	2 (18.2)	0 (0.0)	4 (36.4)
	Abnormal, clinically significant ^b	1 (9.1)	1 (9.1)	0 (0.0)	2 (18.2)
	Total	8 (88.9)	3 (27.3)	0 (0.0)	11 (100.0)
LDL	Normal	5 (55.6)	0 (0.0)	0 (0.0)	5 (55.6)
	Abnormal, not clinically significant ^b	3 (33.3)	1 (11.1)	0 (0.0)	4 (44.4)
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	8 (88.9)	1 (11.1)	0 (0.0)	9 (100.0)
Triglycerides	Normal	6 (54.5)	0 (0.0)	0 (0.0)	6 (54.5)
	Abnormal, not clinically significant ^b	4 (36.4)	0 (0.0)	0 (0.0)	4 (36.4)
	Abnormal, clinically significant ^b	1 (9.1)	0 (0.0)	0 (0.0)	1 (9.1)
	Total	11 (100.0)	0 (0.0)	0 (0.0)	11 (100.0)
Total cholesterol	Normal	7 (58.3)	0 (0.0)	0 (0.0)	7 (58.3)
	Abnormal, not clinically significant ^b	4 (33.3)	1 (8.3)	0 (0.0)	5 (41.7)
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	11 (91.7)	1 (8.3)	0 (0.0)	12 (100.0)

Supplementary Table 13 Lipid profile of patients aged ≥ 2 to < 5 years in the as-treated population of the STRIDE Registry (N = 22) at the first available and extreme assessments

HDL high-density lipoprotein, LDL low-density lipoprotein, STRIDE Strategic Targeting of Registries and International Database of Excellence ^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

		First available assessment result, <i>n</i> (%)				
	Extreme assessment result, <i>n</i> (%) ^a	Normal	Abnormal, not	Abnormal,	Total	
			clinically	clinically		
			significantb	significantb		
HDL	Normal	1 (33.3)	0 (0.0)	0 (0.0)	1 (33.3)	
	Abnormal, not clinically significant ^b	1 (33.3)	1 (33.3)	0 (0.0)	2 (66.7)	
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
	Total	2 (66.7)	1 (33.3)	0 (0.0)	3 (100.0)	
LDL	Normal	1 (33.3)	0 (0.0)	0 (0.0)	1 (33.3)	
	Abnormal, not clinically significant ^b	1 (33.3)	1 (33.3)	0 (0.0)	2 (66.7)	
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
	Total	2 (66.7)	1 (33.3)	0 (0.0)	3 (100.0)	
Triglycerides	Normal	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
	Abnormal, not clinically significant ^b	3 (100.0)	0 (0.0)	0 (0.0)	3 (100.0)	
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
	Total	3 (100.0)	0 (0.0)	0 (0.0)	3 (100.0)	
Total	Normal	2 (50.0)	0 (0.0)	0 (0.0)	2 (50.0)	
cholesterol						
	Abnormal, not clinically significant ^b	1 (25.0)	1 (25.0)	0 (0.0)	2 (50.0)	
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
	Total	3 (75.0)	1 (25.0)	0 (0.0)	4 (100.0)	

Supplementary Table 14 Lipid profile of patients aged ≥ 2 to < 5 years in the as-treated population of the STRIDE Registry at the first available and extreme assessments who were not receiving corticosteroids (N = 8)

HDL high-density lipoprotein, LDL low-density lipoprotein, STRIDE Strategic Targeting of Registries and International Database of Excellence ^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

First				First available assessment result, <i>n</i> (%)			
ECG	Extreme assessment result, <i>n</i> (%) ^a	Normal	Abnormal, not clinically	Abnormal, clinically	Total		
			significant ^b	significant ^b			
	Patients wh	no used corticos	steroids $(N = 14)$	-			
	Normal	8 (80.0)	2 (20.0)	0 (0.0)	10 (100.0)		
	Abnormal, not clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
	Total	8 (80.0)	2 (20.0)	0 (0.0)	10 (100.0)		
	Patientswho	did not use corti	icosteroids (N = 8)				
	Normal	3 (100.0)	0 (0.0)	0 (0.0)	3 (100.0)		
	Abnormal, not clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
	Total	3 (100.0)	0 (0.0)	0 (0.0)	3 (100.0)		
Heart rhythm	Extreme assessment result, <i>n</i> (%)ª	Normal	Abnormal	Not calculable	Total		
	Patients where the second s	no used corticos	steroids (<i>N</i> = 14)				
	Normal	10 (100.0)	0 (0.0)	0 (0.0)	10 (100.0)		
	Abnormal	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
	Total	10 (100.0)	0 (0.0)	0 (0.0)	10 (100.0)		
Patients who did not use corticosteroids (N = 8)							
	Normal	2 (66.7)	1 (33.3)	0 (0.0)	3 (100.0)		
	Abnormal	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
	Total	2 (66.7)	1 (33.3)	0 (0.0)	3 (100.0)		

Supplementary Table 15 ECG and heart rhythm results of patients aged ≥ 2 to < 5 years in the as-treated population of the STRIDE Registry (N = 22) at the first available and extreme assessments

ECG electrocardiogram, STRIDE Strategic Targeting of Registries and International Database of Excellence

^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

		First available assessment result, <i>n</i> (%)			
Hypertensive status	Extreme assessment result, <i>n</i> (%) ^a	Normal	Pre-hypertensive	Hypertensive	Total
	Patients who used cort	icosteroids	(<i>N</i> = 14)		
	Normal	1 (10.0)	1 (10.0)	0 (0.0)	2 (20.0)
	Pre-hypertensive	2 (20.0)	1 (10.0)	0 (0.0)	3 (30.0)
	Hypertensive	2 (20.0)	1 (10.0)	2 (20.0)	5 (50.0)
	Total	5 (50.0)	3 (30.0)	2 (20.0)	10 (100.0)
	Patients who did not use	corticostero	oids (<i>N</i> = 8)		
	Normal	1 (20.0)	2 (40.0)	0 (0.0)	3 (60.0)
	Pre-hypertensive	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Hypertensive	2 (40.0)	0 (0.0)	0 (0.0)	2 (40.0)
	Total	3 (60.0)	2 (40.0)	0 (0.0)	5 (100.0)
Resting pulse rate, bpm	Extreme assessment result, <i>n</i> (%) ^a	Low	Normal	Elevated	Total
	Patients who used cort	icosteroids	(<i>N</i> = 14)		
Shift to the highest					
	Low	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Normal	0 (0.0)	7 (100.0)	0 (0.0)	7 (100.0)
	Elevated	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	0 (0.0)	7 (100.0)	0 (0.0)	7 (100.0)
Shift to the lowest					
	Low	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Normal	0 (0.0)	7 (100.0)	0 (0.0)	7 (100.0)
	Elevated	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	0 (0.0)	7 (100.0)	0 (0.0)	7 (100.0)
	Patients who did not use	corticostero	oids (<i>N</i> = 8)		
Shift to the highest					
	Low	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Normal	0 (0.0)	3 (100.0)	0 (0.0)	3 (100.0)

Supplementary Table 16 Hypertensive status and resting pulse rate of patients aged ≥ 2 to < 5 years in the as-treated population of the STRIDE Registry (N = 22) at the first available and extreme assessments

Elevated	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Total	0 (0.0)	3 (100.0)	0 (0.0)	3 (100.0)
Shift to the lowest				
Low	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Normal	0 (0.0)	3 (100.0)	0 (0.0)	3 (100.0)
Elevated	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Total	0 (0.0)	3 (100.0)	0 (0.0)	3 (100.0)

STRIDE Strategic Targeting of Registries and International Database of Excellence

^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

			b)		
	Extreme assessment result, <i>n</i> (%) ^a	Normal	Abnormal, not clinically significant ^b	Abnormal, clinically	Total
AST	Normal	0 (0.0)			0 (0.0)
	Abnormal, not clinically significant ^b	0 (0.0)	9 (64.3)	2 (14.3)	11 (78.6)
	Abnormal, clinically significant ^b	0 (0.0)	1 (7.1)	2 (14.3)	3 (21.4)
	Total	0 (0.0)	10 (71.4)	4 (28.6)	14 (100.0)
ALT	Normal	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Abnormal, not clinically significant ^b	0 (0.0)	11 (68.8)	2 (12.5)	13 (81.3)
	Abnormal, clinically significant ^b	0 (0.0)	1 (6.3)	2 (12.5)	3 (18.8)
	Total	0 (0.0)	12 (75.0)	4 (25.0)	16 (100.0)
GGT	Normal	8 (72.7)	0 (0.0)	0 (0.0)	8 (72.7)
	Abnormal, not clinically significant ^b	1 (9.1)	2 (18.2)	0 (0.0)	3 (27.3)
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	9 (81.8)	2 (18.2)	0 (0.0)	11 (100.0)
Total bilirubin	Normal	8 (80.0)	0 (0.0)	0 (0.0)	8 (80.0)
	Abnormal, not clinically significant ^b	1 (10.0)	1 (10.0)	0 (0.0)	2 (20.0)
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	9 (90.0)	1 (10.0)	0 (0.0)	10 (100.0)
Serum creatinine	Normal	5 (29.4)	0 (0.0)	0 (0.0)	5 (29.4)
	Abnormal, not clinically significant ^b	3 (17.6)	9 (52.9)	0 (0.0)	12 (70.6)
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	8 (47.1)	9 (52.9)	0 (0.0)	17 (100.0)
BUN	Normal	13 (92.9)	0 (0.0)	0 (0.0)	13 (92.9)
	Abnormal, not clinically significant ^b	1 (7.1)	0 (0.0)	0 (0.0)	1 (7.1)
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	14 (100.0)	0 (0.0)	0 (0.0)	14 (100.0)

Supplementary Table 17 Hepatic enzyme and renal profile of patients aged ≥ 2 to < 5 years in the as-treated population of the STRIDE Registry (N = 22) at the first available and extreme assessments

Cystatin C	Normal	2 (66.7)	0 (0.0)	0 (0.0)	2 (66.7)
	Abnormal, not clinically significant ^b	1 (33.3)	0 (0.0)	0 (0.0)	1 (33.3)
	Abnormal, clinically significant ^b	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Total	3 (100.0)	0 (0.0)	0 (0.0)	3 (100.0)

ALT alanine transaminase, AST aspartate aminotransferase, BUN blood urea nitrogen, GGT gamma-glutamyl transferase, STRIDE Strategic Targeting of Registries and International Database of Excellence

^aThe extreme assessment result is the number and percentage of patients shifted from the first available assessment to the most extreme assessment (worst value) during the period of ataluren use after the first available assessment

	First available assessment result, N (%)									
	Underweight		Normal weight		Overweight		Obese		Total	
Extreme assessment result. <i>n</i> (%) ^a	STRIDE (<i>n</i> = 211)	CINRG (<i>n</i> = 167)	STRIDE (<i>n</i> = 211)	CINRG (<i>n</i> = 167)	STRIDE (<i>n</i> = 211)	CINRG (<i>n</i> = 167)	STRIDE (<i>n</i> = 211)	CINRG (<i>n</i> = 167)	STRIDE (<i>n</i> = 211)	CINRG (<i>n</i> = 167)
Underweight	4 (1.9)	2 (1.2)	2 (0.9)	2 (1.2)	0 (0.0)	1 (0.6)	0 (0.0)	0 (0.0)	6 (2.8)	5 (3.0)
Normal weight	5 (2.4)	5 (3.0)	81 (38.4)	53 (31.7)	5 (2.4)	0 (0.0)	0 (0.0)	0 (0.0)	91 (43.1)	58 (34.7)
Overweight	0 (0.0)	0 (0.0)	27 (12.8)	27 (16.2)	21 (10.0)	17 (10.2)	2 (0.9)	2 (1.2)	50 (23.7)	46 (27.5)
Obese	0 (0.0)	0 (0.0)	11 (5.2)	10 (6.0)	19 (9.0)	15 (9.0)	34 (16.1)	33 (19.8)	64 (30.3)	58 (34.7)
Total	9 (4.3)	7 (4.2)	121 (57.3)	92 (55.1)	45 (21.3)	33 (19.8)	36 (17.1)	35 (21.0)	211 (100)	167 (100)

Supplementary Table 18 Shift table of body weight characteristics (from first to extreme assessments) for the propensity-score matched STRIDE Registry and CINRG DNHS populations

Body weight is classified and determined based on BMI percentiles, which have been developed and issued by the US Centers for Disease Control and Prevention. The first available assessment is used as the base comparison. For non-ambulatory patients, the last qualified assessment should be no later than loss of ambulation. *BMI* body mass index, *CINRG DNHS* Cooperative International Neuromuscular Research Group Duchenne Natural History Study, *STRIDE* Strategic Targeting of Registries and International Database of Excellence ^aThe extreme result is the worst case during ataluren treatment after first available assessment

Supplementary Fig. 1 Countries with patients enrolled in the STRIDE Registry. All included patients provided informed consent. *STRIDE* Strategic Targeting of Registries and International Database of Excellence

Supplementary Fig. 2 Study discontinuation and ataluren cessation for patients aged 5 years or older in the evaluable population (N = 268)

^aOther reasons include: family decided to stop the treatment and participation in the study; loss of ambulation; the patient chose to stop ataluren

^bPatients can have multiple reasons to stop or change dose, hence the number of reasons totals 41 not 39

^cOther reasons include: loss of ambulation; therapeutic window due to nasal congestion requested by mother; ataluren no longer prescribable/reimbursable because of loss of independent ambulation; stop criterion; stopped by authorities

Supplementary Fig. 3 Distribution of BMI for STRIDE Registry patients in the evaluable population aged 5 years or older, by patient age at consent date. *BMI* body mass index, *STRIDE* Strategic Targeting of Registries and International Database of Excellence ^aThe lines indicate z-scores of BMI-for-age according to the growth reference (boys aged 5–19 years) provided by the World Health Organization [1]

Supplementary Fig. 4 BMI z-score for patients in propensity-score matched STRIDE Registry and CINRG DNHS populations. Patients without a second assessment or the duration between the first and last assessments were < 40 weeks apart were excluded for the analysis. *BMI* body mass index, *CINRG DNHS* Cooperative International Neuromuscular Research Group Duchenne Natural History Study, *STRIDE* Strategic Targeting of Registries and International Database of Excellence

Supplementary Fig. 5 Patient disposition in the < 2 to > 5 year old STRIDE Registry analysis population. *DMD* Duchenne muscular dystrophy, *NBS* newborn screening, *PND* prenatal diagnosis, *STRIDE* Strategic Targeting of Registries and International Database of Excellence.

Supplementary Fig. 6 Patient disposition in the \geq 5 year old STRIDE Registry analysis population. *DMD* Duchenne muscular dystrophy, *NBS* newborn screening, *PND* prenatal diagnosis, *STRIDE* Strategic Targeting of Registries and International Database of Excellence.

^aPatients may have been grouped in more than one category

^bScreening failure owing to a frameshift mutation

^cAtaluren is not indicated in these patients; ataluren is indicated for the treatment of ambulatory patients with DMD resulting from a nonsense mutation in the dystrophin gene. Patients who do not have a nonsense mutation should not receive ataluren [2] ^ePatients were in the transition phase if they completed the first 10-m walk/run test in \geq 30 seconds

^fNon-ambulatory patients were defined as such if using a wheelchair fulltime or bedridden; patients who were non-ambulatory "prior to study start" were all ambulatory at ataluren initiation in previous clinical trials

References

1. World Health Organization data, available from https://www.who.int/growthref/who2007 bmi for age/en/. Accessed May 23, 2022

2. European Medicines Agency. Translarna[™] summary of product characteristics. Available from: <u>www.ema.europa.eu/en/documents/product-information/translarna-epar-product-information en.pdf.</u> Accessed April 15, 2022