iScience, Volume 26

Supplemental information

TET1 facilitates specification of early

human lineages including germ cells

Fei-Man Hsu, Qiu Ya Wu, Emily B. Fabyanic, Alex Wei, Hao Wu, and Amander T. Clark

Figure S1. TET1 expression profiles during hPGCLC induction in UCLA2, related to Figure 1.

- (A) UMAPs of scRNA-seq data from ¹ showing UCLA2 hESCs, iMeLCs and day (D)1 to D4 of aggregate differentiation (n= 48,820 cells displayed)
- (B) UMAPs from (A) displaying dynamic expression of the pluripotency gene (NANOG), the hPGC/hPGCLC-specific gene (NANOS3), the hPGC/hPGCLC and endoderm gene (SOX17) as well as the TET family mRNAs (*TET1*, *TET2* and *TET3*).
- (C) Representative IF images of TET1 in undifferentiated NANOG+ hESCs. Scale bar, 40 µm.
- (D) Representative IF images of TET1 in NANOG+ but not SOX17+ iMeLCs. Scale bar, 40 µm.
- (E) Representative IF images of TET1 in NANOG+/PRDM1+ hPGCLCs at D4 of aggregate differentiation. PRDM1+ hPGCLCs are also positive for TFAP2C and SOX17. Scale bar, 40 μm.
- (F) TET1 is expressed in CS9 hPGC.
- (G) TET1 is expressed in cyPGC.

Figure S2. 5hmC is enriched at hPGCLC-specific TF binding sites and accessible regions, related to Figure 2.

- (A) DhMR is enriched in gene-centric regions.
- (B) PCA of WGBS and bACEseq in hESCs and hPGCLCs.
- (C) Heatmap of NANOG binding regions in hESCs and hPGCLCs (hPGCLC-specific binding refers to specific binding in hPGCLCs relative to hESCs).
- (D) Percentage 5hmC at genomic sites in (C) reveals that 5hmC is especially enriched at hPGCLC-specific NANOG binding regions in hPGCLCs. Data are represented as mean +/- SEM. The Student's *t*-test was performed to determine the significances with *p < 0.05, **p < 0.01 and ***p < 0.001.
- (E) Metaplot of \triangle 5hmC from regions in (C).
- (F) Heatmap of accessible chromatin in hESCs and hPGCLCs (hPGCLC-specific refers to increased accessibility in hPGCLCs when compared to hESCs).
- (G) Percentage 5hmC at genomic sites in (F) reveals that 5hmC is enriched at hPGCLC-specific accessible regions in hPGCLCs. Data are represented as mean +/- SEM. The Student's *t*-test was performed to determine the significances with *p < 0.05, **p < 0.01 and ***p < 0.001.
- (H) Metaplot of \triangle 5hmC from regions in (F).

Figure S3. Details of CRISPR/Cas9 knockout and hPGCLC and Endoderm-like cell identity with differentiation, related to Figure 3.

- (A) A pair of guide RNAs were designed to target the TET1 catalytic domain.
- (B) Representative Sanger sequencing results from CTRL and catKO.
- (C) 5hmC dot blot in CTRL and catKO hESC genomic DNA. Data are represented as mean +/- SEM. The Student's *t*-test was performed to determine the significances with *p < 0.05, **p < 0.01 and ***p < 0.001.
- (D) Representation IF images showing endoderm bias begins at D2 in catKO aggregate. Scale bar, 80µm.
- (E) TET1 catKO mutant hPGCLCs show comparable gene expression. The Student's *t*-test was performed to determine the significances with *p < 0.05.
- (F) TET1 catKO mutant endoderm-like cells show comparable gene expression. The Student's *t*-test was performed to determine the significances with *p < 0.05.
- (G) ITGA6/EPCAM hPGCLCs were isolated at D4 from CTRL and catKO aggregates and cultured in extended culture for 21 days (D4C21). Cultured hPGCLCs from CTRL and catKO express NANOG and PRDM1. Scale bar, 50µm.

Figure S4. TET1 is less active in hESC at hPGCLC-specific TFBS, related to Figure 4.

- (A) hPGCLC-specific TFBSs are slightly enriched in 5hmC in hESC, and gain even more 5hmC after hPGCLC induction.
- (B) hPGCLC-specific TFBSs starts losing 5mC in hESC and are even depleted of 5mC after hPGCLC induction.

UMAP1

Figure S5. TET1 catalytic activity restrains spontaneous endoderm differentiation in hESCs and iMeLCs, related to Figure 5.

- (A) Genome browser track of bulk RNAseq showing deletion in TET1 catalytic domain.
- (B) UMAP of scRNAseq data from CTRL and catKO hESCs generated using 10X Genomics. (n=3 independent replicates of CTRL and TET1 catKO), n= 29,433 number of cells displayed. Top shows overlap of CTRL and TET1 catKO hESCs in the UMAP. Bottom shows Pluripotency genes *POU5F1* and *SOX2*. The violin plots show the *SOX17*, *PRDM1* and *FOXA2* expression of the spontaneous endoderm-like cells cluster displayed on the UMAP, and the Student's *t*-test was performed to determine the significances with *p < 0.05. The stacked bar chart shows the composition of endoderm-like cells is significantly increase in catKO, and Fisher's exact test was used to determine the significance with *p < 0.05, **p < 0.01 and ***p < 0.001.
- (C) UMAP of scRNAseq from CTRL and catKO iMeLC generated with 10X Genomics. (n=3 independent replicates of CTRL and TET1 catKO), n= 28,025 number of cells displayed. Top shows overlay and deconvolution of CTRL and TET1 catKO iMeLCs in the UMAP. Bottom shows Pluripotency genes *POU5F1* and *SOX2*. The violin plots show the endoderm gene *SOX17, PRDM1* and *FOXA2* expression in the spontaneous endoderm-like cells cluster displayed on the UMAP, and the Student's *t*-test was performed to determine the significances with *p < 0.05. The stacked bar chart shows the composition of endoderm-like cells is significantly increased in catKO, and Fisher's exact test was used to determine the significance with *p < 0.05, **p < 0.01 and ***p < 0.001.

	•			0
Library type	Cell line	Sample	#Total reads	Mappability (%)
WGBS	UCLA1	hESC replicate2	664,005,942	97.2
WGBS	UCLA1	hESC replicate3	457,638,140	97.2
WGBS	UCLA1	D4hPGCLC replicate2	318,024,343	97.1
WGBS	UCLA1	D4hPGCLC replicate3	546,319,972	96.9
WGBS	UCLA2	hESC replicate1	810,926,832	97.2
WGBS	UCLA2	hESC replicate2	431,308,172	97.2
WGBS	UCLA2	hESC replicate3	612,300,195	97.2
WGBS	UCLA2	D4hPGCLC replicate1	795,694,334	96.6
WGBS	UCLA2	D4hPGCLC replicate2	588,486,763	97.1
WGBS	UCLA2	D4hPGCLC replicate3	502,871,088	97.0
bACEseq	UCLA1	hESC replicate1	1,328,431,585	96.3
bACEseq	UCLA1	hESC replicate3	839,571,111	96.7
bACEseq	UCLA1	D4hPGCLC replicate1	1,680,496,307	94.5
bACEseq	UCLA1	D4hPGCLC replicate2	717,046,904	96.1
bACEseq	UCLA1	D4hPGCLC replicate3	824,697,411	96.0
bACEseq	UCLA2	hESC replicate2	805,636,528	96.3
bACEseq	UCLA2	hESC replicate3	613,582,866	96.6
bACEseq	UCLA2	D4hPGCLC replicate1	686,857,892	96.1
bACEseq	UCLA2	D4hPGCLC replicate2	722,444,940	96.1
bACEseq	UCLA2	D4hPGCLC replicate3	630,833,981	96.8

Table S1. WGBS and bACEseq libraries construct in this study, related to Figure 2.

Table S2. Details of	of 10X libraries	created for this	s study, related to	Figure 3.
----------------------	------------------	------------------	---------------------	-----------

Sample	#Total reads	Mappability (%)	#Valid cells	median UMIs
CTRL#1101 hESC	171,283,234	72.8	7587	6010
CTRL#1106 hESC	173,545,059	70.5	6834	6387
CTRL#1109 hESC	128,274,507	72.2	4754	6536
catKO#1102 hESC	165,061,174	58.2	2948	11596
catKO#1105 hESC	174,609,315	48.2	3437	8396
catKO#1312 hESC	132,432,829	46.4	3873	5713
CTRL#1101 iMeLC	172,479,910	76.3	2126	27789
CTRL#1106 iMeLC	171,565,256	65.5	8574	6393
CTRL#1109 iMeLC	177,802,407	73.8	8680	6599
catKO#1102 iMeLC	170,486,170	65.8	3547	14311
catKO#1105 iMeLC	174,911,961	42.9	2167	15279
catKO#1312 iMeLC	140,329,600	63.0	2895	13682
CTRL#1101 D4aggr	192,139,067	85.4	5313	3948
CTRL#1106 D4aggr	225,893,933	85.3	5347	4114
CTRL#1109 D4aggr	166,441,276	83.2	9675	2323
catKO#1102 D4aggr	169,078,959	82.4	6341	3079
catKO#1105 D4aggr	188,952,867	83.1	6579	3377
catKO#1312 D4aggr	208,218,684	83.6	4964	4405

 Table S3. Details of bulk RNAseq libraries created for this study, related to Figure 5.

Library type	Cell line	Sample	#Total read pairs	Mappability (%)
RNAseq	UCLA1	CTRL#1101 hESC	65,488,888	60.6
RNAseq	UCLA1	CTRL#1106 hESC	78,326,513	56.4
RNAseq	UCLA1	CTRL#1109 hESC	75,213,438	63.2
RNAseq	UCLA1	catKO#1102 hESC	46,951,012	68.3
RNAseq	UCLA1	catKO#1105 hESC	72,163,591	65.9
RNAseq	UCLA1	catKO#1312 hESC	69,858,296	65.3
RNAseq	UCLA1	CTRL#1101 iMeLC	129,947,695	55.8
RNAseq	UCLA1	CTRL#1106 iMeLC	115,548,571	61.7
RNAseq	UCLA1	CTRL#1109 iMeLC	134,637,954	61.5
RNAseq	UCLA1	catKO#1102 iMeLC	65,759,606	57.3
RNAseq	UCLA1	catKO#1105 iMeLC	143,230,121	49.8
RNAseq	UCLA1	catKO#1312 iMeLC	111,129,317	52.1

Table S4. Genomic datasets	re-analyzed in this study	, related to Figure	1, 2 and 4.
----------------------------	---------------------------	---------------------	-------------

Library type	Protein	Dataset	Reference
ChIPseq	H3K27ac	GSE69646	Ji <i>et al.</i> , 2016 ²
ChIPseq	H3K27ac	GSE140021	Chen <i>et al.</i> , 2019 ¹
ChIPseq	H3K4me3	GSE159654	Tang <i>et al.</i> , 2022 ³
ChIPseq	TET1-V5	GSE169207	Dixon <i>et al.</i> , 2021 ⁴
ChIPseq	TFAP2C	GSE140021	Chen <i>et al.</i> , 2019 ¹
ChIPseq	SOX17	GSE182218	Xiang <i>et al.</i> , 2022 ⁵
ChIPseq	NANOG	GSE182218	Xiang e <i>t al.</i> , 2022 ⁵
ChIPseq	PRDM1	GSE159654	Tang <i>et al.</i> , 2022 ³
ATACseq	NA	GSE120648	Chen <i>et al.</i> , 2018 ⁶
Single cell RNAseq	NA	GSE140021	Chen <i>et al.</i> , 2019 ¹
Single cell RNAseq	NA	GSE76267	Sasaki <i>et al</i> ., 2016 ⁷
Single cell RNAseq	NA	GSE74767	Nakamura <i>et al</i> ., 2016 ⁸
Single cell RNAseq	NA	E-MTAB-6967	Tyser <i>et al</i> ., 2021 ⁹

REFERENCES

1. Chen, D., Sun, N., Hou, L., Kim, R., Faith, J., Aslanyan, M., Tao, Y., Zheng, Y., Fu, J., Liu, W., et al. (2019). Human Primordial Germ Cells Are Specified from Lineage-Primed Progenitors. Cell reports *29*, 4568-4582.e5. 10.1016/j.celrep.2019.11.083.

2. Ji, X., Dadon, D.B., Powell, B.E., Fan, Z.P., Borges-Rivera, D., Shachar, S., Weintraub, A.S., Hnisz, D., Pegoraro, G., Lee, T.I., et al. (2016). 3D Chromosome Regulatory Landscape of Human Pluripotent Cells. Cell Stem Cell *18*, 262–275. 10.1016/j.stem.2015.11.007.

3. Tang, W.W.C., Castillo-Venzor, A., Gruhn, W.H., Kobayashi, T., Penfold, C.A., Morgan, M.D., Sun, D., Irie, N., and Surani, M.A. (2022). Sequential enhancer state remodelling defines human germline competence and specification. Nat Cell Biol, 1–13. 10.1038/s41556-022-00878-z.

4. Dixon, G., Pan, H., Yang, D., Rosen, B.P., Jashari, T., Verma, N., Pulecio, J., Caspi, I., Lee, K., Stransky, S., et al. (2021). QSER1 protects DNA methylation valleys from de novo methylation. Science *372*, eabd0875. 10.1126/science.abd0875.

5. Xiang, X., Tao, Y., DiRusso, J., Hsu, F.-M., Zhang, J., Xue, Z., Pontis, J., Trono, D., Liu, W., and Clark, A.T. (2022). Human reproduction is regulated by retrotransposons derived from ancient Hominidae-specific viral infections. Nat Commun *13*, 463. 10.1038/s41467-022-28105-1.

6. Chen, D., Liu, W., Zimmerman, J., Pastor, W.A., Kim, R., Hosohama, L., Ho, J., Aslanyan, M., Gell, J.J., Jacobsen, S.E., et al. (2018). The TFAP2C-Regulated OCT4 Naive Enhancer Is Involved in Human Germline Formation. Cell reports *25*, 3591-3602.e5. 10.1016/j.celrep.2018.12.011.

7. Sasaki, K., Nakamura, T., Okamoto, I., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S., Shiraki, N., Takakuwa, T., et al. (2016). The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion. Developmental cell *39*, 169–185. 10.1016/j.devcel.2016.09.007.

8. Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S., Yamamoto, T., and Saitou, M. (2016). A developmental coordinate of pluripotency among mice, monkeys and humans. Nature *537*, 57–62. 10.1038/nature19096.

9. Tyser, R.C.V., Mahammadov, E., Nakanoh, S., Vallier, L., Scialdone, A., and Srinivas, S. (2021). Single-cell transcriptomic characterization of a gastrulating human embryo. Nature *600*, 285–289. 10.1038/s41586-021-04158-y.