Biostatistics (2021), **0**, 0, *pp.* S1–S13 doi:10.1093/biostatistics/output

Supplementary material to Distributed Cox Proportional Hazards Regression Using Summary-level Information

DONGDONG LI^{1,*}, WENBIN LU², DI SHU^{3,4,5}, SENGWEE TOH¹, RUI WANG^{1,6}

¹ Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA

² Department of Statistics, North Carolina State University, Raleigh, NC, USA

³ Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

⁴ Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA

⁵ Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA

⁶ Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA

S1. Additional Details for Section 2 of the paper

S1.1 Proof

Proof of Theorem 2.1. Denote the true parameter value as $\boldsymbol{\theta}_0 \triangleq (\boldsymbol{\beta}'_{10}, \dots, \boldsymbol{\beta}'_{K0}, \boldsymbol{\beta}'_0)'$, where $\boldsymbol{\beta}_{k0}$, $k = 1, \dots, K$ is the true parameter value within each site. It is assumed that $\boldsymbol{\beta}_{10} = \dots = \boldsymbol{\beta}_{K0} = \boldsymbol{\beta}_0$. For ease of derivation we will keep the notation of $\boldsymbol{\beta}_{k0}$ for now, $k = 1, \dots, K$. The set of parameters $\boldsymbol{\theta} \triangleq (\boldsymbol{\beta}'_1, \dots, \boldsymbol{\beta}'_K, \boldsymbol{\beta}')'$ is estimated by $\hat{\boldsymbol{\theta}}^{(1)} \triangleq (\hat{\boldsymbol{\beta}}'_1, \dots, \hat{\boldsymbol{\beta}}'_K, \hat{\boldsymbol{\beta}}^{(1)'})'$, the solution to the K + 1 estimating equations $\boldsymbol{U}^*_{\boldsymbol{\beta}_k} = \boldsymbol{0}$ for $k = 1, \dots, K$ and $\boldsymbol{U}_{\boldsymbol{\theta}} = \boldsymbol{0}$. Under regularity conditions (Cox and Hinkley, 1974, p.281), $\sqrt{n}(\hat{\boldsymbol{\beta}}'_1 - \boldsymbol{\beta}'_{10}, \dots, \hat{\boldsymbol{\beta}}'_K - \boldsymbol{\beta}'_{K0}) \xrightarrow{\mathcal{D}} N(\boldsymbol{0}, \boldsymbol{I}^{*-1})$ and \boldsymbol{I}^* is partitioned

*To whom correspondence should be addressed. E-mail: dongdong_li@hphci.harvard.edu

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

into

$$oldsymbol{I}^* = egin{bmatrix} oldsymbol{I}^*_{11} & \ldots & oldsymbol{I}^*_{1K} \ dots & \ddots & dots \ oldsymbol{I}^*_{K1} & \ldots & oldsymbol{I}^*_{KK} \end{bmatrix}$$

where $n\mathbf{I}_{ij}^*$ is the variance-covariance matrix between $\mathbf{U}_{\beta_i}^*$ and $\mathbf{U}_{\beta_j}^*$ for i, j = 1, ..., K, since the K sites are independent, $\mathbf{I}_{ij}^* = \mathbf{0}$ for $i \neq j$.

The information matrix, denoted by I, for the K + 1 score functions $(U_{\beta_k}^* \text{ for } k = 1, \ldots, K, \text{ and} U_{\theta})$ can be partitioned into $(K + 1) \times (K + 1)$ blocks

$$I = \begin{bmatrix} I_{11} & \dots & I_{1K} & I_{1(K+1)} \\ \vdots & \ddots & \vdots & \vdots \\ I_{K1} & \dots & I_{KK} & I_{K(K+1)} \\ I_{(K+1)1} & \dots & I_{(K+1)K} & I_{(K+1)(K+1)} \end{bmatrix}$$

Taylor expanding the score function $U^*_{\beta_k}$ around β_{k0} and evaluating it at $\hat{\beta}_k$:

$$\boldsymbol{U}_{\boldsymbol{\beta}_{k}}^{*}(\hat{\boldsymbol{\beta}}_{k}) = \boldsymbol{0} = \boldsymbol{U}_{\boldsymbol{\beta}_{k}}^{*}(\boldsymbol{\beta}_{k0}) - \boldsymbol{A}_{\boldsymbol{\beta}_{k}}^{*}(\boldsymbol{\beta}_{k0})(\hat{\boldsymbol{\beta}}_{k} - \boldsymbol{\beta}_{k0}) + \boldsymbol{O}(\sqrt{n_{k}})$$

where

$$egin{aligned} egin{aligned} egin{aligned} A^*_{oldsymbol{eta}_k}(oldsymbol{eta}_{k0}) &= -rac{\partial oldsymbol{U}^*_{oldsymbol{eta}_k}}{\partialoldsymbol{eta}_k}igg|_{oldsymbol{eta}_k=oldsymbol{eta}_k}. \end{aligned}$$

Similarly,

$$\begin{aligned} \boldsymbol{U}_{\boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}_{1},\ldots,\hat{\boldsymbol{\beta}}_{K},\hat{\boldsymbol{\beta}}^{(1)}) &= \boldsymbol{0} = \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\beta}_{10},\ldots,\boldsymbol{\beta}_{K0},\boldsymbol{\beta}_{0}) - \\ & \boldsymbol{B}_{1}(\boldsymbol{\beta}_{10},\ldots,\boldsymbol{\beta}_{K0},\boldsymbol{\beta}_{0})(\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{10}) - \\ & \cdots - \\ & \boldsymbol{B}_{K}(\boldsymbol{\beta}_{10},\ldots,\boldsymbol{\beta}_{K0},\boldsymbol{\beta}_{0})(\hat{\boldsymbol{\beta}}_{K}-\boldsymbol{\beta}_{K0}) - \\ & \boldsymbol{B}(\boldsymbol{\beta}_{10},\ldots,\boldsymbol{\beta}_{K0},\boldsymbol{\beta}_{0})(\hat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}_{0}) + \\ & \boldsymbol{\mathcal{O}}(\sqrt{n}) \end{aligned}$$

where

$$\boldsymbol{B}_{k}(\boldsymbol{\beta}_{10},\ldots,\boldsymbol{\beta}_{K0},\boldsymbol{\beta}_{0})=-\frac{\partial \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{K},\boldsymbol{\beta})}{\partial \boldsymbol{\beta}_{k}}\bigg|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}}$$

S2

for $k = 1, \ldots, K$, and

$$oldsymbol{B}(oldsymbol{eta}_{10},\ldots,oldsymbol{eta}_{K0},oldsymbol{eta}_{0})=-rac{\partialoldsymbol{U}_{oldsymbol{ heta}}(oldsymbol{eta}_{1},\ldots,oldsymbol{eta}_{K},oldsymbol{eta})}{\partialoldsymbol{eta}}igg|_{oldsymbol{ heta}=oldsymbol{ heta}_{0}}.$$

By the law of large numbers, as $n_k \to \infty$, $\mathbf{A}^*_{\boldsymbol{\beta}_k}/n_k$, \mathbf{B}_k/n_k , and \mathbf{B}/n converge to \mathbf{I}^*_{kk} , $\mathbf{I}_{(K+1)k}$, and $\mathbf{I}_{(K+1)(K+1)}$, respectively, for $k = 1, \ldots, K$. Therefore

$$n^{-\frac{1}{2}} \begin{bmatrix} \boldsymbol{U}_{\boldsymbol{\beta}_{1}}^{*}(\boldsymbol{\beta}_{10}) \\ \vdots \\ \boldsymbol{U}_{\boldsymbol{\beta}_{K}}^{*}(\boldsymbol{\beta}_{K0}) \\ \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\theta}_{0}) \end{bmatrix} \approx \sqrt{n} \boldsymbol{P} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} - \boldsymbol{\beta}_{10} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{K} - \boldsymbol{\beta}_{K0} \\ \hat{\boldsymbol{\beta}}^{(1)} - \boldsymbol{\beta}_{0} \end{bmatrix}$$

where

$$P = egin{bmatrix} I_{11}^* & 0 & \dots & 0 & 0 \ dots & 0 & 0 & 0 \ dots & 0 & \dots & I_{KK}^* & 0 \ I_{(K+1)1} & \dots & I_{(K+1)K} & I_{(K+1)(K+1)} \end{bmatrix}$$

Next we show that $\operatorname{cov}(U^*_{\beta_k}, U_{\theta}) \approx 0$. It suffices to show the case of K = 2. Let Data_k to denote data from the k-th site. The covariance

$$\begin{aligned} &\operatorname{cov}(\boldsymbol{U}_{\boldsymbol{\beta}_{1}}^{*},\boldsymbol{U}_{\boldsymbol{\theta}}) = \mathbb{E}\big[\boldsymbol{U}_{\boldsymbol{\beta}_{1}}^{*}(\boldsymbol{\beta}_{1})\boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\theta})\big] = \mathbb{E}\big[\mathbb{E}\big(\boldsymbol{U}_{\boldsymbol{\beta}_{1}}^{*}(\boldsymbol{\beta}_{1})\boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\theta})\big|\mathrm{Data}_{2}\big)\big] \\ &= \mathbb{E}\big[\mathbb{E}\boldsymbol{U}_{\boldsymbol{\beta}_{1}}^{*}(\boldsymbol{\beta}_{1})\mathbb{E}\boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\theta}|\mathrm{Data}_{2})\big] = \mathbf{0} \end{aligned}$$

since $\mathbb{E}U^*_{\beta_1}(\beta_1) = 0$. Similarly the covariance between $U^*_{\beta_2}$ and U_{θ} is 0.

By the Central Limit Theorem, $n^{-1/2}(U^*_{\beta_1}(\beta_{10}), \dots, U^*_{\beta_K}(\beta_{K0}), U_{\theta}(\theta_0)) \xrightarrow{\mathcal{D}} N(0, H)$ where

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{I}_{11}^{*} & \dots & \boldsymbol{I}_{1K}^{*} & \boldsymbol{0} \\ \vdots & \vdots * \vdots & \\ \boldsymbol{I}_{K1}^{*} & \dots & \boldsymbol{I}_{KK}^{*} & \boldsymbol{0} \\ \boldsymbol{0} & \dots & \boldsymbol{0} & \boldsymbol{I}_{(K+1)(K+1)} \end{bmatrix}$$

Therefore $\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} N(0, P^{-1}HP'^{-1})$, and the variance-covariance matrix of $\hat{\beta}^{(1)}$ is the bottom right corner block, which is

$$\Sigma^{(1)} = \mathbf{I}_{(K+1)(K+1)}^{-1} + \mathbf{I}_{(K+1)(K+1)}^{-1} \Big[\sum_{k=1}^{K} \mathbf{I}_{(K+1)k} \mathbf{I}_{kk}^{*-1} \mathbf{I}_{(K+1)k}^{\prime} \Big] \mathbf{I}_{(K+1)(K+1)}^{-1}$$

One can use the observed information to estimate $I_{(K+1)(K+1)}$, $I_{(K+1)k}$ and I_{kk}^* . The corresponding observed information are $I(\hat{\theta}^{(1)}) \triangleq -\partial U_{\theta}(\hat{\theta}^{(1)})/\partial \theta$, $I_k(\hat{\theta}^{(1)}) \triangleq -\partial U_{\theta}(\hat{\theta}^{(1)})/\partial \beta_k$, and

D LI AND OTHERS

 $I_{kk}^*(\hat{\boldsymbol{\beta}}_k) \triangleq -\partial U_{\boldsymbol{\beta}_k}^*(\hat{\boldsymbol{\beta}}_k)/\partial \boldsymbol{\beta}_k$, respectively. Note that the \boldsymbol{I} may not be a symmetric matrix, and one may use the negation of approximated Hessian matrix $-\boldsymbol{H}^*(\hat{\boldsymbol{\theta}}^{(1)})$ as the estimator for $\boldsymbol{I}_{(K+1)(K+1)}$. Thus the variance estimator in (2.6) follows. Note that with the assumption $\boldsymbol{\beta}_{10} = \ldots = \boldsymbol{\beta}_{K0} = \boldsymbol{\beta}_0, \, \boldsymbol{I}_{(K+1)(K+1)} = -\mathbb{E}_{\boldsymbol{\beta}_0}\partial \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}$ is identical to $\boldsymbol{I}^* = -\mathbb{E}_{\boldsymbol{\beta}_0}\partial \boldsymbol{U}_{\boldsymbol{\beta}}^*(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}$, and that $\boldsymbol{I}_{(K+1)k} = -\mathbb{E}_{\boldsymbol{\theta}_0}\partial \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}_k = \mathbf{0}$, since

$$\begin{split} &-\partial \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{\beta}_{0})/\partial \boldsymbol{\beta}'\\ =\sum_{j=1}^{d} \left\{ \frac{\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}}}{\sum_{k=1}^{K} \left[\sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} + \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} (\boldsymbol{\beta} - \boldsymbol{\beta}_{k}) \right]} \right. - \\ & \frac{\sum_{k=1}^{K} \left[\sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} + \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} (\boldsymbol{\beta} - \boldsymbol{\beta}_{k}) \right] \left[\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right]}{\left(\sum_{k=1}^{K} \left[\sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} + \sum_{l \in R_{j}(k)} \boldsymbol{X}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} (\boldsymbol{\beta} - \boldsymbol{\beta}_{k}) \right] \right)^{2}} \right\} \right|_{\boldsymbol{\beta}_{1}=\ldots=\boldsymbol{\beta}_{K}=\boldsymbol{\beta}=\boldsymbol{\beta}_{0}} \\ &= \sum_{j=1}^{d} \left[\frac{\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}}}{\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}}} - \frac{\left[\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right] \left[\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right]'}{\left(\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right)^{2}} \right] \\ &= -\partial \boldsymbol{U}_{\boldsymbol{\beta}}^{*}(\boldsymbol{\beta}_{0})/\partial \boldsymbol{\beta}', \end{split}$$

and

$$\begin{aligned} &-\partial U_{\boldsymbol{\theta}}(\boldsymbol{\beta}_{0})/\partial \boldsymbol{\beta}_{k}' \\ &= \sum_{j=1}^{d} \left\{ \frac{\sum_{l \in R_{j}(k)} \left[\boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} + \left(\boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right) \left(\boldsymbol{\beta} - \boldsymbol{\beta}_{k} \right)' - \boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right] \\ &- \frac{\sum_{k=1}^{K} \left[\sum_{l \in R_{j}(k)} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} + \left(\sum_{l \in R_{j}(k)} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right) \left(\boldsymbol{\beta} - \boldsymbol{\beta}_{k} \right) \right]}{\left(\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \left[\boldsymbol{X}_{l} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} + \boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \left(\boldsymbol{\beta} - \boldsymbol{\beta}_{k} \right) \right] \right) \left(\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \left[\boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \left(\boldsymbol{\beta} - \boldsymbol{\beta}_{k} \right) \right] \right)}{\left(\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} + \left(\sum_{l \in R_{j}(k)} \boldsymbol{X}_{l}' e^{\boldsymbol{\beta}_{k}' \boldsymbol{X}_{l}} \right) \left(\boldsymbol{\beta} - \boldsymbol{\beta}_{k} \right) \right)^{2}} \right\} \right|_{\boldsymbol{\beta}_{1}=\ldots=\boldsymbol{\beta}_{K}=\boldsymbol{\beta}=\boldsymbol{\beta}_{0}} \\ &= \mathbf{0} \end{aligned}$$

Therefore, with $\beta_{10} = \ldots = \beta_{K0} = \beta$, $\Sigma^{(1)} = I^{*-1}(\beta_0)$ as given in (2.5). This completes the proof.

Proof of Theorem 2.2. The proof for Theorem 2.2 follows similar argument by replacing the score functions U_{θ} to S_{θ} , $U_{\beta_k}^*$ to $S_{\beta_k}^*$ and U_{β}^* to S_{β}^* .

S1.2 Robust Sandwich Variance

We derive robust variance estimator for $\hat{\theta}^{(1)}$ for the unstratified model. The estimating equations are equation (2.3) and the estimating equations (2.4) for the K sites. The formula of the proposed robust sandwich variance estimator is $\hat{\Sigma}_{rob}^{(1)} = \mathbf{S}^{(1)'} \mathbf{B}^{(1)} \mathbf{S}^{(1)}$, where

$$\boldsymbol{S}^{(1)} = \begin{bmatrix} -\hat{\boldsymbol{I}}^{-1}(\hat{\boldsymbol{\theta}}^{(1)})\boldsymbol{I}_{1}^{-1}(\hat{\boldsymbol{\theta}}^{(1)})\hat{\boldsymbol{I}}_{11}^{*-1}(\hat{\boldsymbol{\beta}}_{1}) \\ \vdots \\ -\hat{\boldsymbol{I}}^{-1}(\hat{\boldsymbol{\theta}}^{(1)})\boldsymbol{I}_{K}^{-1}(\hat{\boldsymbol{\theta}}^{(1)})\hat{\boldsymbol{I}}_{KK}^{*-1}(\hat{\boldsymbol{\beta}}_{K}) \\ \hat{\boldsymbol{I}}^{-1}(\hat{\boldsymbol{\theta}}^{(1)}) \end{bmatrix}$$

and

$$\boldsymbol{B}^{(1)} = \begin{bmatrix} \sum_{i \in \Omega_1} \omega_i(\hat{\boldsymbol{\beta}}_1)^{\otimes 2} & \dots & \mathbf{0} & \sum_{i \in \Omega_1} \omega_i(\hat{\boldsymbol{\beta}}_1)\nu_i(\hat{\boldsymbol{\beta}}^{(1)})' \\ \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \sum_{i \in \Omega_K} \omega_i(\hat{\boldsymbol{\beta}}_K)^{\otimes 2} & \sum_{i \in \Omega_K} \omega_i(\hat{\boldsymbol{\beta}}_K)\nu_i(\hat{\boldsymbol{\beta}}^{(1)})' \\ \sum_{i \in \Omega_1} \nu_i(\hat{\boldsymbol{\beta}}^{(1)})\omega_i(\hat{\boldsymbol{\beta}}_1)' & \dots & \sum_{i \in \Omega_K} \nu_i(\hat{\boldsymbol{\beta}}^{(1)})\omega_i(\hat{\boldsymbol{\beta}}_K)' & \sum_{i \in \Omega} \nu_i(\hat{\boldsymbol{\beta}}^{(1)})^{\otimes 2} \end{bmatrix}$$

where Ω_k is the index set for site K, and $\omega_i(\hat{\beta}_k) = \delta_i \Big[\mathbf{X}_i - \frac{\sum_{l \in R_i} \mathbf{X}_l e^{\hat{\beta}'_k \mathbf{X}_l}}{\sum_{l \in R_j} e^{\hat{\beta}'_k \mathbf{X}_l}} \Big] - \sum_{j \in D_k} \Big[\frac{I(i \in R_j) e^{\hat{\beta}'_k \mathbf{X}_l}}{\sum_{l \in R_j} e^{\hat{\beta}'_k \mathbf{X}_l}} \Big(\mathbf{X}_i - \frac{\sum_{l \in R_j} \mathbf{X}_l e^{\hat{\beta}'_k \mathbf{X}_l}}{\sum_{l \in R_j} e^{\hat{\beta}'_k \mathbf{X}_l}} \Big) \Big]$, which is the estimates of the independent and identically distributed (iid) term derived as in Lin and Wei (1989), and for $i \in \Omega_k$,

$$\begin{split} \nu_{i}(\hat{\boldsymbol{\beta}}^{(1)}) = & \delta_{i} \bigg[\boldsymbol{X}_{i} - \frac{\sum_{k=1}^{K} \sum_{l \in R_{i}(k)} \boldsymbol{X}_{l} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} + \sum_{k=1}^{K} \sum_{l \in R_{i}(k)} \boldsymbol{X}_{l} \boldsymbol{X}_{l}' e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} (\hat{\boldsymbol{\beta}}^{(1)} - \hat{\boldsymbol{\beta}}_{k})}{\sum_{k=1}^{K} \sum_{l \in R_{i}(k)} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} + \sum_{k=1}^{K} \sum_{l \in R_{i}(k)} \boldsymbol{X}_{l} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} (\hat{\boldsymbol{\beta}}^{(1)} - \hat{\boldsymbol{\beta}}_{k})} \bigg] \\ & - \sum_{j=1}^{d} \bigg[\frac{I(i \in R_{j}) \{ e^{\hat{\boldsymbol{\beta}}_{k} \boldsymbol{X}_{i}} + \boldsymbol{X}_{i} e^{\hat{\boldsymbol{\beta}}_{k} \boldsymbol{X}_{i}} (\hat{\boldsymbol{\beta}}^{(1)} - \hat{\boldsymbol{\beta}}_{k}) \}}{\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} + \sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} (\hat{\boldsymbol{\beta}}^{(1)} - \hat{\boldsymbol{\beta}}_{k})} \times \bigg] \bigg] \\ & \bigg(\boldsymbol{X}_{i} - \frac{\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} + \sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} (\hat{\boldsymbol{\beta}}^{(1)} - \hat{\boldsymbol{\beta}}_{k})}{\sum_{k=1}^{K} \sum_{l \in R_{j}(k)} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} + \sum_{k=1}^{K} \sum_{l \in R_{j}(k)} \boldsymbol{X}_{l} e^{\hat{\boldsymbol{\beta}}_{k}' \boldsymbol{X}_{l}} (\hat{\boldsymbol{\beta}}^{(1)} - \hat{\boldsymbol{\beta}}_{k})} \bigg) \bigg], \end{split}$$

which can be viewed as a Taylor approximation of the iid terms. Each site can calculate its $\sum_{i\in\Omega_k}\omega_i(\hat{\beta}_k)^{\otimes 2}$ and send it to the analysis center. To calculate the last row in the matrix $\boldsymbol{B}^{(1)}$, the center needs to send back to each site the summed terms $\sum_{k=1}^{K}\sum_{l\in R_j(k)}e^{\hat{\beta}'_k\boldsymbol{X}_l}$, $\sum_{k=1}^{K}\sum_{l\in R_j(k)}\boldsymbol{X}'e^{\hat{\beta}'_k\boldsymbol{X}_l}(\hat{\beta}^{(1)}-\hat{\beta}_k)$, and $\sum_{k=1}^{K}\sum_{l\in R_j(k)}\boldsymbol{X}_l \boldsymbol{X}'_l e^{\hat{\beta}'_k\boldsymbol{X}_l}(\hat{\beta}^{(1)}-\hat{\beta}_k)$ for $j=1,\ldots,d$, together with the $\hat{\boldsymbol{\beta}}^{(1)}$. Thus, two additional file transfers are required if one wants to evaluate the robust variance estimator.

D LI AND OTHERS

Summary-level Information S1.3

Table S1 shows the summary level information required for the unstratified and stratified distributed methods.

Table S1: File transfers for unstratified and stratified distributed analysis.

	Unstratified		Stratified	
No. of transfers	3		1	
Transfer 1	(site to center): Information on observed times [†]		(not required)	
Transfer 2	(center to site): Information on observed times †		(not required)	
Transfer 3	Summary-level statistics	count	Summary-level statistics from each site	count
Scalars	$\sum_{l \in R_i(k)} e^{\hat{\beta}'_k X_l}$	d	$\sum_{l \in R_i(k)} e^{\hat{\boldsymbol{\beta}}'_k \boldsymbol{X}_l}$	d_k
Vectors	$\sum_{j \in D_k} X_{i(j)}$	1	$\sum_{j \in D_k} X_{i(j)}$	1
	$\hat{\beta}_k$	1	$\hat{oldsymbol{eta}}_k$	1
	$\sum_{l \in R_j(k)} X_l e^{\hat{m{eta}}'_k X_l}$	d	$\sum_{l \in R_j(k)} X_l e^{\hat{\boldsymbol{\beta}}'_k X_l}$	d_k
	$\sum_{l \in R_j(k)} X_l X_l' X_l e^{\hat{eta}_k' X_l}$ ‡	d	$\sum_{l \in R_j(k)} X_l X'_l X_l e^{\hat{m{eta}}'_k X_l}$	d_k
Matrices	$\sum_{l \in R_j(k)} X_l X_l' e^{\hat{oldsymbol{eta}}_k' X_l}$	d	$\sum_{l \in R_j(k)} oldsymbol{X}_l oldsymbol{X}_l^\prime e^{\hat{oldsymbol{eta}}_k^\prime oldsymbol{X}_l}$	d_k
[†] : There are three m	ethods for transfer 1 and transfer 2:			

(1) Sites send observed original or monotonically transformed failure times to center. Center sends merged times to site.
(2) Sites send observed (failure or censoring) times to center. Center sends the overall ranks of the respective site's observed times and the ranks of all failure times to site.
(3) Sites send observed (failure or censoring) times to center. Center sends the overall ranks of the respective site's observed times and the ranks of all failure times to site.

required for variance estimation

S2. Additional Details and Results for Section 3

Definition of confidence interval overlap statistic (cios)

Cios is a measure of the degree of overlap between confidence intervals obtained based on the same regression fit using the distributed data and the pooled data. Let β_1 be the coefficient (e.g., the log hazard ratio for treatment) in the Cox PH regression model, following Karr and others (2006), the cios for the estimated $\hat{\beta}_1$ is defined as follows. Let $(L_{\text{dist}}, U_{\text{dist}})$ be the 95% confidence interval for the coefficient $\hat{\beta}_1$ obtained from the distributed (stratified or unstratified) regression analysis, and let $(L_{\text{pool}}, U_{\text{pool}})$ be the corresponding interval for the estimate $\hat{\beta}_1$ obtained from the corresponding (stratified or unstratified) regression analysis using the pooled data. Let \hat{f}_{dist} and \hat{f}_{pool} be the estimated posterior distribution of β_1 computed under the distributed regression and the pooled regression, respectively. In our simulation setting, it was a normal distribution with mean $\hat{\beta}_1$ or $\tilde{\beta}_1$ and variance the respective estimated variance. The cios is defined as $\frac{1}{2} \left[\int_{L_{\text{dist}}}^{U_{\text{dist}}} \hat{f}_{\text{pool}}(t) dt + \int_{L_{\text{pool}}}^{U_{\text{pool}}} \hat{f}_{\text{dist}}(t) dt \right]$. By design, $0 \leq \cos \leq 0.95$ with effectively no overlap corresponding to cios = 0 and perfect overlap corresponding to cios = 0.95.

Table S2: Simulation parameter specification.

	K	p	n_k	X distributions (for $X_1;; X_p$)
Table 1, S3, S5	3	3	as shown in tables	B(0.5); N(0,1); B(0.5)
Table 2	3	3	as shown in tables	site1:B(0.5); N(0,1); X_2 +N(0,0.04)
				site2:B(0.5); $5X_1 + N(0, 0.5); N(2, 0.5)$
				site3: Ber(0.9); $1/3X_1 + N(0, 0.04)$; N(-1, 1.5)
Table 3 and Table S4	3	5	(167, 167, 166); (83, 166, 251)	B(0.5); N(0,1); Ber(0.3); N(0, 0.25); Ber(0.7)
	3	7	(167, 167, 166); (83, 166, 251)	B(0.5); N(0,1); Ber(0.3); N(0, 0.25); Ber(0.7); N(0, 0.5); Ber(0.2)
	5	5	$n_k = 100$ for all k; (50, 50, 50, 175, 175)	B(0.5); N(0,1); Ber(0.3); N(0, 0.25); Ber(0.7)
	10	5	$n_k = 50$ for all k; (25, 25, 25, 25, 25, 75, 75, 75, 75, 75)	B(0.5); N(0,1); Ber(0.3); N(0, 0.25); Ber(0.7)
	5	7	$n_k = 100$ for all k; (50, 50, 50, 175, 175)	B(0.5); N(0,1); Ber(0.3); N(0, 0.25); Ber(0.7); N(0, 0.5); Ber(0.2)
	10	7	$n_k = 50$ for all k; (25, 25, 25, 25, 25, 75, 75, 75, 75, 75)	B(0.5); N(0,1); Ber(0.3); N(0, 0.25); Ber(0.7); N(0, 0.5); Ber(0.2)
	all	othe	er settings	X_{odd} : B(0.5); X_{even} : N(0,1)

Table S3: Comparing distributed Cox regression (Dist), pooled Cox regression (Pooled), multivariate meta-analysis (MulV), and univariate meta-analysis (UniV) with simulated data of sample sizes n = 500, 1000, 3000 under two data generating models: unstratified and stratified model. Sizes for the data-contributing sites n_k are different and provided in the table below. Covariates distributions for all the data-contributing sites are the same. True log HR value is $\beta_{01} = 1/3$. Number of replications = 10000.

		Data Ge	nerating	Model: ur	stratified				Data G	enerating	Model: st	ratified	
Method	Unstr	atified	Stra	tified	Meta-A	nalysis		Unstr	atified	Strat	ified	Meta-A	nalysis
	Pooled	Dist	Pooled	Dist	MulV	UniV		Pooled	Dist	Pooled	Dist	MulV	UniV
		K = 3	$n_k = (83)$	8, 167, 250); $p = 3$				K = 3;	$n_k = (83)$	167, 250)	; $p = 3$	
bias	0.0020	0.0135	0.0019	0.0138	0.0011	0.0032	bias	-0.0223	-0.0113	0.0020	0.0140	0.0013	0.0034
cr^{1}	0.9490	0.9532	0.9524	0.9530	0.9529	0.9505	cr^{1}	0.9414	0.9648	0.9491	0.9514	0.9499	0.9501
mae^2	0.0789	0.0809	0.0800	0.0822	0.0798	0.0808	mae^2	0.0827	0.0821	0.0809	0.0830	0.0807	0.0818
$cios^3$	0.9500	0.9450	0.9471	0.9417	0.9471	0.9453	$cios^3$	0.9215	0.9261	0.9500	0.9452	0.9500	0.9483
sse^4	0.0991	0.1007	0.1004	0.1023	0.1002	0.1014	sse	0.1011	0.1022	0.1014	0.1032	0.1011	0.1024
ese^5	0.0992	0.1015	0.1005	0.1038	0.1004	0.1011	ese	0.1000	0.1025	0.1015	0.1045	0.1014	0.1021
rse^{6}	0.0984	0.1029					rse	0.0999	0.1113				
		K = 3;	$n_k = (16)^{-1}$	7, 333, 500); p = 3		$K = 3; n_k = (167, 333, 500); p = 3$						
bias	0.0010	0.0065	0.0009	0.0066	0.0006	0.0017	bias	-0.0241	-0.0180	0.0009	0.0067	0.0006	0.0016
cr	0.9548	0.9551	0.9537	0.9530	0.9539	0.9531	cr	0.9359	0.9613	0.9543	0.9541	0.9544	0.9547
mae	0.0548	0.0553	0.0552	0.0558	0.0551	0.0554	mae	0.0592	0.0580	0.0557	0.0563	0.0556	0.0560
cios	0.9500	0.9478	0.9484	0.9463	0.9484	0.9476	cios	0.9153	0.9227	0.9500	0.9479	0.9500	0.9492
sse	0.0689	0.0693	0.0694	0.0699	0.0693	0.0697	sse	0.0703	0.0706	0.0701	0.0706	0.0700	0.0704
ese	0.0698	0.0705	0.0703	0.0711	0.0702	0.0705	ese	0.0704	0.0712	0.0710	0.0717	0.0709	0.0712
rse	0.0695	0.0709					rse	0.0706	0.0772				
		K = 3; r	$n_k = (500)$,1000,150	(00); p = 3				K = 3; n	$_{k} = (500,$	1000, 150	0); p = 3	
bias	0.0001	0.0018	0.0000	0.0018	-0.0001	0.0002	bias	-0.0250	-0.0221	-0.0001	0.0017	-0.0002	0.0001
cr	0.9492	0.9487	0.9488	0.9476	0.9488	0.9486	cr	0.9051	0.9391	0.9491	0.9493	0.9489	0.9492
mae	0.0321	0.0322	0.0322	0.0323	0.0322	0.0323	mae	0.0385	0.0372	0.0324	0.0325	0.0324	0.0325
cios	0.9500	0.9494	0.9494	0.9488	0.9494	0.9491	cios	0.8854	0.8995	0.9500	0.9494	0.9500	0.9497
sse	0.0404	0.0404	0.0405	0.0406	0.0405	0.0406	sse	0.0408	0.0408	0.0407	0.0408	0.0407	0.0408
ese	0.0401	0.0403	0.0402	0.0404	0.0402	0.0403	ese	0.0405	0.0407	0.0406	0.0408	0.0406	0.0407
rse	0.0401	0.0403					rse	0.0407	0.0441				

cr¹: coverage rate; mae²: mean absolute error; cios³: confidence interval overlap statistics

sse⁴: sample standard error; ese⁵: estimated standard error; rse⁶: robust standard error estimate

Table S4: Comparing distributed Cox regression, pooled Cox regression, and meta-analyses with simulated data for a varying number \mathcal{G} of sites K, site sizes n_k , and number of covariates p with data generated from the unstratified Cox PH models. Sizes for the contributing-sites n_k are provided in the table below. Covariate distributions for all the data-contributing sites are the same. True log HR for treatment is $\beta_{01} = 1/p$. Number of replications = 10000.

	Unstra	atified	Strat	ified	Meta-A	nalysis		Unstra	tified	Strat	ified	Meta-A	nalysis		Unstra	atified	Strat	ified	Meta-A	nalysis
	Pooled	Dist	Pooled	Dist	MulV	UniV		Pooled	Dist	Pooled	Dist	MulV	UniV		Pooled	Dist	Pooled	Dist	MulV	UniV
		$K = 3, n_k$	= (20, 20)	(0, 20), p =	$1, \beta_{01} = 1$			ŀ	$X = 3, n_k$	=(80, 80,	80), p = 2	$2, \beta_{01} = 1/2$	/2	-	K	$= 3, n_k =$	(166, 167)	(167), p =	$7, \beta_{01} = 1$	1/7
bias	-0.0371	0.0558	-0.0471	0.0452	-0.0668	-0.0668	bias	0.0031	0.0296	0.0033	0.0299	0.0004	0.0031	bias	0.0003	0.0110	0.0000	0.0108	-0.0005	0.0023
cr^1	0.9631	0.9676	0.9651	0.9803	0.9634	0.9634	cr	0.9509	0.9537	0.9500	0.9541	0.9506	0.9507	cr	0.9498	0.9615	0.9512	0.9563	0.9518	0.9486
mae^2	0.2345	0.2403	0.2473	0.2501	0.2485	0.2485	mae	0.1211	0.1256	0.1241	0.1286	0.1234	0.1247	mae	0.0780	0.0802	0.0790	0.0812	0.0788	0.0823
$cios^3$	0.9500	0.9243	0.9358	0.9147	0.9343	0.9343	cios	0.9500	0.9414	0.9440	0.9363	0.9440	0.9425	cios	0.9500	0.9420	0.9470	0.9406	0.9469	0.9408
sse^4	0.2914	0.2932	0.3045	0.3052	0.3027	0.3027	sse	0.1520	0.1549	0.1557	0.1588	0.1549	0.1565	sse	0.0977	0.0997	0.0989	0.1011	0.0986	0.1030
ese^5	0.3147	0.3532	0.3328	0.3846	0.3335	0.3335	ese	0.1515	0.1564	0.1553	0.1612	0.1551	0.1561	ese	0.0976	0.1016	0.0988	0.1033	0.0987	0.1010
rse^{6}	0.3052	0.3526					rse	0.1495	0.1588					rse	0.0961	0.1058				
		$K = 3, n_k$	= (40, 40)	(0, 40), p =	$1, \beta_{01} = 1$			K	$= 3, n_k =$	(100, 100)	, 100), p =	$2, \beta_{01} =$	1/2		K	$= 3, n_k =$	(83, 166,	251), p =	$7, \beta_{01} = 1$	/7
bias	0.0024	0.0568	0.0025	0.0575	-0.0084	-0.0084	bias	0.0008	0.0215	0.0008	0.0217	-0.0014	0.0010	bias	-0.0005	0.0098	-0.0008	0.0100	-0.0013	0.0008
cr	0.9561	0.9546	0.9570	0.9614	0.9577	0.9577	cr	0.9466	0.9481	0.9485	0.9486	0.9481	0.9477	cr	0.9507	0.9608	0.9493	0.9554	0.9494	0.9462
mae	0.1722	0.1830	0.1780	0.1891	0.1767	0.1767	mae	0.1103	0.1134	0.1131	0.1161	0.1126	0.1137	mae	0.0775	0.0795	0.0782	0.0806	0.0781	0.0814
cios	0.9500	0.9338	0.9417	0.9268	0.9412	0.9412	cios	0.9500	0.9435	0.9451	0.9393	0.9451	0.9438	cios	0.9500	0.9417	0.9471	0.9383	0.9470	0.9415
sse	0.2161	0.2220	0.2230	0.2294	0.2212	0.2212	sse	0.1376	0.1400	0.1408	0.1433	0.1402	0.1414	sse	0.0973	0.0992	0.0984	0.1007	0.0981	0.1023
ese	0.2201	0.2344	0.2276	0.2464	0.2277	0.2277	ese	0.1351	0.1383	0.1379	0.1416	0.1377	0.1385	ese	0.0976	0.1022	0.0988	0.1059	0.0987	0.1010
rse	0.2163	0.2358					rse	0.1336	0.1399					rse	0.0962	0.1062				
		$K = 3, n_k$	=(50, 50)	(0, 50), p =	$1, \beta_{01} = 1$			ŀ	$1 = 3, n_k$	= (50, 50,	50), p = 3	$\beta_{,\beta_{01}} = 1/$	3		K =	$= 5, n_k =$	(20, 20, 20)	, 20, 20), 1	$p = 1, \beta_{01}$	= 1
bias	0.0062	0.0497	0.0055	0.0496	-0.0029	-0.0029	bias	-0.0079	0.0291	-0.0088	0.0286	-0.0119	-0.0070	bias	-0.0301	0.0850	-0.0378	0.0828	-0.0627	-0.0627
cr	0.9530	0.9531	0.9520	0.9550	0.9525	0.9525	cr	0.9561	0.9688	0.9580	0.9689	0.9596	0.9554	cr	0.9635	0.9740	0.9637	0.9873	0.9594	0.9594
mae	0.1561	0.1651	0.1602	0.1694	0.1590	0.1590	mae	0.1431	0.1482	0.1484	0.1538	0.1474	0.1537	mae	0.1811	0.1972	0.1920	0.2089	0.1939	0.1939
CIOS	0.9500	0.9371	0.9432	0.9315	0.9428	0.9428	CIOS	0.9500	0.9318	0.9414	0.9259	0.9413	0.9353	CIOS	0.9500	0.9075	0.9320	0.8854	0.9295	0.9295
sse	0.1958	0.2019	0.2018	0.2081	0.2002	0.2002	sse	0.1795	0.1841	0.1858	0.1908	0.1844	0.1920	sse	0.2236	0.2287	0.2363	0.2421	0.2334	0.2334
ese	0.1961	0.2057	0.2016	0.2139	0.2016	0.2016	ese	0.1851	0.2021	0.1917	0.2132	0.1914	0.1960	ese	0.2406	0.2848	0.2580	0.3426	0.2587	0.2587
rse	0.1934	0.2068	(20, 20)	20)	0 1	0	rse	0.1809	0.2112	(100 100	100)		1 /0	rse	0.2353	0.2887	(10 10 10	10 10)	1.0	1
1.1	0.0559	$A = 3, n_k = 0.0262$	= (20, 20, 0.079)	20), p = 2	$\beta_{01} = 1/$	2 0.0000	1.1	K 0.000C	$= 3, n_k =$	(100, 100	(100), p =	$3, \beta_{01} =$	1/3	1.1	K =	$= 5, n_k =$	(10, 10, 10	1, 10, 10), 1	$p = 1, \beta_{01}$	= 1
Dias	-0.0558	0.0303	-0.0720	0.0149	-0.0808	-0.0828	Dias	0.0006	0.0200	0.0005	0.0203	-0.0009	0.0030	Dias	-0.1224	0.0751	-0.1059	0.0280	-0.2034	-0.2034
cr	0.9625	0.9752	0.9634	0.9844	0.9042	0.9654	cr	0.9474	0.9511	0.9459	0.9491	0.9475	0.9440	cr	0.9530	0.9751	0.9525	0.9921	0.9525	0.9525
mae	0.2308	0.2370	0.2512	0.2480	0.2487	0.2007	mae	0.1043	0.1078	0.1003	0.1100	0.1058	0.1080	mae	0.2598	0.2519	0.2890	0.2589	0.2964	0.2904
cios	0.9500	0.9209	0.9517	0.9101	0.9512	0.9202	cios	0.9500	0.9410	0.9452	0.9574	0.9451	0.9421 0.1254	cios	0.9500	0.0032	0.9200	0.0077	0.9156	0.9156
080	0.2320	0.2323	0.3305	0.3073	0.3305	0.3133	060	0.1303	0.1342	0.1355	0.1379	0.1320	0.1394	000	0.3010	0.5748	0.3847	0.5100	0.3101	0.3101
reo	0.3147	0.3651	0.0000	0.5571	0.0000	0.0404	ree	0.1203	0.1355	0.1313	0.1072	0.1313	0.1525	ree	0.3434	0.4525	0.0047	0.0310	0.0032	0.0032
130	0.0010	(-3 n)	- (60, 60	60) n - 5	$\beta_{\alpha i} = 1/$	0	150	0.1215 K	- 2 n	- (83-166	251) n -	$5 \beta_{ee} = 1$	1/5	150	0.0010 K -	- 5 n	(30,30,30	30 30)	$n = 1 \beta_{out}$	- 1
hias	0.0022	0.0377	0.0015	0.0376	-0.0023	0 0007	hias	0.0007	-0.0117	0.0006	251), p = 0.0121	0, 000 = 1	0.0026	hias	-0.0052	0.0779	-0.0064	0.0818	-0.0237	-0.0237
cr	0.9537	0.9546	0.0513	0.9573	0.9548	0.9522	cr	0.0007	0.9564	0.9488	0.9533	0.9500	0.9484	cr	0.0002	0.0629	0.9577	0.0618	0.9586	0.9586
mae	0.1417	0.1482	0.3555	0.1526	0.1450	0 1471	mae	0.0771	0.0793	0.0778	0.0804	0.0776	0.0794	mae	0.1505	0.1697	0.1579	0.1787	0.1573	0.1573
cios	0.9500	0.9384	0.9423	0.9318	0.9422	0.9403	cios	0.9500	0.9421	0.9471	0.9388	0.9471	0.9435	cios	0.9500	0.9175	0.9375	0.9007	0.9360	0.9360
sse	0.1766	0.1808	0.1819	0.1866	0.1808	0.1835	sse	0.0972	0.0993	0.0981	0.1008	0.0978	0.1002	sse	0.1888	0.1961	0.1982	0.2067	0.1961	0.1961
ese	0.1759	0.1842	0.1816	0.1920	0.1812	0.1828	ese	0.0968	0.1010	0.0979	0.1043	0.0978	0.0993	ese	0.1958	0.2199	0.2059	0.2521	0.2063	0.2063
rse	0.1729	0.1878	511010	5.1020	5.1012	5.1020	rse	0.0957	0.1042	5.00.0	5.10.10	5.00.0	5.0000	rse	0.1928	0.2237	0.2000		5.2000	0.2000
100	5.1.20	511010					100	510001	0.1010					100	511010	5.2201		(to be con	tinued)

cr¹: coverage rate; mae²: mean absolute error; cios³: confidence interval overlap statistics

 $\mathrm{sse}^4\mathrm{:}\ \mathrm{sample}\ \mathrm{standard}\ \mathrm{error};\ \mathrm{ese}^5\mathrm{:}\ \mathrm{estimated}\ \mathrm{standard}\ \mathrm{error};\ \mathrm{rse}^6\mathrm{:}\ \mathrm{robust}\ \mathrm{standard}\ \mathrm{error}\ \mathrm{estimate}$

(contr	inued fro	m the p	revious 1	age)																
	Unstra	atified	Strat	ified	Meta-Analysis			Unstr	atified	Stratified		Meta-Analysis			Unstratified		Stratified		Meta-Analysis	
	Pooled	Dist	Pooled	Dist	MulV	UniV		Pooled	Dist	Pooled	Dist	MulV	UniV		Pooled	Dist	Pooled	Dist	MulV	UniV
		$K = 5, n_{i}$	k = (40, 40)	0, 40, 40, 4	$(0), p = 1, \beta_{01} = 1$			-	$K = 5, n_{t}$	k = (80, 80, 30)	80, 80, 80)	$, p = 2, \beta_{01} = 1/2$		-	$K = 10, n_k$	= (25, 25)	5, 25, 25, 25, 25,	75, 75, 75,	$75, 75), p = 3, \beta_{01}$	= 1/3
bias	0.0003	0.0647	-0.0009	0.0674	-0.0135	-0.0135	bias	0.0027	0.0343	0.0026	0.0354	-0.0008	0.0024	bias	-0.0003	0.0457	-0.0006	0.0506	-0.0043	0.0029
cr^1	0.9527	0.9529	0.9516	0.9602	0.9532	0.9532	cr	0.9520	0.9505	0.9504	0.9489	0.9516	0.9514	cr	0.9532	0.9685	0.9502	0.9752	0.9540	0.9467
mae^2	0.1337	0.1480	0.1386	0.1552	0.1377	0.1377	mae	0.0936	0.0991	0.0962	0.1021	0.0956	0.0970	mae	0.0784	0.0903	0.0825	0.0967	0.0814	0.0862
$cios^3$	0.9500	0.9240	0.9402	0.9112	0.9391	0.9391	cios	0.9500	0.9360	0.9427	0.9283	0.9425	0.9409	cios	0.9500	0.9093	0.9382	0.8661	0.9380	0.9300
sse^4	0.1674	0.1743	0.1738	0.1824	0.1719	0.1719	sse	0.1170	0.1200	0.1205	0.1239	0.1198	0.1215	sse	0.0983	0.1033	0.1033	0.1100	0.1019	0.1082
ese^5	0.1690	0.1838	0.1758	0.2035	0.1760	0.1760	ese	0.1166	0.1216	0.1202	0.1274	0.1200	0.1209	ese	0.0992	0.1152	0.1040	0.1677	0.1038	0.1070
rse^{6}	0.1670	0.1864					\mathbf{rse}	0.1156	0.1246					rse	0.0982	0.1229				
		$K = 5, n_{i}$	k = (50, 50)	0, 50, 50, 5	$(0), p = 1, \beta_{01} = 1$			K	$= 5, n_k =$	(100, 100, 1)	00, 100, 1	$(00), p = 2, \beta_{01} = 1$	1/2		$K = 10, n_k$	= (50, 50)	0, 50, 50, 50, 50,	50, 50, 50,	$50, 50), p = 5, \beta_{01}$	= 1/5
bias	0.0038	0.0565	0.0031	0.0589	-0.0069	-0.0069	bias	0.0035	0.0283	0.0034	0.0290	0.0008	0.0035	bias	-0.0075	0.0333	-0.0083	0.0381	-0.0113	-0.0068
cr	0.9540	0.9504	0.9531	0.9562	0.9541	0.9541	cr	0.9505	0.9499	0.9491	0.9484	0.9494	0.9484	cr	0.9568	0.9923	0.9551	0.9916	0.9571	0.9434
mae	0.1190	0.1314	0.1231	0.1370	0.1220	0.1220	mae	0.0838	0.0884	0.0855	0.0904	0.0850	0.0860	mae	0.0758	0.0852	0.0798	0.0922	0.0790	0.0888
cios	0.9500	0.9281	0.9420	0.9176	0.9412	0.9412	cios	0.9500	0.9391	0.9439	0.9327	0.9438	0.9424	cios	0.9500	0.8895	0.9383	0.8563	0.9379	0.9211
sse	0.1497	0.1561	0.1546	0.1628	0.1530	0.1530	sse	0.1048	0.1074	0.1072	0.1102	0.1066	0.1079	sse	0.0948	0.1013	0.0995	0.1091	0.0981	0.1107
ese	0.1509	0.1610	0.1560	0.1744	0.1561	0.1561	ese	0.1041	0.1073	0.1067	0.1112	0.1065	0.1072	ese	0.0967	0.1253	0.1013	0.1693	0.1012	0.1082
rse	0.1495	0.1629				-	rse	0.1033	0.1096					rse	0.0954	0.1412				
	1	$X = 5, n_k$	=(40, 40,	40, 40, 40	$p), p = 2, \beta_{01} = 1/2$	2		K	$= 5, n_k =$	(100, 100, 1)	00, 100, 1	$(00), p = 3, \beta_{01} =$	1/3		$K = 10, n_k$	= (25, 25)	5, 25, 25, 25, 25,	75, 75, 75,	$(75, 75), p = 5, \beta_0$	= 1/5
bias	-0.0055	0.0551	-0.0084	0.0557	-0.0154	-0.0112	bias	0.0020	0.0252	0.0018	0.0262	0.0001	0.0043	bias	-0.0023	0.0367	-0.0033	0.0384	-0.0055	-0.0015
cr	0.9498	0.9633	0.9520	0.9671	0.9542	0.9514	cr	0.9520	0.9568	0.9512	0.9532	0.9521	0.9496	cr	0.9449	0.9780	0.9439	0.9870	0.9429	0.9319
mae	0.1320	0.1437	0.1391	0.1515	0.1378	0.1402	mae	0.0792	0.0841	0.0809	0.0865	0.0805	0.0828	mae	0.0794	0.0912	0.0827	0.0950	0.0811	0.0912
CIOS	0.9500	0.9237	0.9365	0.9085	0.9362	0.9329	cios	0.9500	0.9366	0.9443	0.9302	0.9442	0.9401	CIOS	0.9500	0.8924	0.9391	0.8465	0.9386	0.9220
sse	0.1654	0.1707	0.1738	0.1800	0.1715	0.1755	sse	0.0990	0.1021	0.1012	0.1050	0.1007	0.1036	sse	0.1002	0.1081	0.1046	0.1132	0.1026	0.1157
ese	0.1664	0.1834	0.1756	0.2055	0.1752	0.1780	ese	0.0992	0.1043	0.1016	0.1089	0.1015	0.1029	ese	0.0967	0.1239	0.1012	0.1885	0.1011	0.1077
rse	0.1635	0.1904	(00.00	00.00.00	0.0.1	0	rse	0.0984	0.1080	(50 50 5			0	rse	0.0955	0.1388			50.50) 5.0	1 / 7
1.1	0.0450	$1 = 5, n_k$	=(20, 20, 0.0570)	20, 20, 20	$p = 2, \beta_{01} = 1/2$	2	1	0.0016	$1 = 5, n_k$	= (50, 50, 50)	J, 175, 175	$p), p = 3, \beta_{01} = 1/2$	3	1.1	$K = 10, n_k$	= (50, 50)	J, 50, 50, 50,	50, 50, 50,	$(50, 50), p = 7, \beta_{01}$	= 1/7
bias	-0.0450	0.0608	-0.0570	0.0000	-0.0609	-0.0668	Dias	0.0010	0.0238	0.0017	0.0201	0.0000	0.0035	Dias	-0.0004	0.0314	-0.0078	0.0338	-0.0096	-0.0130
cr	0.9013	0.9777	0.9022	0.9884	0.9049	0.9652	cr	0.9519	0.9978	0.9516	0.9003	0.9517	0.9503	cr	0.9339	0.9839	0.9387	0.9887	0.9371	0.9419
niae	0.1650	0.1923	0.2000	0.2037	0.1977	0.2050	niae	0.0795	0.0002	0.0808	0.0001	0.0604	0.0620	niae	0.0510	0.0694	0.0000	0.0930	0.0823	0.0964
000	0.9900	0.9009	0.9202	0.0020	0.9257	0.9150	cios	0.9000	0.3300	0.3445	0.9200	0.3444	0.3410	000	0.3300	0.0055	0.3363	0.1149	0.3373	0.3032
sse	0.2244	0.2294	0.2426	0.2471	0.2374	0.2404	ose	0.0992	0.1018	0.1013	0.1050	0.1008	0.1034	sse	0.1035	0.1095	0.1038	0.1142	0.1038	0.1223
ree	0.2363	0.2000	0.2010	0.3470	0.2010	0.2097	rso	0.0992	0.1052	0.1015	0.1175	0.1015	0.1028	ree	0.0975	0.1279	0.1022	0.1072	0.1022	0.1155
150	0.2010	V = 5 m	- (60, 60	60 60 60	$n = 2 \beta_{-1} = 1/2$	0	ise	0.0504 K	- 5 m	(100 100 1	00 100 1	$(0) n = 5 \beta_{-1} = 1$	1/5	150	K = 10 m	- (25.25	5 95 95 95	75 75 75	75 75) $n = 7 \beta_{-}$	-1/7
hine	0.0002	$1 = 0, n_k$ 0.0499	- (00,00,	0.0447	$p, p = 2, p_{01} = 1/$	0.0004	hine	0.0005	-0.0221	0.0000	0.0232	$(0, p), p = 0, p_{01} = 0$	0.0040	bioc	$n = 10, n_k$ 0.0162	-(20, 20) 0.0217	0.0163	0.0104	$(10, 10), p = 1, p_{01}$	0.0212
er	0.9504	0.0422	0.0510	0.0447	0.0035	0.0504	or	0.0003	0.0221	0.0000	0.0202	0.9500	0.0040	or	0.0102	1 0000	0.0103	1 0000	0.0405	0.0212
mae	0.3304	0.3304	0.3313	0.5505	0.3330	0.3308	mae	0.9498	0.9090	0.9495	0.9007	0.9500	0.0848	man	0.0747	0.0872	0.0828	0.0050	0.0797	0.0017
cios	0.9500	0.0314	0.9406	0.0202	0.9404	0.9378	cios	0.9500	0.0287	0.0000	0.0237	0.0000	0.0360	cios	0.9500	0.8892	0.0020	0.8503	0.9404	0.0186
SSP	0.1351	0 1392	0 1405	0 1455	0.1393	0 1422	sse	0.0982	0.1022	0.1006	0 1055	0.1000	0.1058	880	0.0959	0.1050	0.1036	0.1119	0 1001	0 1143
ese	0.1351	0.1436	0.1404	0.1543	0.1401	0.1416	ese	0.0967	0.1065	0.0990	0.1136	0.0989	0.1019	ese	0.0975	0.1256	0.1021	0.1721	0.1021	0.1125
rse	0 1335	0 1482	5.1 104	5.1010	0.1.101		rse	0.0957	0 1147	0.0000	5.1100	0.0000	5.1010	rse	0.0956	0 1431	0.1021	011121	0.1021	5.1120
	0.1000	0.1402		1.7	: 3 . 0.1		1.50	0.0001	0.1141					150	0.0000	0.1401				

D LI AND OTHERS

Table S5. Comparing distributed Cox regression with different orders of Taylor expansion with data generated from the unstratified Cox PH models. Sample size n = 3000. Taylor 1-4 represents the first-order to fourth-order Taylor expansion. The sizes of the data-contributing sites are approximately the same. Covariates distributions of the data-contributing sites are the same. The true log HR for treatment $\beta_{01} = 1/3$. Number of replications = 10000.

Method	Unstratified Pooled		Unstr Distri	atified buted		Stratified Pooled		Stratified I	Distributed	
		Taylor 1	Taylor 2	Taylor 3	Taylor 4		Taylor 1	Taylor 2	Taylor 3	Taylor 4
bias	0.0035	0.0146	0.0029	0.0037	0.0034	0.0033	0.0145	0.0025	0.0035	0.0033
cr^1	0.9542	0.9556	0.9457	0.9521	0.9516	0.9523	0.9530	0.9525	0.9522	0.9523
mae^2	0.0785	0.0805	0.0785	0.0785	0.0785	0.0796	0.0816	0.0796	0.0796	0.0796
$cios^3$	0.9500	0.9455	0.9493	0.9498	0.9498	0.9470	0.9429	0.9469	0.9470	0.9470
sse^4	0.0985	0.0999	0.0984	0.0985	0.0985	0.0999	0.1015	0.0999	0.0999	0.0999
ese^5	0.0992	0.1012	0.0994	0.0992	0.0992	0.1005	0.1026	0.1006	0.1005	0.1005
rse^{6}	0.0984	0.1025	0.0963	0.0985	0.0983					

¹: coverage rate; ²: mean absolute error; ³: confidence interval overlap statistics

sse⁴: sample standard error; ese⁵: estimated standard error; rse⁶: robust standard error estimate

S3. Additional Details and Results for Section 4

Table S6. Comparing distributed Cox regression, pooled Cox regression, and meta-analyses with real data under partition 1. Results are presented as logHR with estimated standard error in brackets.

	Unstratified	Unstratified	Stratified	Stratified	Univariate	Multivariate
	Pooled	Distributed	Pooled	Distributed	Meta-Analysis	Meta-Analysis
treatment	-0.359 (0.1007)	-0.366(0.1043)	-0.359(0.1007)	-0.366(0.1045)	-0.361(0.1012)	-0.362(0.1011)
age	-0.165(0.0541)	-0.170(0.0569)	-0.165(0.0541)	-0.170 (0.0570)	-0.163(0.0541)	-0.167 (0.0540)
comorbidity score	0.137(0.0304)	0.144(0.0334)	0.137(0.0304)	0.144(0.0333)	0.131(0.0310)	0.142(0.0307)
diagnosis of cancer	-0.226(0.1931)	-0.164(0.2151)	-0.224(0.1930)	-0.164(0.2143)	-0.190(0.1943)	-0.182(0.1938)
depression	-0.254(0.1110)	-0.243(0.1202)	-0.255(0.1110)	-0.244(0.1203)	-0.242(0.1117)	-0.248(0.1115)
diabetes	-0.049(0.1103)	-0.042(0.1152)	-0.048(0.1103)	-0.041(0.1151)	-0.051(0.1108)	-0.050 (0.1106)
eating disorder	0.097(0.1269)	0.094(0.1312)	0.098(0.1269)	0.095(0.1312)	0.105(0.1273)	0.101(0.1272)
gastroesophageal reflux disease	0.322(0.1049)	0.324(0.1056)	0.323(0.1049)	0.325(0.1057)	0.313(0.1054)	0.323(0.1052)
hypertension	0.180(0.1183)	0.185(0.1166)	0.180(0.1183)	0.184(0.1166)	0.176(0.1185)	0.184(0.1182)
non-alcoholic fatty liver disease	-0.264(0.1280)	-0.276(0.1336)	-0.264(0.1280)	-0.276(0.1336)	-0.236(0.1285)	-0.268(0.1280)
number of emergency department visits	-0.500 (0.2305)	-0.510 (0.2469)	-0.496 (0.2306)	-0.507 (0.2463)	-0.511(0.2347)	-0.524 (0.2338)
number of unique generic medications.	0.714(0.2189)	0.736(0.2352)	0.710(0.2189)	0.732(0.2349)	0.733(0.2241)	0.748(0.2232)

Table S7.	Comp	aring disti	ribute	d Cox	reg	ression, p	oole	d Cox 1	regress	sion, a	and n	neta-anal	yses w	rith
real data	${\rm under}$	partition	2. Re	sults a	are	presented	l as	$\log HR$	with	estim	ated	standard	error	· in
brackets.														

	Unstratified	Unstratified	Stratified	Stratified	Univariate	Multivariate
	Pooled	Distributed	Pooled	Distributed	Meta-Analysis	Meta-Analysis
treatment	-0.359 (0.1007)	-0.361 (0.1063)	-0.338 (0.1240)	-0.353(0.1272)	-0.318 (0.1302)	-0.347 (0.1210)
age	-0.165(0.0541)	-0.167(0.0587)	-0.157(0.0616)	-0.163(0.0649)	-0.139(0.0656)	-0.154(0.0612)
comorbidity score	0.137(0.0304)	0.139(0.0342)	0.132(0.0355)	0.139(0.0379)	0.124(0.0380)	0.133(0.0348)
diagnosis of cancer	-0.226 (0.1931)	-0.209 (0.2071)	-0.216(0.1974)	-0.207 (0.2111)	-0.129(0.2027)	-0.184(0.1978)
depression	-0.254 (0.1110)	-0.245 (0.1171)	-0.241 (0.1206)	-0.239(0.1257)	-0.168 (0.1270)	-0.231(0.1209)
diabetes	-0.049(0.1103)	-0.059(0.1177)	-0.049(0.1103)	-0.060(0.1179)	-0.036(0.1109)	-0.046(0.1100)
eating disorder	0.097(0.1269)	0.099(0.1351)	0.090(0.1288)	0.094(0.1366)	0.075(0.1296)	0.104(0.1281)
gastroesophageal reflux disease	0.322(0.1049)	0.313(0.1068)	0.304(0.1246)	0.303(0.1236)	0.239(0.1336)	0.298(0.1245)
hypertension	0.180(0.1183)	0.203(0.1281)	0.174(0.1214)	0.203(0.1308)	0.082(0.1304)	0.171(0.1219)
non-alcoholic fatty liver disease	-0.264 (0.1280)	-0.267(0.1475)	-0.254(0.1347)	-0.266(0.1532)	-0.155(0.1495)	-0.227(0.1349)
number of emergency department visits	-0.500(0.2305)	-0.497(0.2395)	-0.518(0.2364)	-0.508(0.2444)	-0.580(0.2413)	-0.522(0.2375)
number of unique generic medications.	0.714(0.2189)	0.705(0.2267)	0.723(0.2198)	0.713(0.2271)	0.731(0.2252)	0.725(0.2215)

Table S8: Covariate distribution of the sites under two partitions. Results are presented as mean with standard deviation in brackets.

		partition 1			partition 2	
	Site 1	Site 2	Site 3	Site 1	Site 2	Site 3
treatment	0.67(0.470)	0.68(0.468)	0.67(0.470)	0.85(0.359)	0.59(0.492)	0.35(0.478)
age	0.00(0.990)	0.01(1.006)	-0.01(1.002)	0.14(0.955)	-0.14(1.007)	-0.13(1.053)
comorbidity score	0.65(1.480)	0.66(1.466)	0.64(1.484)	0.25(1.056)	0.61(1.320)	1.76(2.016)
diagnosis of cancer	0.08(0.273)	0.08(0.272)	0.08(0.268)	0.10(0.297)	0.06(0.242)	0.06(0.238)
depression	0.29(0.456)	0.32(0.467)	0.32(0.466)	0.36(0.481)	0.26(0.441)	0.26(0.441)
diabetes	0.35(0.478)	0.36(0.480)	0.36(0.481)	0.32(0.467)	0.35(0.478)	0.48(0.500)
eating disorder	0.17(0.375)	0.16(0.371)	0.18(0.382)	0.13(0.341)	0.20(0.401)	0.22(0.412)
gastroesophageal reflux disease	0.59(0.492)	0.57(0.494)	0.58(0.494)	0.38(0.486)	0.74(0.441)	0.84(0.371)
hypertension	0.65(0.476)	0.66(0.475)	0.66(0.474)	0.61(0.487)	0.67(0.471)	0.75(0.432)
non-alcoholic fatty liver disease	0.21(0.409)	0.20(0.402)	0.19(0.395)	0.22(0.415)	0.18(0.388)	0.18(0.385)
number of emergency department visits	0.01(1.003)	0.00(0.988)	-0.01(1.009)	-0.40(0.762)	0.10(0.881)	0.88(1.127)
number of unique generic medications	0.00(0.999)	0.00(0.992)	-0.01(1.008)	-0.40(0.740)	0.09(0.875)	0.89(1.164)

Fig. S1: Data application: Plots of distribution of treatment, age, co-morbidity score, and number of generic medications and plots of baseline hazard estimates with two data partitions. First column: partition 1. Second column: partition 2.

REFERENCES

S4. Illustration Using A Simulated Data Set

This section presents the analysis results from a simulated data set. A detailed illustration for how

to use the code to reproduce it can be found on https://github.com/dli-stats/distributed_

cox_paper_repro.

Table S9: Simulated data analysis for illustrative purpose: comparing distributed Cox regression, pooled Cox regression, and meta-analyses withreal data. Results are presented as logHR with estimated standard error in brackets.

	Unstratified	Unstratified	Stratified	Stratified	Universita	Multivonisto
	Unstratified	Unstratified	Stratmed	Stratmed	Univariate	Muttivariate
	Pooled	Distributed	Pooled	Distributed	Meta-Analysis	Meta-Analysis
treatment	-0.343(0.0802)	-0.340(0.081)	-0.344(0.0802)	-0.341(0.0811)	-0.344(0.0802)	-0.341(0.0803)
age	-0.483(0.2206)	-0.490(0.2305)	-0.483(0.2206)	-0.490(0.2304)	-0.486(0.2208)	-0.512(0.2214)
comorbidity score	0.092(0.0965)	0.089(0.0978)	0.091(0.0965)	0.088(0.0979)	0.089(0.0966)	0.087(0.0967)
diagnosis of cancer	-0.217(0.1437)	-0.197(0.1507)	-0.217(0.1436)	-0.197(0.1507)	-0.201(0.1438)	-0.200(0.1442)
depression	-0.170(0.0865)	-0.169(0.0886)	-0.169(0.0865)	-0.168(0.0886)	-0.168(0.0866)	-0.166(0.0867)
diabetes	-0.094(0.0829)	-0.095(0.0834)	-0.095(0.0829)	-0.095(0.0834)	-0.095(0.0829)	-0.092(0.0831)
eating disorder	0.087(0.0965)	0.086(0.0976)	0.086(0.0965)	0.085(0.0976)	0.085(0.0965)	0.086(0.0967)
gastroesophageal reflux disease	0.261(0.0807)	0.251(0.0843)	0.261(0.0807)	0.252(0.0843)	0.256(0.081)	0.252(0.0811)
hypertension	0.076(0.0857)	0.077(0.0863)	0.076(0.0857)	0.077(0.0864)	0.074(0.0858)	0.075(0.0859)
non-alcoholic fatty liver disease	-0.098(0.1007)	-0.089(0.1037)	-0.097(0.1007)	-0.089(0.1037)	-0.09(0.1009)	-0.107(0.1012)
number of emergency department visits	-0.479(0.0409)	-0.479(0.0421)	-0.479(0.0409)	-0.479(0.0421)	-0.48(0.0409)	-0.479(0.041)
number of unique generic medications.	1.059(0.2226)	1.066(0.2297)	1.059(0.2226)	1.066(0.2295)	1.063(0.223)	1.092(0.2235)

References

COX, D. R. AND HINKLEY, D. V. (1974). Theoretical Statistics. London: Chapman & Hall.

- KARR, A. F, KOHNEN, C. N, OGANIAN, A, REITER, J. P AND SANIL, A. P. (2006). A framework for evaluating the utility of data altered to protect confidentiality. *The American statistician* **60**(3), 224–232.
- LIN, D. Y. AND WEI, L. J. (1989). The robust inference for the cox proportional hazards model. Journal of the American Statistical Association 84(408), 1074–1078.

[Received August 1, 202x; revised October 1, 202x; accepted for publication November 1, 202x]