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Benchmarking super-recognizers against forensic examiner and novice norms on lab-based tests 

Individual-Level Analysis of Super-Recognizers vs. Norms on Lab-Based Tests 

We observed some variability in the degree of superiority for each super-recognizer across the different tests 

(see Table S1). We assessed individual-level performance on each test using Crawford and Howell’s modified 

one tailed t-test for single cases 1. All super-recognizers satisfied the clinical criteria for abnormality on at 

least one of the lab tests. First on the face matching tests, 5 of the 7 super-recognizers’ scored 1.96 SDs above 

the mean on the GFMT 2 (100% on the test), 1 scored 1.7SDs above the mean, and another 1 scored 1.4SDs 

above the mean. On the Models test 3, 6 of 7 super-recognizers scored above 1.7 SD. 

For the face memory tests, 5 out of the 7 super-recognizers scored more than 2 standard deviations (SD) above 

the mean on the CFMT+ (i.e., > 93%)4, and the remaining 2 scored 1.7SDs above the mean. Only 2 of the 7 

scored above 1.7 SD on the CFMT-Aus 5, while 6 of 7 scored above 1.7 on the UNSW Face Test 6. 

Table S1. Participant’s accuracy on each of the tests in the lab-based assessment. Values in boldface indicate 

performance deviating more than 1.7 SDs from the mean of the normative data. 

Demographics 

Subject DP TI DB HC CM YS CT SR 
Mean 
(SD) 

Normative 
Mean (SD) 

Mean 
Difference 

t 
ratio 

p value 
Cohen's 

d Age 31 37 27 48 24 25 46 

Gender M M F M F F M 

Face Matching 
Tests 

GFMT 95 100 100 100 98 100 100 99 (2) 81 (10) 18 4.79 < .001 3.02 

Models 94 98 98 96 96 98 - 96 (1) 74 (11) 23 5.10 < .001 3.70 

Face Memory 
Tests 

CFMT+ 95 100 95 91 92 97 94 95 (3) 69 (12) 26 5.60 < .001 3.41 
CFMT-Aus 93 100 97 96 93 95 94 96 (2) 80 (10) 15 3.97 < .001 2.43 

General Face 
Identification Test 

UNSW FT 63 75 78 68 77 90 74 75 (8) 59 (6) 16 7.18 < .001 2.28 

Object Matching 
Tests 

Primates 76 88 83 92 85 80 88 84 (5) 75 (8) 9 3.09 .003 1.47 

Fingerprints 92 97 72 87 80 82 83 85 (8) 77 (9) 7 2.08 .038 0.83 

MFFT 75 93 88 75 90 93 90 86 (8) 82 (11) 3 0.76 .448 0.34 

Professional Face 
Matching Tests 

EFCT - 2s 94 97 97 93 95 99 95 96 (2) 77 (9) 18 5.39 < .001 3.27 
EFCT - 30s 97 99 100 100 99 100 98 99 (1) 84 (9) 15 4.26 < .001 2.88 

PICT 97 100 100 98 89 97 - 97 (4) 82 (12) 15 2.88 .007 1.79 
FR CLT 54 72 86 63 85 92 88 77 (14) 46 (12) 31 5.98 < .001 2.29 

Face Inversion 
Effect 

EFCT - 2s 29 18 8 18 14 17 - 17 (7) 17 (9) 0 0.05 .964 0.02 

EFCT - 30s 16 7 3 18 7 7 - 10 (6) 15 (7) -5 1.72 .095 -0.81 

 

Extended Group-Level Analysis of Super-Recognizers vs. Norms on Lab-Based Tests 

Super-recognizers’ individual and group scores on each test are shown against the normative scores in the 

main manuscript Figure 7. For the face matching tests, super-recognizers outperformed the normative mean 

by 22% on the GFMT (99% vs. 81%; t(199) = 4.79, p <.001, Cohen’s d = 3.02) and by 31% on the Models 

face matching test (96% vs. 74%; t(58) = 5.10, p < .001, Cohen’s d = 3.70). Similarly on the face memory 

tests, super-recognizers outperformed the normative mean by 37% on the CFMT+ (95% vs. 69%; t(259) = 

5.60, p <.001, Cohen’s d = 3.41) and by 19% on the CFMT-Aus (96% vs. 80%; t(80) = 3.97, p < .001, Cohen’s 

d = 2.43). Finally, super-recognizers outperformed the normative mean by 27% on the UNSW Face Test (75% 

vs. 59%; t(295) = 7.18, p < .001, Cohen’s d = 2.28). 
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Super-recognizers also outperformed norms when matching non-human faces and other objects. Super-

recognizers outperformed the norm on a Primate Face Matching Test by 13% (84% vs. 75%; t(53) = 3.09, p 

= .003, Cohen’s d = 1.47) and a Fingerprint Matching Test by 9% (85% vs. 77%; t(1332) = 2.08, p = .038, 

Cohen’s d = 0.83). Super-recognizers did not however, outperform the norm on the Matching Familiar Figures 

Test 7 (MFFT), scoring 4% higher than controls (86% vs. 82%; t(1230) = 0.76, p = .448, Cohen’s d = 0.34). 

While super-recognizers showed an advantage on two of the three object matching tests, their advantage was 

much larger on the face identification tasks reported above (Mean face identification test: Cohen’s d = 2.97 

vs. Mean object matching test: Cohen’s d = 0.88). 

Extended EFCT 2sec vs. 30sec Analysis 

Super-recognizers were more accurate than both student controls and forensic examiners when given only 2 

seconds to view the faces (vs. Students, 2 seconds: 96% vs 77%; t(35) = 10.17, p < .001, Cohen’s d = 2.25; 

vs. Students, 30 seconds: 99% vs 84%, t(35) = 8.86, p < .001, Cohen’s d = 1.78; vs. Examiners, 2 seconds: 

96% vs 81%;  t(32) = 4.69, p < .001, Cohen’s d = 1.99; vs. Examiners, 30 seconds: 99% vs 93%, t(32) = 4.17, 

p < .001, Cohen’s d = 1.77). In contrast, White, et al. 8 found that forensic examiners only outperformed 

student controls on the EFCT when participants were given 30 seconds to view the images (93% vs. 84%; 

t(57) = 4.92, p < .001, Cohen’s d = 1.29), and not when given 2 seconds (81% vs. 77%; t(57) = 1.67, p = .099, 

Cohen’s d = 0.44). This finding shows that super-recognizers can achieve high levels of accuracy after only a 

short exposure, whereas forensic examiners’ expertise takes longer and appears contingent on a slower method 

of comparison. This finding points to differences in the perceptual processes underlying the expertise of super-

recognizers and forensic examiners. 

 

International forensic proficiency test for face identification practitioners 

Table S2. Errors at each point on the response scale for super-recognizers who completed the test with 

the raw image materials vs. those who completed the task online. Mann-Whitney U comparisons 

between errors made at each point on the response scale for the two groups. Significant comparisons are 

shaded in grey.  

  -5 -4 -3 -2 -1 1  2  3  4  5  
Raw Mats. 

vs. Online 
U 145.50 154.50 160.00 132.00 150.50 158.50 117.00 142.00 156.00 144.00 

p .339 .693 .931 .244 .545 .879 .089 .423 .810 .507 

 

Table S3. Frequency of responses at each point on the response scale for super-recognizers who 

completed the test with raw image materials vs. those who completed the task online. Mann-Whitney U 

comparisons between the frequency with which each group used each point on the response scale. 

Significant comparisons are shaded in grey.  

  -5 -4 -3 -2 -1 0 1  2  3  4  5  
Raw 

Mats. 

vs. 

Online 

U 163.00 151.00 117.50 110.00 151.00 170.50 165.50 89.00 170.50 143.00 145.00 

p .803 .528 .089 .049 .462 .969 .846 .009 .988 .390 .427 

 

  



3 

 

Table S4. International Forensic Proficiency Test Response Scale 

Response  Values* of likelihood ratio Response scale labels 

+5 1,000,000 and above The observations provide extremely strong support to the 

proposition that it is the same person relative to the proposition 

that it are different persons. 

+4 10,000-1,000,000 The observations provide very strong support to the 

proposition that it is the same person relative to the proposition 

that it are different persons. 

+3 100-10,000 The observations provide strong support to the proposition that 

it is the same person relative to the proposition that it are 

different persons. 

+2 10-100 The observations provide support to the proposition that it is 

the same person relative to the proposition that it are different 

persons. 

+1 2-10 The observations provide weak support to the proposition that 

it is the same person relative to the proposition that it are 

different persons. 

0 1-2 The observations support neither the proposition that it is the 

same person nor the proposition that it are different persons. 

-1  The observations provide weak support to the proposition that 

it are not the same persons relative to the proposition that it is 

the same person. 

-2  The observations provide support to the proposition that it are 

not the same persons relative to the proposition that it is the 

same person. 

-3  The observations provide strong support to the proposition that 

it are not the same persons relative to the proposition that it is 

the same person. 

-4  The observations provide very strong support to the 

proposition that it are not the same persons relative to the 

proposition that it is the same person. 

-5  The observations provide extremely strong support to the 

proposition that it are not the same persons relative to the 

proposition that it is the same person. 

* Likelihood ratios corresponding to the inverse (1/X) of these values (X) will express the degree of 

support for the specified alternative compared to the first proposition. 
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Extended AUC analyses 

Performance on the proficiency test was compared using Area Under the ROC Curve (AUC) in a one-way 

ANOVA with Group (novices, super-recognizers, forensic examiners, DNNs, laboratories) as the between 

subjects factor. There was a significant effect of Group (F(4,183) = 26.5, p < .001, ŋp
2 = .37) which we 

followed up with planned comparisons. All groups had significantly higher AUC than novices (novices vs. 

forensic examiners: t(120) = 4.79, p < .001, Cohen’s d = 1.29; novices vs. super-recognizers: t(141) = 5.50, p 

< .001, Cohen’s d = 1.05; novices vs. DNNs: t(114) = 2.98, p = .004, Cohen’s d = 0.99; novices vs laboratories: 

t(123) = 7.65, p < .001, Cohen’s d = 1.91). However, there were no significant differences in AUC between 

super-recognizers, forensic examiners or DNNs (super-recognizers vs. forensic examiners: t(51) = 1.21, p = 

.232, Cohen’s d = 0.36; super-recognizers vs. DNNs: t(45) = 0.13, p = .900, Cohen’s d = 0.04; forensic 

examiners vs. DNNs: t(24) = 1.29, p = .210, Cohen’s d = 0.52). Finally, forensic laboratories outperformed 

all expert groups (laboratories vs. super-recognizers: t(54) = 4.60, p < .001, Cohen’s d = 1.30; laboratories vs. 

forensic examiners: t(33) = 3.68, p < .001, Cohen’s d = 1.25; laboratories vs. DNNs: t(27) = 6.37, p < .001, 

Cohen’s d = 2.49). 

Completion time analyses 

Test completion times are shown in Figure S2. No test time completion data was recorded for one forensic 

examiner and one forensic laboratory so they were excluded from this analysis. Test completion times for 

participants who completed the test online were recorded by the testing software (18 super-recognizers, 65 

novices). Test completion times were estimated by the remaining participants who completed the test using 

the raw images and static response document (19 super-recognizers, 15 forensic examiners, 41 novices, 18 

forensic laboratories).  

To assess the equivalence of measured and estimated completion times, we conducted an independent-samples 

t-tests between the measured and estimated completion times of super-recognizers and novices. These tests 

revealed no significant difference between measured and estimated completion times for super-recognizers 

[t(35) = 1.29, p = .207] or novices [t(104) = .70, p = .488]. 

Test completion time was analysed in a one-way ANOVA with Group (novices, super-recognizers, forensic 

examiners, DNNs, forensic laboratories) as the between subjects factor. There was a significant effect of 

Group (F(4,181) = 30.2, p < .001, ŋp
2 = .40) which we followed up with planned comparisons. Forensic 

laboratories took significantly longer to complete the test than novices, super-recognizers, and DNNs 

(laboratories vs. novices: t(122) = 9.62, p < .001, Cohen’s d = 2.45; Laboratories vs. super-recognizers: t(53) 

= 5.38, p < .001, Cohen’s d = 1.55; laboratories vs. DNNs: t(26) = 2.96, p = .006, Cohen’s d = 1.17) but were 

not statistically different to forensic examiners (laboratories vs. forensic examiners: t(31) = 1.39, p = .175, 

Cohen’s d = 0.49). Forensic examiners also took significantly longer than novices, super-recognizers and 

DNNs (forensic examiners vs. novices: t(119) = 7.92, p < .001, Cohen’s d = 2.18; forensic examiners vs. 

super-recognizers: t(50) = 4.26, p < .001, Cohen’s d = 1.30; forensic examiners vs. DNNs: t(23) = 2.50, p = 

.020, Cohen’s d = 1.02). Finally, super-recognizers took longer than novices and DNNs (super-recognizers 

vs. novices: t(141) = 3.93, p < .001, Cohen’s d = 0.75; super-recognizers vs. DNNs: t(45) = 2.73, p = .009, 

Cohen’s d = 0.97) but novices were not significantly different to DNNs (t(114) = 1.77, p = .079, Cohen’s d = 

0.59). 
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Fig. S2. Variability in time to complete the proficiency test. Markers show the mean hours to complete the test for each group 

against their accuracy (AUC). The shaded area around each marker shows the standard error on each measure. 

 

Extended version of Figure 3 

 

Fig. S3. Extended version of Figure 3 - Error and response distributions across the 11-point response scale for forensic 

examiners, super-recognizers, and novices. Error bars show standard error of the mean. 
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Table S5. Errors at each point on the response scale. Mann-Whitney U comparisons between groups of 

the errors made at each point on the response scale. Significant comparisons are shaded in grey. SR = super-

recognizer, Ex = forensic examiner, Nov = novices. 

  -5 -4 -3 -2 -1 1  2  3  4  5  

SR v Ex U 225.5 222.0 218.5 135.0 230.0 189.5 219.5 229.5 169.0 149.5 

p .735 .633 .642 .012 .882 .194 .699 .898 .037 .014 

SR v Nov U 1769.0 1724.5 1699.5 1616.5 1559.0 1542.0 1686.0 1577.5 1832.0 1477.5 

p .318 .234 .239 .130 .041 .051 .250 .087 .653 .005 

Ex v Nov U 662.5 586.0 660.5 470.0 579.0 661.5 658.0 586.5 494.0 572.0 

p .739 .232 .776 .046 .257 .797 .774 .344 .029 .110 

 

Table S6. Frequency of responses at each point on the response scale. Mann-Whitney U comparisons 

between groups of the frequency with which they use each point on the response scale. Significant 

comparisons are shaded in grey. SR = super-recognizer, Ex = forensic examiner, Con = Control. 

  -5 -4 -3 -2 -1 0 1  2  3  4  5  

SR v 

Ex 

U 177.0 253.5 290.5 173.0 295.5 157.0 152.5 129.5 155.5 124.5 114.5 

p .017 .392 .911 .013 .991 .000 .002 .001 .006 .001 .000 

SR v 

Con 

U 1407.5 1836.5 1857.5 1635.5 1561.0 1191.0 1246.0 1353.5 1303.0 1581.0 1058.0 

p .007 .550 .621 .120 .042 .000 .001 .004 .002 .077 .000 

Ex v 

Con 

U 712.5 777.5 784.5 648.0 678.5 709.0 738.5 574.5 746.5 550.0 670.0 

p .266 .576 .618 .120 .160 .244 .392 .035 .435 .022 .155 

 

Correct, Incorrect & Inconclusive decisions of forensic examiners and super-recognizers 

To explore the decisional strategies of forensic examiners and super-recognizers in greater detail, we examined 

their proportion of correct, incorrect and inconclusive responses, by categorising responses of -1 to -5 as “same 

person” decisions and responses of 1 to 5 as “different person” decisions.  

We found that super-recognizers and forensic examiners used the response scale differently (see Figure 3A). 

While super-recognizers and examiners made similar proportions of correct (83.6% vs. 79.4%) and incorrect 

(16.1% vs. 11.6%) decisions, forensic examiners responded “inconclusive” (9.1%) far more often than super-

recognizers, who almost never responded “inconclusive” (0.3%) [correct: t(51) = 1.63, p = .110, Cohen’s d = 

0.48; incorrect: t(51) = 1.75, p = .086, Cohen’s d = 0.53; inconclusive: t(51) = 4.37, p < .0001, Cohen’s d = 

1.01]. In fact, 0.3% of super-recognizers’ responses represents just two decisions by two different super-

recognizers across the entire test.  

This stark difference in “inconclusive” responses suggests that forensic examiners deliberately avoid making 

identification decisions in some instances. The authors note that in high-stakes real-world forensic practice, 

forensic examiners routinely declare some comparisons “inconclusive” to avoid making errors that could have 

profound life-changing consequences for the people involved, especially when the comparison involves poor-

quality imagery or large age differences. Indeed, Norell, et al. 9 observed that forensic examiners were more 

likely to respond “inconclusive” as image quality decreased. However, there it was unclear if forensic 

examiners’ increased tendency to respond “inconclusive” reflected an underlying sensitivity to which cases 

are more likely to result in errors (i.e. a strategic conservatism), or whether it simply reflected a generalised 

conservatism applied uniformly across comparisons that reduces the number of errors and correct decisions 

to a similar extent. 

To investigate this question, we compared the proportion of forensic examiners who declared each of the 20 

comparisons as “inconclusive” to super-recognizers’ accuracy on those comparisons. We found a strong 

negative correlation (Spearman’s ρ = -.68, p = .001), such that the more a comparison was declared 

“inconclusive” by forensic examiners, the worse super-recognizers performed. And, considering only 

comparisons where participants made a “same person” or “different people” decision i.e. did not respond 
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“inconclusive”; see 10, forensic examiners were slightly more accurate [87.9% vs. 83.9%; t(51) = 1.57, p = 

.122, Cohen’s d = 0.47] and made fewer errors than super-recognizers [12.1% vs. 16.1%; t(51) = 1.55, p = 

.127, Cohen’s d = 0.46]. Together, this evidence indicates that forensic examiners are sensitive to which 

comparisons have a greater chance of error, and thus strategically choose not to make an identification decision 

in those cases. This strategy appears to help forensic examiners avoid the errors made by super-recognizers. 

 

Sensitivity & Criterion 

We calculated sensitivity using d′ (see Figure S4). We conducted a one-way ANOVA on the sensitivity data 

with Group (super-recognizers, forensic examiners, novices) as the between-subjects factor. There was a 

significant effect of Group [F(4, 177) = 24.03, p < .001, ŋp
2 = .35] which we followed up with planned 

comparisons. Super-recognizers and forensic examiners showed equivalent sensitivity [t(51) = 1.53, p = .133, 

Cohen’s d = 0.46]. Novices showed significantly lower levels of sensitivity than both super-recognizers 

[t(141) = 5.61, p < .001, Cohen’s d = 1.07] and forensic examiners [t(120) = 6.14, p < .001, Cohen’s d = 1.65]. 

 

Fig. S4. Sensitivity and criterion for forensic examiners, super-recognizers, and novices. Error bars show standard error of the 

mean. 

To calculate criterion we classified responses of 1 to 5 as “match” responses, and responses of -5 to -1 as 

“non-match” responses (see Figure S4). Responses of 0 were excluded from analysis of criterion. We 

conducted a one-way ANOVA on the criterion data with Group (super-recognizers, forensic examiners, 

novices) as the between-subjects factor. There was a significant effect of Group [F(4, 177) = 3.72, p = .006, 

ŋp
2 = .08] which we followed up with planned comparisons. Super-recognizers showed a marginally 

significant stronger response bias than forensic examiners [t(51) = 1.93, p = .059, Cohen’s d = 0.58] and 

novices [t(141) = 1.73, p = .086, Cohen’s d = 0.33]. Forensic examiners showed an equivalent response bias 

to novices [t(120) = 1.24, p = .216, Cohen’s d = 0.33]. 

We also compared each groups’ criterion values to 0, which indicates a neutral response bias, using one-

sample t-tests. Super-recognizers (t(36) = 3.98, p < .001, Cohen’s d = 0.65) and novices (t(105) = 4.29, p < 

.001, Cohen’s d = 0.42) had a significant response bias to say “same person”. Forensic examiners did not show 

a significant response bias (t(15) = 0.22, p = .828, Cohen’s d = 0.06). 

We expected police super-recognizers might show a less pronounced response bias to say “same person” given 

their awareness of the serious real-world consequences of misidentifications. However, the same-person bias 
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was much stronger for police super-recognizers (M = -2.11) than for civilian super-recognizers [M = -0.83; 

t(35) = 1.93, p = .062, Cohen’s d = 0.82]. 

 

Agreement of facial similarity judgements 

DNNs showed a high level of agreement with other DNNs for both “same person” pairs (average ρ = 0.53) 

and “different person” pairs (average ρ = 0.65), as indicated by the cluster of red pixels in the top right-hand 

corners of Figures 5A and 5B. Similarly, humans tended to agree with each other for “same person” pairs 

(average ρ = 0.18) and “different person” pairs (average ρ = 0.29), indicating that despite differences in how 

humans arrive at their judgments they converge on relatively similar assessments of facial similarity. 

For “same person” pairs (Figure 5A), forensic examiners (average ρ = 0.42) and forensic laboratories (average 

ρ = 0.44) show higher levels of agreement within their groups than super-recognizers (average ρ = 0.18) and 

novices do (average ρ = 0.15). For “different person” pairs (see Figure 5B), forensic examiners (average ρ = 

0.50), forensic laboratories (average ρ = 0.42), super-recognizers (average ρ = 0.44) and novices (average ρ = 

0.23) show similar levels of agreement within their groups. The high level of agreement among forensic 

examiners and forensic laboratories for “same person” pairs may be a consequence of forensic practitioners’ 

training to ‘harmonise’ their responses, i.e. for different practitioners examining the same image pair to arrive 

at the same point on the response scale. Greater agreement in responses across members of professional groups 

is often taken to indicate greater objectivity of forensic face identification methods, and so is perceived as 

desirable by the forensic science community 11-16. 

Fusion analyses 

We examined the benefits of fusing decisions from small groups of face identification experts. To do this, we 

randomly sampled sets of responses made by groups of 2 and 3 individuals 1000 times, computed average 

responses of each set to each image pair, and then calculated the accuracy of the collective decisions made by 

the set using AUC (see main text Figure 6). To analyse whether the fused responses improved accuracy, we 

performed planned Wilcoxon rank sum one-tailed tests predicting that each level of fusion groups would be 

more accurate than the smaller fusion or individual response counterparts.  

Replicating previous work 17-19, we find that all fusion pairs (i.e., 2 x novices, 2 x super-recognizers, 2 x 

forensic examiners) showed significant improvements in accuracy relative to individual decisions from the 

same group (novices: W = 35970, p < .001; super-recognizers: W = 11758, p < .001; forensic examiners: W = 

5772, p = .028). The best fusion results however were achieved from fusion human decision makers with 

DNNs. Table S10 shows the median and deviation in AUC achieved with fusion of each DNN with examiners 

and super-recognizers. We also find that all fusion triplets (i.e., 3 x novices, 3 x super-recognizers, 3 x forensic 

examiners) showed significant improvements in accuracy compared to the fusion pair counterparts (novices: 

W = 416052, p < .001; super-recognizers: W = 403195, p < .001; forensic examiners: W = 424256, p < .001). 
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Table S10. Median and SD of AUC achieved by fusing each DNN with a single examiner, a single super-

recognizer, or both an examiner and super-recognizer. 

AUC 

Examiners Super-recognizers Examiners + Super-recognizers 

Median SD Median SD Median SD 

DNN1 0.969 0.033 0.964 0.038 0.981 0.024 

DNN2 0.954 0.045 0.958 0.034 0.974 0.027 

DNN3 0.963 0.037 0.970 0.030 0.981 0.024 

DNN4 0.963 0.033 0.961 0.036 0.976 0.024 

DNN5 0.923 0.043 0.944 0.041 0.964 0.032 

DNN6 0.946 0.045 0.955 0.043 0.977 0.026 

DNN7 0.943 0.035 0.944 0.048 0.974 0.028 

DNN8 0.921 0.042 0.948 0.040 0.966 0.036 

DNN9 0.964 0.042 0.962 0.034 0.977 0.026 

DNN10 0.959 0.039 0.969 0.029 0.977 0.027 

 

Further analysis of DNN fusions show combination of DNNs that produced the highest overall AUC (Table 

S10). Examination of the gains in performance from DNN fusion (Table S11) and correlation in similarity 

scores for image pairs (Table S12) suggests that gains from fusion is predicted by weaker correlations in 

similarity ratings. This relationship is confirmed by a significant negative correlation between system gains in 

AUC and correlation in similarity scores, r(45) = -0.42, p = .004. 

 

Table S11. System AUC resulting from fusing pairs of DNN. Bold values show the standalone DNN AUC. 

AUC DNN1 DNN2 DNN3 DNN4 DNN5 DNN6 DNN7 DNN8 DNN9 DNN10 

DNN1 0.907 0.912 0.912 0.923 0.868 0.890 0.890 0.923 0.923 0.945 

DNN2  0.912 0.912 0.901 0.879 0.923 0.901 0.923 0.923 0.923 

DNN3   0.912 0.923 0.901 0.934 0.901 0.945 0.923 0.945 

DNN4    0.901 0.868 0.868 0.879 0.934 0.901 0.923 

DNN5     0.780 0.857 0.846 0.879 0.857 0.890 

DNN6      0.802 0.857 0.879 0.890 0.934 

DNN7       0.846 0.923 0.890 0.901 

DNN8        0.868 0.934 0.890 

DNN9         0.879 0.912 

DNN10          0.956 

 

Table S12. Relative system gain in AUC from fusion compared to the better of the two standalone DNN AUC 

scores. 

AUC DNN2 DNN3 DNN4 DNN5 DNN6 DNN7 DNN8 DNN9 DNN10 

DNN1 0.000 0.000 0.016 -0.038 -0.016 -0.016 0.016 0.016 -0.011 

DNN2  0.000 -0.011 -0.033 0.011 -0.011 0.011 0.011 -0.033 

DNN3   0.011 -0.011 0.022 -0.011 0.033 0.011 -0.011 

DNN4    -0.033 -0.033 -0.022 0.033 0.000 -0.033 

DNN5     0.055 0.000 0.011 -0.022 -0.066 

DNN6      0.011 0.011 0.011 -0.022 

DNN7       0.055 0.011 -0.055 

DNN8        0.055 -0.066 

DNN9         -0.044 

 

  



10 

 

Table S13. Pearson correlation’s showing the association between each DNN’s similarity ratings of the image 

pairs 

AUC DNN2 DNN3 DNN4 DNN5 DNN6 DNN7 DNN8 DNN9 DNN10 

DNN1 0.892 0.894 0.758 0.769 0.789 0.760 0.610 0.786 0.892 

DNN2  0.903 0.863 0.806 0.878 0.767 0.635 0.830 0.845 

DNN3   0.824 0.865 0.815 0.789 0.675 0.802 0.900 

DNN4    0.829 0.867 0.770 0.567 0.854 0.785 

DNN5     0.858 0.778 0.575 0.765 0.869 

DNN6      0.849 0.533 0.806 0.827 

DNN7       0.368 0.781 0.750 

DNN8        0.618 0.735 

DNN9         0.856 

 

Table S14. Median AUCs for individuals, and fused pairs and triplets (data plotted in Figure 6 of the 

manuscript) 

AUC 
Human only or 

DNN only 
Human + DNN 

Individuals   

SRs 0.879  

Examiners 0.912  

DNN10 0.956  
   
Pairs   
DNN10+DNN3 0.945  
SR+SR 0.945  
EX+EX 0.951  
EX+SR 0.951  
SR+DNN10  0.967 
EX+DNN10  0.967 
   
Triplets   
DNN10+DNN3+DNN1 0.945  
EX+EX+EX 0.956  
SR+SR+SR 0.962  
EX+EX+SR 0.967  
EX+SR+SR 0.967  
EX+EX+DNN10  0.978 
SR+SR+DNN10  0.989 
EX+SR+DNN10  0.989 
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