Supplementary Fig S1. Construction of a well-controlled Tet-off system in Pan02 cell line.

A. The activity of the luciferase reporter was regulated by Dox treatment in Pan02-4B3 subclone infected with the pUHC-TRE-luciferase vector containing a modified tetracycline regulated element (TRE). Results are mean \pm SEM (n=3; **p<0.01). **B.** pLV-TRE-EGFP vector contained a modified TRE element and a GFP reporter. **C.** GFP expression significantly decreased by Dox treatment in Pan02-4B3 infected with pLV-TRE-GFP, but not the parental Pan02 cells. Scale bar, 100 µm. **D.** Immunochemical analysis to show GFP expression was significantly reduced in the tumor samples derived from the orthotopic mouse models transplanted with Pan02-4B3-GFP when treated with Dox (2mg/ml, 1% sucrose in drinking water, n=5). White scale bar, 500 µm; Black scale bar, 200 µm.

Supplementary Fig S2. The number of metastatic nodules decreased after Dox treatment *in vivo*.

A. For functional validation, the subclones cultured from the first-round screening were separately mixed and re-injected into mice the same way as they were obtained. Gross organs from both groups (-Dox/+Dox) were shown. Left, i.p. (n=10). Right, s.c. (n=10). The arrow indicated metastatic nodules. **B.** The distribution of subclones cultured from metastatic nodules in different mouse models with or without Dox treatment. Although there were no visible metastatic lesions in some mouse models from the +Dox group, G418 resistant subclones could still be cultured. (*p<0.05).

Supplementary Fig S3. Validation of PB-GSV targeted *Anxa3* and *Ywhaz* through genomic PCR.

A. The technical principles are illustrated. Primers were designed for specific genes identified with Splinkerette PCR, each of which had a primer targeting either 3'TR or 5'TR on PB-GSV, and the other one was designed within the targeted genes. Products from the other allele could serve as a positive control. **B.** GSV-*Anxa3* integrations were confirmed both in 3'TR and 5'TR of PB-GSV. Results from multiple clones were shown. **C.** GSV-*Ywhaz* integrations were confirmed both in 3'TR and 5'TR of PB-GSV. Each column represents an individual metastatic subclone in B and C. M indicates DNA marker. **D.** *Ywhaz* was identified by Splinkerette PCR from the metastatic lesions. Target band from Splinkerette PCR were extracted and sequenced.

Supplementary Fig S4. GSV-*Ywhaz* integration doesn't affect the proliferation rate of subcutaneous tumors

Hematoxylin-eosin staining and immunohistochemical staining images of the subcutaneous tumors from mouse models injected with GSV-*Ywhaz* clone. No significant difference was found for the immunohistochemical staining of Ki67.

Supplementary Fig S5. Upregulation of YWHAZ expression in GSV-*Ywhaz* clones and derived subcutaneous tumors.

A. GSV-*Ywhaz* mediated YWHAZ upregulation in Pan02. GSV-*Ywhaz* clone was thin spindle shaped, while Pan02-4B3 was polygonal epithelioid. White scale bar, 10 μ m; Blue scale bar, 5 μ m. **B.** GSV-*Ywhaz* mediated YWHAZ upregulation in subcutaneous tumors.

Supplementary Fig S6. YWHAZ overexpression was associated with poor survival in Pan02

orthotopic mouse model.

A. Kaplan–Meier survival analysis showed that YWHAZ overexpression significantly shortened the overall survival time in Pan02 orthotopic mouse model. (n=8, p=0.015). **B.** Representative images of the pancreatic primary tumors, tumor foci in livers or kidneys were also shown.

Supplementary Fig S7. YWHAZ overexpression significantly increases the number of micrometastatic lung lesions in AsPC-1 orthotopic mouse models.

A, **B**. Representative images of the metastatic lesions from orthotopic mouse models. The lesions less than 1mm in diameter was defined as micro-metastasis. **C**, **D**. Micro-metastasis was measured and confirmed at higher magnification.

Supplementary Fig S8. The morphological changes in YWHAZ overexpressed Panc1 cells.

A. Western blotting analysis confirmed the overexpression of YWHAZ in Panc1 cells. **B.** Panc1 YW-WT cells were polygonal epithelioid, and Panc1 YW-OV cells showed spindle shape. Scale bar, 10 μm.

Supplementary Fig S9. Gene set enrichment analysis and Gene Ontology functional annotation of trait-related genes.

A. Gene Set Enrichment Analysis (GSEA) according to YWHAZ expression level in Pan02 cells.B. Top enriched GO terms in upregulated genes identified by RNA-seq in Pan02 control cells (Yw-WT) and YWHAZ overexpression cells (Yw-OV).

Supplementary Fig S10. Hematoxylin-eosin staining and immunohistochemical staining of the EMT biomarkers and transcription factors in lung metastatic tumors. YWHAZ, N-Cadherin and ZEB1 showed high expression in YWHAZ overexpressed group and low expression in the control Pan02-4B3 (n=3, p<0.05). E-Cadherin and ZO-1 mainly showed location differences from the membrane into the cytoplasm when YWHAZ overexpressed. E-cadherin also showed changes in the intensity of the staining, from moderate to weak positivity (n=3, p<0.05).

Figure S1

Α

B Validation of GSV-Anxa3 integrations through PCR in individual metastatic subclones

<u>M</u>		s.
-		
5'TR Primer	3'TR Primer	

C Validation of GSV-Ywhaz integrations through PCR in individual metastatic subclones

D

Α

в

С

D

AsPC-1 YW-WT

AsPC-1 YW-OV

Α

В

Name	Sequences	Application
ANXA3-3	AGCCACCAAAACTACTTAAAAACCTCCAG	Splinkerette PCR
ANXA3-5	TAAACTAACCACATGCTGGCAACCTC	Splinkerette PCR
ERRFI1-3	TGAAACTGAGTCTTTATTGCCACTTCTCC	Splinkerette PCR
ERRFI1-5	TCACCCACTCCTTCTATCGTCA	Splinkerette PCR
YWHAZ-3	CTGTTCTGGACACTGCTCATTTGGCTAC	Splinkerette PCR
YWHAZ-5	TACTTGAGACGACCCTCCACGATGAC	Splinkerette PCR
ANXA2-3	GGATGTCTTTGAACTTCTGATCCTCCTG	Splinkerette PCR
ANXA2-5	GCATCGCAGAACTATGTCCAACTCCA	Splinkerette PCR
VMP1-3	GCACGTTGGCTTGACCTGGCTTACAC	Splinkerette PCR
VMP1-5	ACAGTTCAGTGTTGGTTGCAGGTGTT	Splinkerette PCR
HMSpAa	CGAAGAGTAACCGTTGCTAGGAGAGACCGTGGCTGAATGAGACT	Splinkerette PCR
	GGTGTCGACACTAGTGG	
HMSpBb-Sau3A1	GATCCCACTAGTGTCGACACCAGTCTCTAATTTTTTTTTT	Splinkerette PCR
HMSp1	CGAAGAGTAACCGTTGCTAGGAGAGACC	Splinkerette PCR
HMSp2	GTGGCTGAATGAGACTGGTGTCGAC	Splinkerette PCR
PB3'-1st round	TAAATAAACCTCGATATACAGACCGATAAA	Splinkerette PCR
PB3'-2nd round	ATATACAGACCGATAAAACACATGCGTCAA	Splinkerette PCR
PB3'-seq	TTTTACGCATGATTATCTTTAACGTACGTC	Splinkerette PCR
PB5'-1st round	CAAAATCAGTGACACTTACCGCATTGACAA	Splinkerette PCR
PB5'-2nd round	CTTACCGCATTGACAAGCACGCCTCACGGG	Splinkerette PCR
PB5'-seq	TTAGAAAGAGAGAGCAATATTTCAAGAATG	Splinkerette PCR
E-cadherin-S	AGGTTTTCGGGCACCACTTA	qPCR
E-cadherin-AS	TGATGTTGCTGTCCCCAAGT	qPCR
CK19-S	TCCCAGCTCAGCATGAAAGCT	qPCR
CK19-AS	AAAACCGCTGATCACGCTCTG	qPCR
Zeb1-S	CCACTGTGGAGGACCAGAAT	qPCR
Zeb1-AS	CTCGTGAGGCCTCTTACCTG	qPCR
Fsp1-S	TTGTGTCCACCTTCCACA	qPCR
Fsp1-AS	GCTGTCCAAGTTGCTCAT	qPCR
N-cadherin-S	CATCAACCGGCTTAATGGTG	qPCR
N-cadherin-AS	ACTTTCACACGCAGGATGGA	qPCR
YWHAZ-S	GAAAAGTTCTTGATCCCCAATGC	qPCR
YWHAZ-AS	TGTGACTGGTCCACAATTCCTT	qPCR
GAPDH-S	ATGTTCCAGTATGACTCCACTCACG	qPCR
GAPDH-AS	GAAGACACCAGTAGACTCCACGACA	qPCR

Supplementary Table S1. Primers used in this study

Libraries	Mutant Clones	Injection methods	Mouse number per methods
L1	64,220	i.p.,i.v.,s.c.,o.r.	6
L2	39,666	i.p.,i.v.,s.c. o.r.	4
L3	64,357	i.p.,i.v.,s.c.,o.r.	6
L4	85,367	i.p.,i.v.,s.c.,o.r.	8*
L5	69,744	i.p.,i.v.,s.c.,o.r.	6
L6	94,743	i.p.,i.v.,s.c.,o.r.	9*
L7	43,690	i.p.,i.v.,s.c.,o.r.	4

Supplementary Table S2. The mouse models in the screening were summarized

"*" means two mice were missing in the orthotopic mouse models. The amount of cells injected was 2.5×10^{6} /mice for i.p., 1×10^{6} /mice for i.v., 2.5×10^{6} /mice for s.c. (both dorsal flanks), and 1×10^{6} /mice for o.r., respectively.

Supplementary Table S3. Metastatic subpopulation cultured from mice burdened with libraries

	Lung	Liver	Stomach	Adrenal	Brain	Metastasis	Kidney	Gall	Total
						in Cavity		Bladder	
i.p.	18	15	3	5	2	1	0	0	44
i.v.	19	1	0	0	2	9	0	0	31
o.r.	25	19	2	5	1	0	1	1	54
s.c.	20	2	0	1	4	3	0	0	30
Total									159

Supplementary Table S4. Highly metastatic tumor cells were dissected and cultured from both -/+ Dox treatment groups

		i.p.		0.r.		i.v.	5	s.c.	Total
Dox treatment	-	+	-	+	-	+	-	+	
Lung	5	6	5	6	16	9	9	9	65
Liver	4	3	3	4	0	1	1	0	16
Adrenal	2	2	1	2	0	0	0	0	7
Brain	1	1	1	2	1	1	2	0	9
Others*	0	0	0	0	4	2	3	1	10
Total	12	12	10	14	21	13	15	10	107

* means metastatic tumor in cavity and bone

PB_CSV/(3TP) integration	1		PB GSV Location		<u> </u>		Mouse
sites	Gene	Mutagenesis	in Gene	Organ Metastasis	Frequency	"-DOX(n,%)"	Model
chr4: 150,857,587	Emfi1	knock down	1st intron	lung, kidney, brain,bone, skin	26	19 (73.1%)	i.v.
chr11: 86,589,741	Vmp1	knock down	1st intron	lung, kidney, brain,bone, skin	26	19 (73.1%)	i.v.
chr4:150,857,587	1700045H11Rik	overexpress	downstream 1kb	lung, kidney, brain,bone, skin	26	19 (73.1%)	i.v.
chr9: 69,467,531	Anxa2	knock down	3rd intron	liver, kidney, adrenal,lung, brain	21	7 (33.3%)	o.r.
chr15: 36,791,535	Ywhaz	overexpress	2nd intron	lung, liver, kidney,brian, bone	20	15 (75%)	S.C.
chr5: 96,801,682	Anxa3	knock down	2nd intron	lung, liver	8	5 (62.5%)	i.p.
chr8: 123,433,321	Def8	overexpress	upstream 20kb	liver,lung,kidney	6	2(33.3%)	o.r.
chr9:16,296,965	Fat3	knock down	the last intron	lung	2	1(50%)	i.p./i.v.
chr16: 23,521,031	Masp1	overexpress	the promoter	peritoneal metastasis	1	1(100%)	S.C.
chr4: 45,912,953	E230008N13Rik	knock down	12th intron	lung	1	1(100%)	S.C.
chr2: 18,083,206	MIIt10	knock down	18th intron	lung	1	1(100%)	S.C.
chr9:123,431,934	Lars2	overexpress	10th intron	lung	1	1(100%)	i.v.
chr10: 13,746,456	Aig1	knock down	2nd intron	lung	1	1(100%)	i.v.
chr5: 142,906,409	Actb	overexpress	the last intron	lung	1	1(100%)	i.v.
chr3: 135,212,206	Cenpe	overexpress	in promoter	kidney	1	1(100%)	i.v.
chr15: 84,146,745	Parvb	knock down	downstream 1kb	lung	1	1(100%)	i.p.
chr6: 94,646,619	Lrig1	knock down	3rd intron	lung	1	1(100%)	i.p.
chr6: 94,646,619	SIc25a26	knock down	downstream 30kb	lung	1	1(100%)	i.p.
chr11: 78,264,792	2610507B11Rik	overexpress	5th intron	kidney	1	1(100%)	o.r.
chr15: 103,830,902	Mucl1	knock down	2nd intron	lung	1	1(100%)	o.r.
chr14: 63,537,545	Mtmr9	overexpress	the 5th intron	peritoneal metastasis	1	0(0)	i.v.
chr5: 110,058,064	Gtpbp6	knock down	upstream 30bp	peritoneal metastasis	1	0(0)	i.v.
chr5: 110,058,064	Plcxd1	overexpress	upstream 30kb	, peritoneal metastasis	1	0(0)	i.v.
chr4:83,450,782	Snapc3	knock down	7th intron	peritoneal metastasis	1	0(0)	i.v.
chrX: 71,215,884	Mtm1	overexpress	2nd intron	lung	1	0(0)	i.v.
chr6: 70,782,214	Rpia	knock down	6th intron	peritoneal metastasis	1	0(0)	i.v.
chr3: 101,169,815	Ptgfrn	knock down	downstream 30kb	lung	1	0(0)	i.v.
chr16: 44,452,992	Wdr52	overexpress	17th intron	lung	1	0(0)	i.v.
chr8: 47,796,856	Cdkn2aip	knock down	downstream 30kb	lung	1	0(0)	i.v.
chr9: 118,359,311	Eomes	overexpress	upstream 30kb	lung	1	0(0)	i.v.
chr9: 118,359,311	4933432G23Rik	overexpress	upstream 30kb	lung	1	0(0)	i.v.
chr1: 156,605,921	Abl2	overexpress	2nd intron	lung	1	0(0)	i.v.
chr1: 150,099,386	Ptgs2os	overexpress	in promoter	lung	1	0(0)	i.v.
chr6: 83,465,612	Dguok	overexpress	the 5th intron	peritoneal metastasis	1	0(0)	i.v.
chr3: 87,150,664	Kirrel	overexpress	the last intron	lung	1	0(0)	S.C.
chr4: 149,779,407	Slc25a33	knock down	downstream 5kb	lung	1	0(0)	S.C.
chr16: 11,202,249	2610020C07Rik	overexpress	upstream 500bp	kidney	1	0(0)	o.r.
chr16: 11,202,249	Rsl1d1	knock down	8th intron	kidney	1	0(0)	o.r.
chr8: 64,947,008	Tmem192	overexpress	in promoter	liver	1	0(0)	o.r.
chr1: 26,559,603	4931408C20Rik	knock down	downsrteam 30kb	liver	1	0(0)	o.r.
chr2: 50,444,298	positive strand			lung	1	1(100%)	i.p.
chr6: 76,628,998	negative strand	Norela		lung	1	0(0)	o.r.
Chr14: 45,801,718	negative strand	None knov	virgenes or KiNA	brain	1	0(0)	o.r.
chr7: 62,611,638	positive strand	sequence		brain	1	0(0)	o.r.
chr2: 57,742,460	positive strand	genome	areas(INGR)	kidney	1	0(0)	i.v.
chrUn_random:4,604,836	positive strand			liver	1	0(0)	S.C.

Supplementary Table S5. Integration site analysis of the gene search vectors

Supplementary Table S6. Candidate genes involved in 12 main functional pathways

Signaling pathways involved by identified genes	Mainly from -Dox group	Mainly from +Dox group
Cell-cell adhesion	Ywhaz, Vmp1actb	Anxa2,
/integrin signaling	Parvb, Fat3	Fat3
Cell mobility/invasion regulation	Actb, Parvb	Anxa2, Abl2
Wnt/TGF-β pathway signaling	Ywhaz, Mllt10	
Receptor/ protein tyrosine kinase (RTK) signaling	Errfil, Lrigl, Mucll	Abl2
Cell cycle control	Ywhaz, Cenpe	Cdkn2aip
Apoptosis/autophagy signaling	Ywhaz, Anxa3, Aig1, Lrig1 Vmp1	Tmem192 Abl2 Cdkn2aip
Immune response regulation	Anxa3, Masp1, Mucl1	
Early embryogenesis and development	Fat3	Kirrel, Abl2 Fat3, Eomes
Stem cell maintenance pathway signaling	Lrig1	Eomes
Metabolic/mitochondrial related pathways	Slc25a26, Dguok, Lars2	Slc25a33, Rpia
PTEN/phosphoinositide 3-kinase signaling	Errfil	Mtm1 and Mtmr9
Gene expression and protein synthesis		Snapc3
Genes/non-coding RNAs of unknown function in cancer metastasis	2610507B11Rik	Mgtpbp6, Plcxd1 2610020C07Rik, 4931408C20Rik, Def-8, Ptgs2os, Wdr52, 4933432G23Rik, Ptgfrn, Rs11d1

Supplementary Table S7. Multivariate COX regression analysis of the candidate genes in patients

Candidate genes	HR (95% CI)	P value
ERRFII	1.51 (0.99 – 2.3)	0.054
VMP1	0.67 (0.43-1.06)	0.084
ANX A2	2.5 (1.65 - 3.79)	8.4e-06
YWHAZ	2.65 (1.68 - 4.16)	1.2e-05
ANX A3	2.57 (1.54 - 4.28)	0.00017
FAT3	0.79 (0.52 - 1.21)	0.28
MASP1	0.82 (0.53 - 1.26)	0.36
MLLT10	0.65 (0.43 - 1.01)	0.051
LARS2	0.87 (0.56 - 1.36)	0.53
AIG1	0.78 (0.49 - 1.22)	0.28
ACTB	1.59 (0.97 – 2.59)	0.063
CENPE	2.29 (1.49 - 3.54)	0.00011
PARVB	0.58 (0.39 - 0.89)	0.01
LRIGI	0.79 (0.52 - 1.18)	0.25
SLC25A26	0.7 (0.44 - 1.1)	0.12
MUCL1	0.54 (0.32 - 0.89)	0.014

N=173, Pancreatic Adenocarcinoma, Compared with Overall Survival Time

*Variables including expression level of the candidate genes, patients' age, gender and TMN stage. Data were extracted from TCGA and HPA databases.

_	Positive cases/Tested cases, Percent (%)				
Candidate Genes	Point Mutation	Copy Number Variation	Gene expression		
YWHAZ	26/1258, 2.07%	AMP, 6.5%	Overexpressed 9/168, 13.69%		
ANXA3	19/1258, 1.51%	HOMDEL,2.8% AMP,0.7%	Overexpressed 5/168, 2.98%		
ANXA2	24/1258, 1.91%	HOMDEL,0.9% AMP,0.7%	-		
CENPE	41/1258, 3.26%	HOMDEL,6.4%	Overexpressed 7/168, 4.17%		
PARVB	108/1258, 8.59%	AMP,2.0% HOMDEL,1.1%	Overexpressed, 4/168, 2.38%		
MUCL1	15/1258, 1.19%	AMP,0.7% HOMDEL,1.8%	-		

Supplementary Table S8. The genetic alterations of candidate genes in patients

Note "-" represents no data available. AMP: amplification; HOMDEL: Homologous deletion. Data were extracted from the COSMIC database (https://cancer.sanger.ac.uk/cosmic) and cBioPortal for cancer genomics (www.cbioportal.org).