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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

This paper by Zika et al. represents an innovative investigation of the role of hidden state inference 

during aversive learning and its relationship to trait anxiety. Their results reveal that individuals with 

high levels of trait anxiety infer new hidden states more readily than those low in trait anxiety, and 

this has implications for our understanding of how anxiety manifests, and resists intervention, in the 

real world. The approach is novel and thorough, including some elegant computational modelling, and 

the results appear to be robust. I have a few comments that could be addressed in a revision, most of 

which are minor comments and queries: 

1. In the results section, the number of participants is given across different experiments, however it 

reads as though three separate experiments were conducted which gives the impression the sample 

size was smaller than it is. It would be worth making it clear that subjects were combined across these 

experiments so that the full combined sample is 89 subjects. 

2. In the analysis of learning after reversal (page 10), are some of the effects confounded by pre-

switch probability estimates? It seems from Figure 3B that low anxiety subjects overestimate the 

shock probability prior to the switch, which could explain the difference in slopes post-switch? 

3. It would be interesting to see how many participants were best fit by the n-state model in each 

condition – were there distinct groups of subjects who used hidden state inference and who didn’t, and 

how did these differ across conditions? 

4. The model fitting results are convincing, but I’m left wanting a deeper understanding of what 

exactly it is about the n-state model that makes it perform better in people with high levels of anxiety. 

This is largely because it seems that the n-state model does seem to fit best across most subjects, so 

presumably there is something different about the parameters of the model itself that lead to the 

relative improvement in model fit in highly anxious people. Would it be possible to explore this a little 

more to reveal where exactly the difference lies? E.g., do more anxious people have a lower threshold 

parameter? Presumably the 1-state model is a special case of the n-state model, in which additional 

state formation does not occur due to, for example, a high threshold parameter or some difference in 

how the average surprise is calculated, and so this single model should be able to capture the 

spectrum of responses through from pure gradual learning through to sensitive hidden state inference. 

Apologies if this is a vague question – I’m happy for the authors to address this however they see fit, 

or ignore this point if they feel it is not worth pursuing further. 

5. Were the alpha and beta starting parameters in the model related to trait anxiety? And relatedly, 

were estimated levels of uncertainty in the model correlated with trait anxiety? 

6. Would it be possible to infer the surprise in the model based on the beta learning rule itself, rather 

than introducing an addition delta learning component? E.g., based on the uncertainty in the beta 

distribution? The authors’ approach is probably the most straightforward one, and this is just a point 

of curiosity rather than anything that necessarily needs to be changed. 

7. For model recovery, it would be helpful to present a confusion matrix showing the proportion of 

correctly recovered datasets – the current figure is a little hard to interpret. 

8. It might be worth mentioning in the discussion the fact that this task was completed in the scanner, 

and as a result may have a non-representative sample with respect to anxiety (see Charpentier et al, 

2021, SCAN) 

9. There are a few additional relevant papers that could be cited: Gagne et al. (2020, eLife) on links 

between learning in volatile environments and anxiety/depression, and Tzovara et al. (2018, PLOS CB) 

and Wise et al. (2019, PLOS CB) on the use of Bayesian learning models in aversive learning tasks. 

10. On page 13, one result is given as p<.05 – could the authors provide the exact p value? 

Reviewer #2 (Remarks to the Author): 

Overview: 



This is a behavioral study assessing if trait anxiety modulates whether individuals use gradual learning 

processes to update aversive learning contingencies or if they perceive latent states in the learning 

environment that facilitate learning. This study builds nicely on previous work in the field that tests 

similar predictions in fear learning paradigms (specifically, if individual differences in state inferences 

determine fear recovery). Healthy participants completed an aversive reversal learning task in which 

cues were assigned a consistently higher or lower probability of aversive shock, while another served 

as a reversal cue that switched between high and low shock probability. Probability ratings were 

reported on each trial and served as the primary DV. The authors tested if a ‘gradual updating’ model 

or ‘state-inference’ model provided a better account of the data. The latter was determined to provide 

a better fit, suggesting that variability in trait anxiety may be related the tendency to detect distinct 

states in the learning environment and that this learning tendency may account for fear relapses seen 

in clinical samples with elevated trait anxiety. I like this study and find the question, approach and 

results interesting. The paper is very well-written, clear and the introduction in particular provided a 

nice overview of the literature and state of the field. Overall, the approach is rigorous. However, the 

sample sizes are quite small and call for replication in a larger sample, especially given the 

computational modeling approach and focus on individual differences. Other questions and 

comments/concerns regarding the findings are outlined below: 

1.Power/replication: While I applaud the rigor of the approach and analysis, the sample sizes are 

currently on the smaller side (n=30, n=22, and n=37 for studies 1-3, respectively). Combining the 

data sets for the 75/25 probabilities boost the sample size considerably but I’m still concerned that 

these sample sizes constrain the authors ability to make strong claims about their findings. I also 

didn’t see a power analysis in the paper so this could be added prior to the replication attempt. This is 

not to negate the importance of the findings, but it would make a stronger impact on the field and 

readers if the results were replicated in a larger sample. The authors might want to consider an online 

replication using an aversive outcome conducive to this means of data collection (negative feedback, 

small monetary loss, aversive images, etc.) instead of electric shock. In fact, it would be nice if the 

results generalized across domains in this way. 

2.Learning differences by TA: I found it striking that the higher TA subjects appear to be more 

accurate in their predictions of shock probability relative to lower TA subjects (fig 2D) during the 

stable cue predictions. This also seemed to be the case with the reversal analyses (p10), so it doesn’t 

appear to be unique to the stable cues. This finding counters the common assumption in the literature 

that more anxious individuals over- and under-estimate the likelihood of threat and safety, 

respectively. What do the authors make of these findings? Do they believe this is a finding specific to 

their task or that trait anxiety does not target expected probability of aversive outcome but some 

other feature of these events? How do these results compare to previous work of one of the authors 

(Browning et al 2015) where trait anxious individuals were unable to track volatility in aversive 

outcomes/learning? 

3.Presentation of results: While the results are generally clear and well-described, they could be made 

more succinct in places. For example, in the section on learning immediately after reversal the authors 

can omit the slope analysis details and just state that learning evolved as expected and refer readers 

to the corresponding figure or SI results. Or they can do this with the steepness measure that follows 

as it is redundant. This will allow more focus on the TA findings throughout given this is the primary 

objective of the paper. They may want to do something similar with the more specific analyses at the 

end of the paper regarding features of the model fits. 

4.Learning differences re: TA: Did high TA participants adjust their shock ratings faster for all 

probability conditions or just 90/10 compared to 60/40? It is unclear from the results section as 

currently written and should be clarified. 

5.Modeling results: I had a similar question for the modeling difference results. In terms of the effect 

of TA on state inference, the authors report a positive association between TA and use of n-state 



model on 90/10 trials, and that this association was stronger than the other probabilities (60/40, 

75/25). Was this effect of TA specific to 90/10 trials? If so, it is unclear how much this actually reflect 

a tendency for higher TA participants to use the n-state model in general, given the 90/10 trials are 

also the easiest to segment into different states as opposed to updating gradually. Was this effect 

significant for the other probability trials? If not, it is unclear if the high TA participants are actually 

using a distinct learning model that is novel and speaks to something mechanistic, or if they are just 

more accurate overall in their predictions (as the model-free choice analysis suggests) so this biases 

the model-based analyses to detect a better fit for n-state learning to dominate during the 90/10 

probabilities. 

6.Mechanism: What do the authors propose is the mechanism behind these distinct state dependent 

learning strategies? Does the fact that the n-state model provided a better fit for the 90/10 

probabilities suggest this form of learning might emerge only when it is optimal (i.e., cognitively 

easier) to segment learning easily into different states but switch to gradual learning when the 

probability states are more difficult to disentangle? 

7.Instructions: Were the subjects made aware during the instruction period that the accuracy of their 

shock probability rating was independent of whether they receive a shock or not on that trial? One 

could imagine a scenario where participants believe the two are related and this would create an 

incentive to be more accurate to avoid punishment of shock. This is important to clarify to readers 

because it could point to a mechanism through which higher TA leads to better accuracy. 

Reviewer #3 (Remarks to the Author): 

In this paper, Zika and colleagues investigates the effects of trait anxiety in inferring changes in 

aversive environments. The authors use computational modeling to shed light on the inference 

process that subserves the learning of aversive environments and find that high trait anxiety is 

associated with more “context-specific” learning, in which more number of “states” are inferred to 

explain changes in the aversive environment. This paper asks questions that have clear theoretical 

and clinical contributions to the field. However, I have a few points that I’d like to be addressed. 

1. What are the behavioral consequences of inferring distinctive states? In page 12, the authors show 

that those who engage in state inference show faster learning (Figure 5A). While this is a good sanity 

check, I’d like to see if the model parameter results stand on out-of-sample behavioral signatures. 

Would it be possible to fit the model to first half of the trials and see if the later half’s behavioral 

signature are correlated with the model parameters? Additionally, were the model fit improvements 

with n-state model consistent across sessions within participant? 

2. One of the key manipulations of this paper involves different levels of uncertainty. As the authors 

describe in the introduction, inferring distinctive states from stark differences (e.g., 90/10) would be 

easier than less obvious changes (e.g., 60/40), and the effects of trait anxiety was more pronounced 

in the large contingency difference condition. However, the theoretical reasoning behind this 

manipulation is unclear to me. Relatedly, the number of trials needed for reversal learning would be 

different across the probability conditions, and thus using the equal number of trials for the 

“meaningful” and “oddball” trial distinction does not seem appropriate. What are the differences in 

inference process between those meaningful and oddball trials? How are you defining “state 

awareness” in the inference model? For instance, do you expect the threshold to be changing as a 

function of trial from state transition? 

3. It is interesting and somewhat counterintuitive that the effects of trait anxiety is stronger in the low 

state where the shock probability is overestimated in individuals with lower trait anxiety. Would the 

authors expect any relationship to other behavioral or physiological markers (e.g., SCR)? I am curious 

what would be the the implication on clinical population with regard to general vigilance. I would 

appreciate more discussion on this point. 



4. Additional comments: 

1. As far as I understand, the state inference models were fit to individual cues and there were no 

carry over between sessions. I would be interested in potential order effects on inference. Is it easier 

to deploy state-switching once you inferred that there are harmful and safe states? That is, when 

90/10 session comes before 60/40 session, do you see more fit improvements for the n-state model in 

the 60/40 session? 

2. The participants of this study are pooled from three studies, and one of the studies involved a drug 

administration. Although I understand that only the placebo group was included for the analysis to 

minimize the differences between studies, I am curious if there was any significant behavioral 

differences between the studies. 

3. Task design: Are “sessions” and “conditions” used interchangeably? Within a session, were three 

cues presented in a pseudo-randomized order? It would be great if this can be clearly conveyed in 

Figure 1B and 1C. 

4. I find reporting of the data using median split confusing. I understand the rationale to visualize the 

results for high and low trait anxiety participants, but the interpretation in the text makes it somewhat 

unclear how the results from the linear mixed models match up with the interpretation. I suggest 

changing the languages to reflect the statistical models used in the analyses. 

5. In the computational model sections, some of the notations are missing or have typos. For 

example, did the authors mean f(x,a,b) in Eq. 1? I believe Eq. 3 needs notations for P and O, although 

I can infer that they are probability and outcomes, respectively. CRP distribution with the theta and 

alpha parameters should be added. Could you explain how these parameter values were picked?



 

  
POINT BY POINT REPLY TO REVIEWER COMMENTS 

Zika Et al. NCOMMS-22-16778A 

 

Reviewer 1 

R1-1 In the results section, the number of participants is given across different experiments, however it 
reads as though three separate experiments were conducted which gives the impression the sample 
size was smaller than it is. It would be worth making it clear that subjects were combined across these 
experiments so that the full combined sample is 89 subjects. 

Thank you for your comment. We adjusted the text on pg. 5 (first paragraph of Results) as follows: 

“Eighty-nine participants (44 female, mean age: 25.5 years) performed a probabilistic aversive reversal 
learning task during which they saw one of three possible cues and were then asked to rate the 
probability of receiving a shock (Fig 1a). The dataset was acquired in three separate experiments (N=30, 
N=22, N=37). Experiments I and II consisted of  one condition (75/25, see below), Experiment III 
comprised  three sessions, with each session differing in outcome uncertainty. Therefore, the number of 
participants differs between sessions (N_60/40 = 36; N_75/25 = 88; N_90/10 = 37; see Methods and 
Supplementary Materials for a detailed breakdown).” 

R1-2 In the analysis of learning after reversal (page 10), are some of the effects confounded by pre-
switch probability estimates? It seems from Figure 3B that low anxiety subjects overestimate the shock 
probability prior to the switch, which could explain the difference in slopes post-switch? 

We agree that pre-switch baselines could in principle have had an influence on post-switch slopes. To 
test this formally, we extracted the mean ratings on 5 trials before each reversal and regressed them from 
the data. We then repeated the analysis reported in the main text focusing on the effect of trait anxiety 
over the sessions. As reported in Results, we still find the main positive effect of trait anxiety on slopes, 
F(1, 146) = 8.59, p=.004 as well as interaction between trait anxiety and session, F(2, 542) = 5.75, 
p=.003  driven by positive association between slopes and TA in the 90/10 condition, 𝜷=7.38, CI95=[3.84 
10.91] (all x10-4). The association of slope and TA in 90/10 was significantly higher compared to 60/40, 
t(460)=-2.39, p=.045, and 75/25, t(574)=-3.31, p=.003. We also performed this analysis on the 
“steepness” measure (i.e., sigmoid-based estimates of steepness), replicating the same result. We added 
this control analysis to the Supp. Mat., section “Control analysis of slope”.  

R1-3-a It would be interesting to see how many participants were best fit by the n-state model in each 
condition  

Please find the percentages of participants best fitted by the 1-/n-state models in the table and plot below. 
We also included this in the Modeling section (see snippet below) and the plot in Supp. Mat. 



 

 P 

 
 

60/40 75/25 90/10 

1-state 41.7% 43.2%  37.8%    

n-state 58.3% 56.8%  62.2% 
 

From Results, p 12.:  

Testing the model across all sessions, the n-state model fitted the data better (1-state BIC: -118; n-state 
BIC: -123). This was also true when comparing model fit for all three sessions individually, 60/40 (-84 vs -
91), 75/25 (-133 vs -143) and 90/10 (-116 vs -132). However, the most pronounced difference was found 
in the 90/10 session where the n-state model improved fit substantially (see Fig 5b). The same pattern 
emerged when assessing the percentages of participants best fitted by each model: 41.7% vs 58.3% in 
60/40; 43.2% vs. 56.8% in 75/25 and 37.8% vs 62.2% in 90/10 (1-state vs. n-state  respectively). 

 

R1-3-b …were there distinct groups of subjects who used hidden state inference and who didn’t, and 
how did these differ across conditions? 

To assess this question we summarized data according to the strategies used by each participant in each 
of the three sessions. In the plot below, “1” stands for gradual (1-state) learning while “n” stands for 
structure learning (n-state). For example “1-1-n” therefore represents a case where in the 60/40 and 
75/25 conditions the 1-state model fitted best and in the 90/10 condition the n-state model fitted best. 
Summarizing data in such a way allows us to assess strategy switches between sessions. We plot the 
results below.  

Interestingly, there appears to be a high degree of internal consistency - bins with the same strategy 
across the three sessions (1-1-1, n-n-n) seem to stand out (38%). This is followed by a group of 
participants which relied on gradual learning in the more noisy conditions but employed structure learning 
in the 90/10 condition (1_n_n and 1_1_n; together 32%). We added this information to Results (see 
snippet below) and to Supp. Mat.  



 

 M 

 

From Results, p 13.:  

There was also considerable within-participant consistency of winning model across sessions. Namely, 
38% participants (chance level: 11%) were fitted by the same model in all three sessions. Further 32% of 
participants relied on gradual leaning in 60/40 but switched to state inference strategy in 90/10. For a full 
breakdown of within-participant strategy by session see Supp. Mat.  

R1-4 The model fitting results are convincing, but I’m left wanting a deeper understanding of what 
exactly it is about the n-state model that makes it perform better in people with high levels of anxiety. 
This is largely because it seems that the n-state model does seem to fit best across most subjects, so 
presumably there is something different about the parameters of the model itself that lead to the 
relative improvement in model fit in highly anxious people. Would it be possible to explore this a little 
more to reveal where exactly the difference lies? E.g., do more anxious people have a lower threshold 
parameter? Presumably the 1-state model is a special case of the n-state model, in which additional 
state formation does not occur due to, for example, a high threshold parameter or some difference in 
how the average surprise is calculated, and so this single model should be able to capture the 
spectrum of responses through from pure gradual learning through to sensitive hidden state inference. 
Apologies if this is a vague question – I’m happy for the authors to address this however they see fit, or 
ignore this point if they feel it is not worth pursuing further. 

We would like to thank the reviewer for this interesting question! We believe that this point can be split 
into two related questions: 

1. What behavior is the n-state model preferentially fitting to? 
2. Which feature/parameter of the n-state model is most important, and how does this relate to 

anxiety? 

To answer Question 1 we considered what behavioral factors would provide evidence for state inference. 
One key data point where we would expect a clear delineation between gradual learning and state 
inference is in the difference between post-reversal learning and learning from oddball events. When a 
gradual learner with alpha=1 experiences either a reversal or an oddball, they will learn equally from both. 
A state inference learner, in contrast, will react to the reversal, but dismiss the oddball. Therefore, it is 
important to consider steepness and oddball learning in conjunction; the steepness/slope alone may just 
reflect a high learning rate. We quantified steepness as the slope on trials 1-10 after true reversal (though 
also see Supp. Mat. for steepness estimation using the cumsum+sigmoid fit method). High TA was 
associated with steeper updating, particularly in the 90/10 condition (𝜷60/40 = 1.85 x 10-4, 𝜷75/25 = 1.10 x 10-
4, 𝜷90/10 = 7.48 x 10-4) as well as with model fit towards state inference, r(87)=.36, p<.001. We quantified 
learning from oddballs as the difference between learning immediately after reversal versus learning from 
surprising events that occurred at least 5 trials after reversal. We found that both high TA and better fit of 
the n-state model were associated with less learning from oddball events (see figure below). Therefore, 
both of these behavioral markers relate to trait anxiety and preferential fit of the n-state model. This 
suggests that differential behavior towards oddballs vs reversals is a key aspect that the n-state model 
picks up. We report the full results on pages 10, 13 and 15.  
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We also tried to improve the paragraph where we introduce the behavioral markers in relation to relative 
model fit, from p. 13: 

Steeper post-reversal learning was found in participants with better relative fits of the n-state model (Fig 
5a, see also Supp. Fig. 1). To quantify this impression, we assessed two major markers of state 
inference: post-reversal slope and learning from oddball events. First, we correlated the differences in 
model fit against the fitted slopes from participants’ shock ratings (Fig. 4). This revealed a significant 
positive association across all three sessions, r(87)=.36, p<.001, indicating that improved fit of the n-state 
model related to the steepness of estimated switches. Second, we reasoned that those participants 
employing a state inference strategy should be better at dissociating when to learn from outcomes, i.e., 
they should show less learning from oddball events compared to learning from trials just after reversal. To 
test this, we calculated model-free learning rates separately for 5 trials immediately after reversal (i.e. 
“meaningful learning”) and trials during the relatively stable periods between trial 5 and the next reversal 
(“oddball trials”, see Methods). Participants who were fitted better by the n-state learned more from 
outcomes occurring after reversal compared to oddballs (alpha difference = 0.059)  while participants 
fitted better by the 1-state model had a smaller difference in learning rates (alpha difference = 0.021), 
t(80)=-2.20, p=.030  

 

 

 

Regarding the question which feature of the model is most important, we analyzed the internal 
parameters of the winning model. Interestingly, there was no relationship between any of the parameters 
and TA. Most notably, the Spearman correlation coefficients were between trait anxiety and the threshold 
eta (r=-.11), the shock learning rate tau (r=.09), the no shock learning rate tau (r=.13), and lambda 
(r=.056) all were non significant in the crucial 90/10 condition (all ps >.45). This strengthens our argument 
that the two models do not reflect faster learning or different thresholds, but a different 
mechanism,  namely the ability to infer multiple states. We reasoned that any fit improvement over the 1-
state model must be due to increased tendency towards state inference, i.e., that the differentiating factor 
is the mechanism itself.  

Text from p. 12: 

Note that although the n-state model has one additional parameter (the threshold), it can behave almost 
identical to the 1-state model when the threshold is so large that the model never creates more than one 
state. Lower BIC scores of the n-state can therefore be attributed to the necessity of inferring and 
switching states, i.e., that participants with improved model fit for the n-state over 1-state model are likely 
to rely on a state inference mechanism.  
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R1-5-a Were the alpha and beta starting parameters in the model related to trait anxiety?  

We find this question very interesting from a theoretical standpoint: one might hypothesize that overall 
reduction of uncertainty is one of the mechanisms that drives state inference. To test whether the starting 
uncertainty estimates (alpha0 and beta0) relate to trait anxiety we constructed two LMM models. In both 
cases we found no main effect or interaction of trait anxiety, all LMM p-values > 0.6 (see plots below). 

From p. 14: 

To better understand the fitted n-state model, we explored its behavior and fitted parameters in more 
detail. We analyzed the internal number of states, model-estimated switchpoint, estimated uncertainty, 
step size parameters (tau+, tau-), the threshold parameter (eta), the decay parameter (lambda) and the 
starting values of  alpha and beta. These analyses found a significant effect only in the fitted step sizes 
for the positive and negative outcomes tau+ and tau-. 

  

 

 

 
R1-5-b Were estimated levels of uncertainty in the model correlated with trait anxiety? 

To address this point we used the standard deviation of the current state (calculated based on trial-
specific alpha and beta) summed across trials as an overall estimate of uncertainty. Using a LMM, we 
then explored the relationship between uncertainty and anxiety. The model found no significant 
association between uncertainty and anxiety, or interaction with session. This is now also reported in the 
Supp. Mat. in the “Experienced uncertainty” section.  

Albeit not significant, there was a general trend towards a negative association between TA and 
experienced uncertainty in the 90/10 condition as one would expect from an agent who successfully infers 
state structure (see plot below).  



 

 Q 

 

 
R1-6 Would it be possible to infer the surprise in the model based on the beta learning rule itself, rather 
than introducing an addition delta learning component? E.g., based on the uncertainty in the beta 
distribution? The authors’ approach is probably the most straightforward one, and this is just a point of 
curiosity rather than anything that necessarily needs to be changed. 

We also considered this option as it bears a certain elegance. Our approach was to use p(O∣α,β) as a 
measure of Bayesian surprise for a given trial. Numerically, however, the specific values of the surprise 
variable either need to be calculated using normalization (when using probability density function) or 
arbitrary step size (when using cumulative probability density). Therefore, in order to keep the model as 
simple as possible, we opted for the delta rule which keeps the surprise values between 0 and 1. This, in 
turn, ensures that the key parameter η is within a range that is easily interpretable. We also note that our 
approach makes less assumptions about complex computations that would need to be carried out by our 
participants on the fly. Importantly, both approaches should lead to very similar results in terms of 
providing numerical surprise value.   

R1-7 For model recovery, it would be helpful to present a confusion matrix showing the proportion of 
correctly recovered datasets – the current figure is a little hard to interpret. 

Thank you for this suggestion, the confusion matrix is indeed much clearer. We have updated this in the 
Supp. Mat. 

 



 

 Y 

 

R1-8  It might be worth mentioning in the discussion the fact that this task was completed in the 
scanner, and as a result may have a non-representative sample with respect to anxiety (see 
Charpentier et al, 2021, SCAN). 

Thank you for bringing up this relevant point. We have added this to the discussion (see below). The 
mean TA is indeed slightly lower in Study 1 (40.3) compared to Study 3 (41.4) but it is actually the drug 
study (Study 2) which has the lowest mean trait anxiety scores (37.7).   

 

We added the following text to Discussion (p. 17): 

Additionally, previous work has identified lower TA in studies involving MRI (Charpentier et al., 2021). 
Therefore, the sample of study 1 (fMRI study) might not be fully representative in terms of trait anxiety. 
However, the mean TA level was lowest in the drug study (Study 1: 40.3; Study 2: 37.3; Study 3: 41.4) 
which also showed the weakest behavioral effect as reported in Supp. Mat.  

R1-9 There are a few additional relevant papers that could be cited: Gagne et al. (2020, eLife) on links 
between learning in volatile environments and anxiety/depression, and Tzovara et al. (2018, PLOS CB) 
and Wise et al. (2019, PLOS CB) on the use of Bayesian learning models in aversive learning tasks. 

We agree that those are relevant papers. We therefore added the following two passages: 

In introduction 

Building on the recent advances in computational modeling of aversive learning (Gagne et al., 2020; 
Tzovara et al., 2018; Wise & Dolan, 2019, 2020), we used two models that take into account each 
individual’s precise learning history to explore the relationship between trait anxiety and state inference. 

In discussion 

However, in changing environments, inferring whether the objective state has changed also depends on 
higher order uncertainty such as volatility (Behrens et al., 2007) which has been previously associated 
with anxiety and depression (Browning et al., 2015; Gagne et al., 2020). 

 



 

 O 

R1-10 On page 13, one result is given as p<.05 – could the authors provide the exact p value? 

We have updated the p-value of the permutation test as follows: 

From p. 13: 

This result was confirmed by a permutation-tested correlation between TA and model fit improvement 
which was significant in the 90/10 session, r(36)=.39, p=.023 (two-tailed, corrected for multiple 
comparisons).  

 
 
 

Reviewer C  

R:-; Power/replication: While I applaud the rigor of the approach and analysis, the sample sizes are 
currently on the smaller side (n=kl, n=mm, and n=kn for studies o-k, respectively). Combining the data 
sets for the np/mp probabilities boost the sample size considerably but I’m still concerned that these 
sample sizes constrain the authors ability to make strong claims about their findings. I also didn’t see 
a power analysis in the paper so this could be added prior to the replication attempt. This is not to 
negate the importance of the findings, but it would make a stronger impact on the field and readers if 
the results were replicated in a larger sample. The authors might want to consider an online 
replication using an aversive outcome conducive to this means of data collection (negative feedback, 
small monetary loss, aversive images, etc.) instead of electric shock. In fact, it would be nice if the 
results generalized across domains in this way. 

We thank the reviewer for raising this important point. We have thoroughly considered the possibility of 
further data collection, but eventually decided against it, for the reasons described below. To 
summarize our arguments, we show that (a) our results already include a replication (the separate 
studies were intended to be just that), (b) our results are robust when scrutinized with several statistical 
“stress tests” (out-of-sample measures, permutation testing), (c) the power is appropriate, as indicated 
by a power analysis, especially considering the statistical approach taken (i.e., hierarchical modeling), 
and finally that (d) online experiments would differ along too many dimensions to yield easily 
interpretable results in the current context.  

To provide more detail, we first want to note that we already took a number of steps towards replication 
in the original submission (something we haven’t communicated clearly). Chronologically, the MRI 
study (Study r) was conducted first using a state jumping model based on the Rescorla-Wagner rule 
(i.e., not the model used in this paper). In this study, we found the behavioral effect of anxiety and a 
trending relationship between state inference and TA. To follow up on this observation, we designed the 
three-session study (Study s) for which we did perform a power analysis (see details below). Findings 
of this study replicated and extended the results of the first study. At the same time, we collected data 
for the drug study (Study t). We decided to include the data from Study t solely to increase the 
statistical power. Importantly, the three studies were performed in three separate samples and are 
therefore independent.  

Second, to follow up on the reviewer’s request, we validated the key analysis (relationship between TA 
and relative fit of models) using a permutation test. The correlation between TA and relative model fit 
remained significant even when correcting for multiple comparisons and considering a two-tailed 
hypothesis, r(su)=.sv, p=.wts. We also assessed the relationship between model fit and behavioral 
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measures using out-of-sample analyses (a step also requested by reviewer s). In this analysis, we find 
that the fit difference between the models in the first half of the task correlates with behavioral 
measures (slope, meaningful-oddball learning) in the second half of the task. This finding provides 
strong evidence that the model captures generalizable behavioral differences. For further details, 
please see point R<-;-b.  

Third, the power analysis conducted prior to the start of Study s (in twrx) assumed a parametric 
relationship between trait anxiety and state inference. In order to detect a correlation of r= w.y with a 
power of zw% under a two-tailed hypothesis using a Bonferroni correction for multiple comparisons 
(corrected alpha = w.wrux), a sample size of n = sz participants was necessary (we also added this to 
the paper). Our current sample size now contains zv participants. We recognize that some conditions 
have sx data points, for that reason we also conducted a non-parametric statistical test which was 
previously shown to decrease Type I and II errors, and to therefore increase the analysis power (Önder, 
twwx). Another important consideration is that the studies are also well-powered within-subject - each 
participant completed more than trw trials, and at least u reversals. This is taken into account by the 
linear mixed effect models that we use for analyses. Finally, we note that recent studies in Nature 
Comms that have used similar approaches have produced robust findings despite involving fewer 
participants ",$,%.   

Fourth, a real increase of the sample size is unfortunately not possible as we don't currently have 
access to the necessary in lab facilities. While the suggested online data collection would be 
interesting, it would involve a large number of possibly quite meaningful differences compared to the 
original studies - for instance, the difference between experiencing painful stimuli and receiving 
negative "points". It could therefore be considered a new study with its own set of hypotheses rather 
than a replication of the original study to increase the sample size. We fear that in the worst case, the 
interpretation of differences between new and original results would be inconclusive.  

In sum, we found the key anxiety-inference effect in the original study which we later replicated using a 
well-powered independent sample. We additionally scrutinized the results using a permutation test and 
out-of-sample analyses. We hope that the reviewer will agree with us that the replication steps and 
additional analysis strongly support the robustness of the reported findings.  

We also added the relevant new analyses to the manuscript. 
 

From p. rs 
 

Additionally, both behavioral markers of state inference (slope and meaningful-oddball learning rates) 
were tested using out-of-sample fits (fits from first half were related to behavioral data from second 
half). In both cases, the relationships remained significant. See Supp. Mat. for details.  
 

From p. tw 
Following the identification of behavioral effect in Experiment I we designed Experiment III using the 
appropriate power calculations. Our main effect of interest was the correlation between trait anxiety and 
the difference in BIC scores for the two models. To detect a l.p effect size at l.q power at least within 
one of the three sessions (two tailed, Bonferroni corrected alpha = l.lorn) the sample of kq participants 
is required. We therefore collected slightly more participants (sl) in the study to meet that target.   

! https://www.nature.com/articles/s5!567-9::-;;!!<-w (Sept :9::)  
: https://www.nature.com/articles/s5!567-9::-;!675-w (July :9::) 
; https://www.nature.com/articles/s5!567-9:!-:76!B-C (Dec :9:!)  
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R:-:-a Learning differences by TA: I found it striking that the higher TA subjects appear to be more 
accurate in their predictions of shock probability relative to lower TA subjects (fig mD) during the 
stable cue predictions. This also seemed to be the case with the reversal analyses (pol), so it doesn’t 
appear to be unique to the stable cues. This finding counters the common assumption in the 
literature that more anxious individuals over- and under-estimate the likelihood of threat and safety, 
respectively. What do the authors make of these findings?  

We thank the reviewer for bringing up this interesting point. As the reviewer correctly points out, high TA 
participants in the three studies were arguably more accurate in their shock expectancy ratings. This 
was most prominent in the low state which corresponds to relative safety. We agree that these results 
are striking - high anxiety is often associated with the inability to recognise safe environments and with 
the overestimation of threat. In line with this notion, a review of the literature on this topic shows fairly 
consistent findings in clinical samples (e.g. patients with Generalized Anxiety Disorder). However, 
studies using continuous trait anxiety measures in healthy individuals provide a less clear picture. 
While TA has been associated with impaired safety learning, lack of fear inhibition and increased 
reactivity to threat, there is also a substantial body of work either not supporting these findings (e.g., 
Torrents-Rodas et al., twrs; Kindt & Soeter twr�), or finding the opposite. For example, Raes et al., 
(twwv) reported  that under high cognitive load, fear extinction (indexed by SCRs) was more successful 
in the high TA group. In another study, Wise and Dolan (twtw) found learning from safety to be 
increased in high state anxious individuals. Additionally, high trait anxiety has been associated with 
increased neural de-differentiation of safe and threatening contexts (see Sehlmeyer et al. twrr; 
Indovina et al. twrr). Taken together, subclinical levels of anxiety might be beneficial to aversive 
learning only under certain conditions, similarly to how it is sometimes beneficial in cognitive test 
performance (Owens et al. twr�). This would be in line with the evolutionary conceptualization of 
anxiety as a state of increased vigilance to detect and avoid threats (Ledoux, twru).  

Furthermore, our task might differ considerably from those previously used in at least two key aspects: 
asymmetry of uncertainty between high and low states (i.e., acquisition versus extinction) and single 
versus repeated reversals. As Torrents-Rodas et al. (twrs) suggested, the diversity of findings can 
partially be explained by the degree of outcome uncertainty. Studies that find large anxiety differences 
between acquisition and extinction also tend to use asymmetric outcome uncertainty (for example 
acquisition = sw% shocks; extinction = w% shocks), see also Ojala and Bach (twtw) discussing this 
point. The resulting differences in extinction may therefore be due to an effect of uncertainty. High 
uncertainty (reinforcement rate close to yw%) during acquisition might mean that individuals remain in a 
single subjective state, which would then manifest as resistance to extinction.  

We believe that overall these mixed findings suggest that it might be useful to conduct “metaverse” 
analyses across the landscape of multiple parameters (in a fashion similar to Sjouwerman et al. twtt; 
https://doi.org/rw.rrrr/psyp.r�rsw) and to consider differences in complex computational mechanisms 
rather than focusing on “only” on behavioral and physiological data, just as we tried to in this paper.  

Modified snippet from Discussion, p. rx-rz 

In our behavioral results, the effects of anxiety were driven by more accurate probability estimates in 
the stable-low cue and the low-state of the reversal cue, which both correspond to conditions of relative 
safety. This aligns with some previous reports. For example, in a gamified aversive learning paradigm 
Wise and Dolan (mlml) reported a positive association between safety learning and state anxiety. 
Similarly, Raes et al., (mllt) found that under a condition of higher cognitive load fear extinction 
(indexed by SCRs) was more successful in the high TA group. Interestingly, high anxiety (i.e., factor 
loading high on trait anxiety) was associated with increased engagement of cognitive control in a 
go/no-go paradigm (Scholz et al., unpublished), suggesting that non-clinical TA might be associated 
with better use of cognitive resources. The broader literature on the relationship between trait anxiety 
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and fear yields mixed results. While some studies report increased discrimination of CS+ and CS- 
(Sjouwerman et al., mlml) and comparable fear inhibition during extinction in high vs. low TA individuals 
(Kindt & Soeter, mlos; Torrents-Rodas et al., mlok), others report deficits in inhibitory processing (Ansari 
& Derakshan, mloo; Haaker et al., mlop; Myers & Davis, mlln) and safety learning (Gazendam et al., 
mlok; Indovina et al., mloo).  Taken together, subclinical levels of anxiety might be beneficial to aversive 
learning only under certain conditions, similarly to how it is sometimes beneficial in cognitive test 
performance (Owens et al. mlos). This would be in line with the evolutionary conceptualization of 
anxiety as a state of increased vigilance to detect and avoid threats (Ledoux, mlor). 

Modified snippet from p. rv: 

Our focus was to understand how individuals with varying degrees of trait anxiety intrinsically learn and 
represent the structure of an aversive environment which sets the study apart from classical studies on 
acquisition and extinction. However, future research should systematically investigate the role of trait 
anxiety under different relative conditions of threat in a manner similar to Sjouwerman et al. (mlmm), 
including the difference in probabilistic versus deterministic environments.  

 

R:-:-b Do they believe this is a finding specific to their task or that trait anxiety does not target 
expected probability of aversive outcome but some other feature of these events?  

Our results suggest that trait anxiety targets expected probability - but that the strength of this effect 
depends on the current (perceived) context, i.e. the shock expectancy on a given trial is modulated by 
beliefs about the higher order structure of the task. We suggest that anxiety leads to a tendency to 
extract temporal patterns of the environment which, in turn, may lead to situations of fear relapse or 
extinction resistance (if subjective evidence for threatening state is high). Importantly, in all three 
studies we ensured that the perception of the stimuli is the same for all participants (i.e., stimulus 
intensity was calibrated to a pain intensity of z/rw) to rule out that differences in ratings would not be 
due to differences in pain intensity. Of note, the shock magnitude used in the experiments was not 
associated with TA. 

From p. u-x: 

The calibrated stimulus intensity did not differ between studies. There was no significant relationship 
between shock intensity and probability ratings, or between pain intensity and trait anxiety (p > .lp, see 
Methods).  

R:-:-c How do these results compare to previous work of one of the authors (Browning et al mlop) 
where trait anxious individuals were unable to track volatility in aversive outcomes/learning? 

We agree that this is indeed an interesting question. While we cannot provide a definite answer without 
running a separate study, we believe that the discrepancy in findings might be due to a number of 
important differences between the two studies. The task used in Browning et al. (twry) is an 
instrumental learning paradigm while here we used a Pavlovian task. High TA may be associated with 
an intact ability to track the risk of shock, but with a reduced ability to use this information appropriately 
when choosing between options. Another distinction is that our design did not include a stable phase. 
Our “stable cue” trials were always intermixed with reversal cue trials creating a generally "volatile" 
environment. Furthermore, participants were instructed that any cue could change its contingency at 
any point. Therefore, while the previous study focused on learning adjustments to environmental 
volatility between sessions, we report the ability of high TA to identify regularities within volatile 
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environments without manipulating prior experience. We added these points to discussion, see snippet 
below. 

Alternatively, if we speculate that high TA individuals have a stronger tendency to (wrongly) infer 
temporal structures also in stable environments, this would result in higher learning rates and therefore 
smaller difference in learning rates between stable and volatile blocks as in the study by Browning et 
al.  

From p ru: 

Interestingly, high TA has previously been associated with the inability to adjust learning to 
environmental volatility, as reflected in a high learning rate despite stable contingencies (Browning et 
al., mlop). Our results show that high TA adjust their expectations faster. This might seem at odds 
Browning et al (mlop), however, it is important to consider methodological differences, such as using 
instrumental, rather than Pavlovian, learning to manipulate between-session, rather than within-
session, volatility. 

R:-<-a Presentation of results: While the results are generally clear and well-described, they could 
be made more succinct in places. For example, in the section on learning immediately after reversal 
the authors can omit the slope analysis details and just state that learning evolved as expected and 
refer readers to the corresponding figure or SI results. Or they can do this with the steepness 
measure that follows as it is redundant. This will allow more focus on the TA findings throughout 
given this is the primary objective of the paper.  

We would like to thank the reviewer for this very helpful idea. To streamline the results, we moved the 
section on steepness and switchpoint to the Supplement. The slope analyses indeed already 
demonstrated the main point that learning after reversal was faster in high TA. Additionally, we pruned 
Figure � by removing the subplots on steepness and switchpoint analyses. Lastly, we also simplified 
the slope analysis as follows. 

From p. rw: 

We next focused on the learning immediately after a reversal, i.e., trials o to ol (‘reversal period’). We 
characterized the speed of learning following a reversal by fitting a line to ratings on trials o to ol. This 
was done using a LMM with slope for each participant and state. As expected, slopes differed depending 
on the direction of the switch, i.e., low-to-high switches were positive (m.ss%; read as ‘the shock 
probability rating increased by m.ss% per trial’) while slopes in high-to-low switches were negative (-
m.kk%). 

Next, we took the absolute value of the slope estimates to simplify the analyses. A LMM model testing 
for effect of session, state and TA on slopes found a positive main effect of TA, F(o,qn)=p.qp, p=.loq, and 
a main effect of session, F(m, tr)=pk.qn, p<.llo. Post-hoc comparisons between sessions revealed that 
mean steepness was significantly higher for tl/ol compared to rl/sl, t#$<&$=-t.qs, p<.llo, and np/mp, 
t'(<&$=-n.ot, p<.llo. Furthermore, there was a significant interaction between TA and session, F(m, 
rll)=p.kk, p=.llp. The associations were positive in all thee sessions:  = o.qp x ol-),  = o.ol x ol-),  = n.sq 
x ol-),   Post-hoc analyses found that this was driven by a significantly stronger association between TA 
and slope in the tl/ol session compared to rl/sl, t#$<&$=-m.ps, p=.lkl, and np/mp, t'(<&$=-k.lp, p=.lln. 
Despite the overall main effect, the relationship between TA and slope in the rl/sl, F(msl)=.nt, p=.knp, 
and np/mp, F(oso)=.pl, p=.sqm, sessions was not significant. These results remained unchanged while 
controlling for the pre-reversal baseline (see Supp. Mat.).   
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R:-<-b They may want to do something similar with the more specific analyses at the end of the 
paper regarding features of the model fits. 

Following this suggestion we now only report the significant effect of out step size (Tau) parameters. 
The remainder of the analyses of models, including the tables with parameters, was moved to the 
Supp. Mat..  

From Results p. r�: 

“.We analyzed the internal number of states, model-estimated switchpoint, estimated uncertainty, step 
size parameters (   , the threshold parameter ( ), the decay parameter ( ) and the starting values of  and 
. These analyses found a significant effect only in the fitted step sizes for the positive and negative 
outcomes and . A LMM with parameter type (   , TA and session as fixed effects found a significant 
main effect of parameter type, F(o,mmq)=kn.lk, p<.llo, which reflected that shocks elicited larger 
updates than no-shocks =o.ok vs. =l.nk). There was no main effect of TA, F(o,qk)=.mo, p=.nn, or 
interaction of outcome type (shock/no-shock) and trait anxiety, F(o, mmq)=.or, p=.rp. Note that the same 
two parameters of the o-state model, had a similar difference =o.on vs. =l.qr), suggesting that 
differential learning from shock and no-shock events alone was unable to explain our behavioral effects 
of TA (see Supp. Mat. for full analyses of model parameters).” 

R:-= Learning differences re: TA: Did high TA participants adjust their shock ratings faster for all 
probability conditions or just tl/ol compared to rl/sl? It is unclear from the results section as 
currently written and should be clarified. 

We agree that the clarity of this  section needs to be improved, and have therefore adapted the 
relevant section in the manuscript, see below. We believe that the lack of clarity was partly due to the 
fact that we analyzed the signed slope which complicates the results due to the sign flip between the 
high and low state reversals. To simplify the results, we re-analysed the data using absolute slope 
which provides a more straightforward result. To answer the reviewers question, we find that the 
relationship between TA and slope in the uw/�w and xy/ty conditions was not significant when 
considered in isolation. 

The revised excerpt can be found in point R:-<-a (to avoid repetition).  

R:->-a Modeling results: I had a similar question for the modeling difference results. In terms of the 
effect of TA on state inference, the authors report a positive association between TA and use of n-
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state model on tl/ol trials, and that this association was stronger than the other probabilities (rl/sl, 
np/mp). Was this effect of TA specific to tl/ol trials?  

Yes, a significant relationship between TA and relative model fit was only present in the vw/rw condition. 
The estimated betas for the `deltafit ~ TA` effect for each of the three conditions were: -w.w�, -w.wx and 
w.vt (uw/�w, xy/ty and vw/rw). We included this to the manuscript (page rs), see excerpt below:  

We next examined the relationship between trait anxiety (TA) and state inference by constructing a LMM 
with model fit difference as the dependent variable and TA and session as fixed effects. This model 
identified a significant interaction between TA and session, F(m,olp)=p.ml, p=.lln. Post-hoc analyses 
revealed that this was driven by a positive association between TA and fit improvement in the tl/ol 
session, F(o, opk)=t.ro, p=.llm (see Fig. pc). There was no significant association in the rl/sl or np/mp 
sessions. Betas for the TA effect by condition were l.ls, -l.ln and l.tm (rl/sl, np/mp and tl/ol). The 
association was significantly stronger in the tl/ol session compared to both rl/sl, t(nq)=-m.rs, p=.lmn 
and np/mp, t(ooo)=-m.tr, p=.loo.  

 

R:->-b If so, it is unclear how much this actually reflect a tendency for higher TA participants to use 
the n-state model in general, given the tl/ol trials are also the easiest to segment into different 
states as opposed to updating gradually. Was this effect significant for the other probability trials? If 
not, it is unclear if the high TA participants are actually using a distinct learning model that is novel 
and speaks to something mechanistic, or if they are just more accurate overall in their predictions (as 
the model-free choice analysis suggests) so this biases the model-based analyses to detect a better 
fit for n-state learning to dominate during the tl/ol probabilities. 

This is indeed a very relevant question. The key aspect that  distinguishes the n-state model from the r 
state model is not (only) how accurate participants are, but how they behave following reversals 
relative to oddballs. Highly accurate choices in the vw/rw condition can in principle be captured by the r-
state model with a high learning rate. But this model would suggest a strong reactivity towards oddball 
trials for the same participant. But, as we show in Fig. u (replicated to the right), high TA individuals 
tend to react less to oddballs. This speaks against a simple tendency for higher accuracy in high TA 
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individuals, and suggests that state information is being incorporated into the updating of current 

estimates.  

 

This of course still leaves us with the question why high TA individuals are more likely to adopt an n-
state model in the vw/rw condition but not in the more noisy conditions. We can only speculate, but one 
possibility is that this might be related to the optimality of using a r-state gradual learning algorithm in 
the conditions with higher outcome uncertainty. Trying to infer states in noisy environments can require 
substantial cognitive load and it might not yield much benefit. Theoretically, there should perhaps exist 
an optimal ratio between cognitive load and prediction accuracy. This would then drive whether it’s 
optimal to update gradually or whether to allocate resources to identify structure. Determining the 
optimality of a given strategy and linking it to our findings would be a great future avenue. Specifically, 
investigating whether sub-clinically anxious individuals find structures in environments where it’s 
possible (as opposed to noisy environments where meaningful versus random events are effectively 
inseparable) while clinically anxious populations tend to search for structures even in high noise 
environments would be a very valuable avenue. Part of this work should focus on examining how our 
state inference findings relate to the previously reported relationship between anxiety and intolerance 
of uncertainty, especially in relation to specific types of uncertainty (e.g. Piray and Daw, twtr). 

From p. rz: 

A major question that remains to be answered is why do high TA individuals rely on state inference 
mostly in the tl/ol condition. One possibility might be that while the uncertainty in noisy environments 
is too high and learning meaningful changes from stochastic events poses high cognitive demands, in 
tl/ol, learning the structure of the environment can meaningfully result in reduction of internal 
uncertainty.  

 

R:-? Mechanism: What do the authors propose is the mechanism behind these distinct state 
dependent learning strategies? Does the fact that the n-state model provided a better fit for the tl/ol 
probabilities suggest this form of learning might emerge only when it is optimal (i.e., cognitively 
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easier) to segment learning easily into different states but switch to gradual learning when the 
probability states are more difficult to disentangle? 

Our interpretation of the data is precisely what the reviewer is suggesting. Separating the environment 
into latent states arguably comes at higher cognitive cost which might only be justified (and relatively 
low)  in environments with low outcome uncertainty. In simple one-dimensional environments such as in 
our task, optimality is likely driven by the combination of stochasticity and volatility (randomness versus 
true changes). In general, when stochasticity is high (as in uw/�w and xy/ty) it is arguably much harder 
to identify true changes in the environment. Furthermore, trying to infer temporal structure in noisy 
environments requires integration over longer time periods which means that cognitive demands 
remain high for longer. See snipped that we added to discussion.  

From Discussion p. rx: 

Our results indicate that the propensity for state-dependent learning might depend on the amount of 
outcome uncertainty in the environment, since better fits of the n-state model were observed in 
sessions with more distinct high- and low-probability states (tl% and ol%), as compared to sessions 
with less distinct states. An above-chance proportion of participants (ks%) switched from using gradual 
strategy in rl/sl to using state inference in tl/ol. The optimal strategy for a given environment might 
depend on the tradeoff between cognitive effort and accuracy in prediction. Separating the environment 
into latent states arguably comes at higher cognitive cost which might only be justified in environments 
with low outcome uncertainty. Trying to infer states in noisy environments can require substantial 
cognitive load (e.g., integration over longer periods of time) and it might not yield much benefit (i.e., 
predictive accuracy). 

R:-@ Instructions: Were the subjects made aware during the instruction period that the accuracy of 
their shock probability rating was independent of whether they receive a shock or not on that trial? 
One could imagine a scenario where participants believe the two are related and this would create an 
incentive to be more accurate to avoid punishment of shock. This is important to clarify to readers 
because it could point to a mechanism through which higher TA leads to better accuracy. 

We agree that this could indeed have influenced participants’ behavior. We explicitly instructed 
participants that their ratings would not influence whether a shock would be delivered or not. We have 
clarified this in the manuscript and write on page ts: 

Participants were presented with minimal information regarding the number of cues, task duration, cue 
frequency and switches. They were told that ‘each cue is associated with a certain probability of 
receiving a painful stimulus’ and to ‘pay attention to all three cues as any of them may or may not 
change their probability signaling the painful stimulation at any point’. Participants were also explicitly 
told that their ratings do not impact the outcomes.  
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Reviewer D 

 

R<-;-a What are the behavioral consequences of inferring distinctive states?  

Thank you for this interesting question. In short, steepness and decreased learning from oddballs. We 
note that steepness on its own does not warrant state inference, although it is a necessary requirement 
as switches between states are by definition abrupt. To further investigate the behavioral consequences 
of state inference, we explored how participants reacted to oddball events, relative to how they reacted 
to trials after reversal. We show that participants whose behavior was better fitted by the n-state model 
(and high TA) reacted  less from surprising events on trials in relatively stable periods compared to 
trials following reversals. This indicates that they are incorporating knowledge of latent states to their 
learning. 

Following a similar question from reviewer r, we also tried to improve the paragraph where we 
introduce the behavioral markers in relation to relative model fit (see snippet below). 

From p. rs: 

Steeper post-reversal learning was found in participants with better relative fits of the n-state model 
(Fig pa, see also Supp. Fig. o). To quantify this impression, we assessed two major markers of state 
inference: post-reversal slope and learning from oddball events. First, we correlated the differences in 
model fit against the fitted slopes from participants’ shock ratings (Fig. s). This revealed a significant 
positive association across all three sessions, r(qn)=.kr, p<.llo, indicating that improved fit of the n-
state model related to the steepness of estimated switches. Second, we reasoned that those 
participants employing a state inference strategy should be better at dissociating when to learn from 
outcomes, i.e., they should show less learning from oddball events compared to learning from trials just 
after reversal. To test this, we calculated model-free learning rates separately for p trials immediately 
after reversal (i.e. “meaningful learning”) and trials during the relatively stable periods between trial p 
and the next reversal (“oddball trials”, see Methods). Participants who were fitted better by the n-state 
learned more from outcomes occurring after reversal compared to oddballs (alpha difference = 
l.lpt)  while participants fitted better by the o-state model had a smaller difference in learning rates 
(alpha difference = l.lmo), t(ql)=-m.ml, p=.lkl  

R<-;-b In page om, the authors show that those who engage in state inference show faster learning 
(Figure pA). While this is a good sanity check, I’d like to see if the model parameter results stand on 
out-of-sample behavioral signatures. Would it be possible to fit the model to first half of the trials and 
see if the later half’s behavioral signature are correlated with the model parameters? 

Thank you for this point, it’s indeed a great way to validate the results. We re-fitted the models to 
reversal phases r - s (i.e., “first half”) and calculated the information criteria, taking their difference 
identically to the main analysis. Next, we calculated slopes and meaningful-oddball learning rate 
difference for phases �+ (i.e., “second half”). In both cases, the behavioral marker from the second half 
correlated with the first half relative model fit. Specifically, the Spearman’s rho correlation coefficients 
were r=.sst, p=.wwt for slopes and r=.tuu, p=.wrs for meaningful/oddball. We added this to the main 
text (excerpt below) and the Supp. Mat. Please also see the relevant plots below.  

From p. rs.: 
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Additionally, both behavioral markers of state inference (slope and meaningful-oddball learning rates) 
were tested using out-of-sample fits (fits from first half were related to behavioral data from second 
half). In both cases, the relationships remained significant. See Supp. Mat. for details.  

 

 

* Both analyses are using Spearman’s correlation  

 

R<-;-c Additionally, were the model fit improvements with n-state model consistent across sessions 
within participant? 

In response to the reviewer’s question, we correlated the relative model fit for participants who 
completed all three sessions (correlation matrix below). This analysis identified within-participant 
consistency of relative n-/r-state model fit, particularly between xy/ty and vw/rw (r=.��, p=.wwx), and 
uw/�w and xy/ty (r=.sz, p=.wts). For further details, we would like to refer the reviewer to our reply to 
point Rr-s-b which confirms a degree of internal consistency. We added this analysis to the Supp. Mat. 
(“Best model fit by condition” section) 
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R<-:-a One of the key manipulations of this paper involves different levels of uncertainty. As the 
authors describe in the introduction, inferring distinctive states from stark differences (e.g., tl/ol) 
would be easier than less obvious changes (e.g., rl/sl), and the effects of trait anxiety was more 
pronounced in the large contingency difference condition. However, the theoretical reasoning behind 
this manipulation is unclear to me. 

We agree that this should have been explained more clearly. As correctly pointed out, the three 
conditions varied in the amount of outcome uncertainty. States are therefore easier to infer in 
environments with lower (vw/rw) compared to high (uw/�w) uncertainty, and we stipulate that it therefore 
is more appropriate (or optimal) to use an n-state model in the vw/rw condition than in the uw/�w 
condition. In other words, extracting temporally extended patterns and organizing them into structure 
will lead to many errors in uw/�w, while cognitively simpler recency-weighted updating will do well in 
terms of prediction (without posing excessive burden on memory, attention, etc). We also point the 
reviewer to a related response to reviewer t’s point y (R:->). 

To clarify this point, we also added the following text to the Discussion (pages rx and rz): 

An above-chance proportion of participants (ks%) switched from using gradual strategy in rl/sl to 
using state inference in tl/ol. The optimal strategy for a given environment might depend on the 
tradeoff between cognitive effort and accuracy in prediction. Separating the environment into latent 
states arguably comes at higher cognitive cost which might only be justified in environments with low 
outcome uncertainty. Trying to infer states in noisy environments can require substantial cognitive load 
(e.g., integration over longer periods of time) and it might not yield much benefit (i.e., predictive 
accuracy). 

A major question that remains to be answered is why do high TA individuals rely on state inference mostly 
in the tl/ol condition. One possibility might be that while the uncertainty in the noisy environments is too 
high and learning meaningful changes from stochastic events poses high cognitive demands, in tl/ol, 
learning the structure of the environment can meaningfully result in reduction of internal uncertainty. An 
interesting future direction would be to investigate whether clinically anxious individuals continue to 
(perhaps sub-optimally) try and find structures in noisy environments, i.e. whether they tend to 
erroneously find too many latent causes, or whether they are instead driven by the adversity of high 
uncertainty itself and lump all experiences under a single latent cause (as in Norbury et al. mlmo).       

 

R<-:-b Relatedly, the number of trials needed for reversal learning would be different across the 
probability conditions, and thus using the equal number of trials for the “meaningful” and “oddball” 
trial distinction does not seem appropriate. What are the differences in inference process between 
those meaningful and oddball trials? 

We agree that what constitutes an oddball in the uw/�w condition might be different from an oddball in 
the vw/rw condition. The rationale for using data after the fifth trial following reversal was based on the 
upper plot shown below. On the y-axis we plot the change in rating between two consecutive trials. On 
the x-axis we show the trial number before and after true reversal. Any values higher than w suggest 
that on average participants were updating their beliefs. It appears that most updating occurred within 
the first y-x trials. To assess the impact of the selection window more systematically, we used 
alternative decision criteria (i.e., cut-offs at trials x, rw and rs) to generate meaningful/oddball trials (see 
the calculated learning rates for the four analyses plotted separately for each condition below). Notably, 
the different cutoffs produced very similar results. They all clearly capture the main effect difference 
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between meaningful and oddball learning. Indeed, using a formal LMM, there was no significant main 
effect or interaction involving the cutoff, all ps > w.v. 

We also added the following text to Methods, p. tu: 

To check that our specific choice of post-reversal cutoff trial (ct=p) did not drive the results, we calculated 
oddball/meaningful learning rates for three additional cutoff values: n, ol and ok. We next tested the 
impact of the cutoff threshold on the estimated meaningful/cutoff values using a LMM. We found no 
significant impact of the cutoff, all ps > l.t. We also present the result in Supp. Figure m.  

 

 

 

 

R<-:-c How are you defining “state awareness” in the inference model? For instance, do you expect 
the threshold to be changing as a function of trial from state transition? 

We indeed suggest in the discussion that the difference between learning from surprising events after 
reversal versus later in the stable period might reflect ‘state awareness’. To clarify, we mean that 
reduced learning from oddball events suggests that participants are aware that a single event might not 
signal state change. In contrast, when multiple surprising outcomes occur this likely reflects true 
environmental change, so state switch is in order. We clarified this in Discussion. 

From Discussion p. rz: 

We argue that a bigger difference in learning rates for meaningful and oddball events reflects state 
awareness, that is, ignoring oddball events suggests knowledge of a higher-order structure.  
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R<-<-a It is interesting and somewhat counterintuitive that the effects of trait anxiety is stronger in the 
low state where the shock probability is overestimated in individuals with lower trait anxiety. Would 
the authors expect any relationship to other behavioral or physiological markers (e.g., SCR)? 

This is indeed an interesting question that should be addressed in future studies. On one hand, 
physiological markers could either mirror expectancy ratings and thereby reflect the individual’s 
cognitive model of the environment. Indeed, some studies have reported alignment between self-
reported and physiological measures (Michael, twwx; Torrents-Rodas et al. twrs; Tinoco-Gonzales et 
al. twry). On the other hand, expectancy ratings could reflect deliberate cognitive processes whereas 
the physiological fear response might diverge. Divergence between ratings and physiological markers 
has been reported by a large number of studies (Andreatta and Pauli, twrx; Boddez et al. twrt; Kindt 
and Soeter, twr�; Gazendam et al. twrs; Andreatta et al. twtw). For example, Homan et al (twtr) 
reported change in physiological responses following a reversal without contingency awareness. 
Speculatively, explicit ratings in anxious populations might also reflect a safety mechanism in itself. In 
our case, high TA participants might be aware of relative safety but not be able to inhibit fear response. 
In fact, Gershman and Hartley (twry) did not find a relationship between trait anxiety and SCR-indexed 
spontaneous recovery data.    

We added the following paragraph to discussion: 

One question that remains to be answered is whether the ratings-based results reported here would be 
followed by physiological measures. Physiological markers could mirror expectancy ratings and thereby 
reflect the individual’s cognitive model of the environment (as e.g. in Michael, mlln; Torrents-Rodas et 
al. mlok; Tinoco-Gonzales et al. mlop) or they could reflect deliberate cognitive processes whereas the 
physiological fear response might diverge (as in Andreatta and Pauli, mlon; Boddez et al. mlom; Kindt 
and Soeter, mlos; Gazendam et al. mlok; Andreatta et al. mlml). For example, Homan et al (mlmo) 
reported change in physiological responses following a reversal without contingency awareness. In our 
case, high TA participants might be aware of relative safety (i.e. be in a low state) but not be able to 
inhibit fear response. In support of this idea Gershman and Hartley (mlop) looked at the relationship 
between SCR-indexed spontaneous recovery and state inference. In one of their analyses, they report 
that trait anxiety was not associated with SCR-indexed inference of multiple states.   

 

R<-<-b I am curious what would be the implication on clinical population with regard to general 
vigilance. 

We thank the reviewer for this question. We suggest that at the core of this point lies the question 
whether the increased tendency to infer temporal structure actually exists in clinical groups. While 
reports on the role of TA in aversive learning in a healthy population often bear conflicting evidence, the 
support for a disruptive role of clinical anxiety in fear learning is fairly consistent (Duits et al. twr�), i.e., 
clinical populations are linked to lack of fear extinction. This would be more in line with one-state 
conceptualization of the environment. Indeed, early work investigating the role of state inference in 
PTSD patients using the classical fear extinction paradigm found that the lack of extinction is related to 
the patient group inferring a single latent state (Norbury et al twtr).  

In relation to vigilance, one option is that non-clinical levels of trait anxiety are associated with adaptive 
responding while the same mechanisms become maladaptive in clinical anxiety. Under this 
assumption, healthy controls high in TA might be able to utilize their vigilance to infer multiple (correct) 
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latent states while clinical levels of anxiety might lead to over-generalization, i.e., classifying all events 
as having single latent cause. Alternatively, clinically anxious individuals driven by the motivation to 
reduce uncertainty may find too many latent causes (i.e., non-existent patterns in data). The latter 
could for example be driven by mis-attribution of structure (i.e., reducible uncertainty) to random events 
(i.e., stochasticity). Future work should consider these two options, as well as the relationship between 
state inference and vigilance-avoidance, which might compete for explanation of fear relapse 
(Weinberg and Hajcak, twrw).  

We added a section discussing the possible relationships between state inference and clinical anxiety 
to Discussion. Due to space restrictions, we kept this part brief, however, if the reviewer wishes we 
could work in more on the role of vigilance into discussion.  

Text added to Discussion p. rz: 

An interesting future direction would be to investigate whether clinically anxious individuals continue to 
(perhaps sub-optimally) try and find structures in noisy environments, i.e. whether they tend to 
erroneously find too many latent causes, or whether they are instead driven by the adversity of high 
uncertainty itself and lump all experiences under a single latent cause (as in Norbury et al. mlmo).       

Additional comments - R< 

R<-=-a As far as I understand, the state inference models were fit to individual cues and there were 
no carry over between sessions. I would be interested in potential order effects on inference. Is it 
easier to deploy state-switching once you inferred that there are harmful and safe states? That is, 
when tl/ol session comes before rl/sl session, do you see more fit improvements for the n-state 
model in the rl/sl session? 

This is a great point! Using only participants who completed all three sessions, we first split the data by 
session (uw/�w, xy/ty, vw/rw) and the order position in which they appeared (first/second/third). Testing 
for any order effects using a LMM revealed no significant order effects. 

Zooming in on the specific question posed by the reviewer, we focused on model fit in the uw/�w 
condition depending on whether participants completed this condition first or after the vw/rw condition. 
The mean reliance on state inference was higher when vw/rw preceded uw/�w (deltaBIC = ru.�) 
compared to when uw/�w occurred first (deltaBIC = u.zu), but this effect was not statistically significant, 
t(�t)=r.ur, p=.rr (left panel below). We also analyzed the relationship between TA and model fit as a 
function of order. We also found no significant effect here (right panel below). 

We included these analyses in the Supp. Mat. (“Order effects”). 
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R<-=-b The participants of this study are pooled from three studies, and one of the studies involved a 
drug administration. Although I understand that only the placebo group was included for the analysis 
to minimize the differences between studies, I am curious if there was any significant behavioral 
differences between the studies. 

To compare differences between studies we re-ran the behavioral analyses (ratings, slope) using the 
xy/ty condition with study as a fixed effect. The LMM models did not find any significant difference 
between studies in either analysis. As outlined in response Rr-z, the trait anxiety scores were generally 
lowest in the drug study (e.g., using overall median split across all three studies, there were only six 
participants in the high TA “group”). Here, we show the behavioral ratings (trials rw+) separately for 
each study, state and median-split anxiety. We included this analysis in the Supp. Mat. (“Differences 
between studies“). 
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R<-=-c Task design: Are “sessions” and “conditions” used interchangeably? Within a session, were 
three cues presented in a pseudo-randomized order? It would be great if this can be clearly 
conveyed in Figure oB and oC. 

We thank the reviewer for spotting this inconsistency. The two terms were indeed used 
interchangeably. We now unified them under the name "session". We also adjusted Figure r to highlight 
the pseudo-randomized order of cues across trials.  

 

 

R<-=-d  I find reporting of the data using median split confusing. I understand the rationale to 
visualize the results for high and low trait anxiety participants, but the interpretation in the text makes 
it somewhat unclear how the results from the linear mixed models match up with the interpretation. I 
suggest changing the languages to reflect the statistical models used in the analyses. 

 

We felt the same way, so in response to the reviewer’s point, we modified the manuscript in two ways. 
First, as suggested, we added the corresponding parametric slopes where relevant (i.e., analyses with 
TA). After consideration, we also kept the mean estimates for the following reason: in addition to 
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knowing the change in ratings as a function of TA, the readers might also be interested in knowing the 
approximate absolute values, for example to compare the ratings to true estimates. We are happy to 
modify this further if the reviewer thinks it’d be helpful. Below is a modified excerpt from the section in 
stable cues. The modifications can be found in the Results section (pages z and rw).  
 

This analysis revealed that the difference in ratings between high- and low-prob cues increased as a 
function of trait anxiety, as indicated by an interaction of TA and cue type, F(o,klq)=r.to, p=.llt, see 
Fig mc. There was a positive association with TA in stable-high cue, =.99:;, and a negative 
relationship in the stable-low cue, = -.99:;: high TA participants reported higher ratings in 
stable-high and lower ratings in stable-low cue. Direct contrast of the associations of TA and rating 
between high and low-prob cues showed significant difference, t(msm)=m.rk, p=.llt. We also tested 
whether ratings differed significantly from the true contingency level using one-way t-tests, see Fig md. 
When judging the stable-high cue, less anxious participants significantly underpredicted the true 
reinforcement level in the np/mp, t(sn)=-m.rm, p =.lsn, and tl/ol, t(oq)=-k.po, p =.lop, sessions. When 
judging the stable-low cue, less anxious participants overpredicted the probability in the np/mp session, 
t(sn)=k.pq p =.lol. More anxious participants, in contrast, did not show over- or underpredictions, all ps 
> .lp. 
 

Second, to help with relating the statistical models to the visualizations, we added the marginal means 
predicted by the corresponding linear model to each plot. This hopefully helps to match the model 
results to the visualizations. Below we show the revised Figure ta with the added means as an 
example.  

 
 

R<-=-e In the computational model sections, some of the notations are missing or have typos. For 
example, did the authors mean f(x,a,b) in Eq. o? I believe Eq. k needs notations for P and O, 
although I can infer that they are probability and outcomes, respectively. CRP distribution with the 
theta and alpha parameters should be added. Could you explain how these parameter values were 
picked? 

 

We thank the reviewer for spotting these errors which have now been fixed. We also added the 
relevant equations and description for the CRP. The specific values were chosen to reflect a plausible 
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prior for the number of states with one or two states being fairly likely but rw+ states being unlikely 
given the task (see image of the distribution below). This prior also reflects latent causes inferred by 
Norbury et al (twtr), Figure tc. We decided to fix these parameters because the estimation of both the 
eta and the CRP parameters would have led to identifiability issues, since they impose opposing effects 
on the overall threshold. 
 

In order to allow new states to be created but to prevent the model from creating too many states, q 
follows a Chinese Restaurant Process distribution with parameters =l.mp and =o under which the creation 
of each next state becomes progressively more difficult. CRP probability density distribution was 
generated using ollll iterations of Eqs. os and op and averaging over them.  
 

The following text was added to Method p. tz.  
 

Chinese Restaurant Process – probability of creating new state 
Eq. os PSnew=S= θ + |S|αt+ θ 

Chinese Restaurant Process – probability of choosing existing state 
Eq. op PSt=S= s- αt+ θ 

 

When a new state is being created it is initialized with mean at the current expected value (Pt,sSt,s) 
and standard deviation calculated using Eq. pb from the estimated parameters l  and l (i.e., all states 
will have the same starting uncertainty).  
 

 
 

Additional changes 
ADD-; 
During correction of the plots we noticed that one of the scripts had accidentally excluded rz out of zv 
participants from the analysis of the ratings for the reversal cue (Page rr). This did not qualitatively 
impact the results, but some of the statistical values have changed slightly.  
 

 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have addressed my comments very thoroughly and I am happy to recommend 

publication. 

Reviewer #2 (Remarks to the Author): 

The authors have done a nice job responding to my previous comments and concerns. I still believe a 

larger replication sample would have been ideal, especially given the strongest effect was seen in the 

90/10 uncertainty condition and this was only made up of 37 participants. Otherwise, I liked the 

additional analyses and feel the results are much clearer now. 

Reviewer #3 (Remarks to the Author): 

The authors have well addressed the major issues in their revised manuscript. I thank the authors for 

their efforts and congratulate them on this work. 

Here are a few minor points that remain: 

- Figure 1. (b) caption has a typo (sesions → sessions) 

- Eq. 2 (previously Eq. 3) still seems to need notations for P, O, and t (see R3-4-e) 

- Page 26. The newly added description has a typo (Figure X) 

- The first paragraph of the new discussion included in R3-2-a does not seem to be in the main text. It 

would be fine to have this just in the response as the second paragraph does explain the reasoning 

well, but I am just bringing this to the authors' attention.



 

 

 

  

 

Response to reviewers 
 

Reviewer #1 
 
R1.1: The authors have addressed my comments very thoroughly and I am happy to recommend 
publication. 
 
We thank the reviewer for their helpful and positive feedback.  
 
 
Reviewer #2  
 
R2.1: The authors have done a nice job responding to my previous comments and concerns. I still 
believe a larger replication sample would have been ideal, especially given the strongest effect was 
seen in the 90/10 uncertainty condition and this was only made up of 37 participants. Otherwise, I liked 
the additional analyses and feel the results are much clearer now.  
 
We thank the reviewer for their helpful and positive feedback. We agree with the general sentiment and 
hope we will be able to continue and replicate the finding in a new experiment with a 90/10 condition.  
 
 
Reviewer #3 
 
R3.1: The authors have well addressed the major issues in their revised manuscript. I thank the authors 
for their efforts and congratulate them on this work. 
 
We thank the reviewer for their helpful and positive feedback.  
 
R3.2: Here are a few minor points that remain: Figure 1. (b) caption has a typo (sesions ??? sessions) 
 
The typo has now been fixed.  
 
R3.3: Eq. 2 (previously Eq. 3) still seems to need notations for P, O, and t (see R3-4-e) 
 
We thank the reviewer for noticing this. We have now amended the text as follows:   

 
“To obtain trial-wise learning rates, we rearranged the Rescorla-Wagner (Eq. 1) learning rule and 
calculated the trial-specific learning rate α (Eq. 2), where P stands for probability ratings, O for 
outcomes (shock/no-shock) and t for a given trial. “ 

 
R3.4: Page 26. The newly added description has a typo (Figure X) 
 
We have now fixed this to read: “Supplementary Figure 3.”  
 
R3.5: The first paragraph of the new discussion included in R3-2-a does not seem to be in the main text. 
It would be fine to have this just in the response as the second paragraph does explain the reasoning 
well, but I am just bringing this to the authors' attention 
 
We thank the reviewer for bringing this to our attention. We actually found the first paragraph to raise 
important points that were not covered in the rest of the discussion, so we now included it.  


