

Supplementary Figure S1. Diagrams and sequence chromatograms of *she*^{ci26} and ^{ci30} mutations.

(A) *she^{ci26}* mutants have a 7 bp deletion. Alignment of wild-type and *she^{ci26}* mutant sequences is shown starting with the first coding ATG. (B) Genomic DNA sequence chromatogram of *she^{ci30}* mutants. (C) *she^{ci30}* mutants carry a 575 bp deletion and 24 bp insertion present between exons 3 and 4 within *she* gene.

Supplemental Figure S2. Trunk intersegmental vessel analysis in *she-/-* and wt sibling embryos.

(A,B) Confocal images of the trunk region of live wt and *she-/-* sibling embryos in *kdrl:GFP* background at 72 hpf. Selected arterial (aISV) and venous (vISV) intersegmental vessels are shown. (C) The number of aISV and vISV was counted in a selected region in wt and *she* mutant embryos (the number of analyzed embryos in two independent experiments is provided as 'n'). Embryos were genotyped after the imaging. No significant difference between wt and *she* mutant embryos was observed (p>0.05, t-Student's test).

Supplemental Figure S3. Endothelial marker expression, analyzed by in situ hybridization, is unaffected in *she* mutants at 24 hpf.

(A, B) *kdrl* is strongly expressed in the dorsal aorta (DA) and intersegmental vessels (ISVs) and weakly expressed in the posterior cardinal vein (PCV) of both wild-type sibling and *she -/-* mutant embryos.

(C, D) flt1 expression is restricted to the DA and ISVs of both wild-type and she -/- mutants.

(E, F) *dab2* is strongly expressed in the PCV and lightly expressed in the DA of both wild-type and *she -/-* mutants. Trunk region is shown in all panels. Embryos were obtained from an incross of *she+/-; kdrl:GFP* parents and

subsequently genotyped.

Supplemental Figure S4. Generation of wild-type and mutant vascular endothelial-specific *she* zebrafish lines. (A-C) Fluorescent microscopy image of *fli1:she-2A-mCherry; kdrl:GFP* embryo at 3 dpf. (D) A diagram of She deletion constructs.

Supplemental Figure S5. *pdfgrb* mRNA expression analysis by hybridization chain reaction (HCR) at 48 hpf. (A,B) *pdgfrb* (red) expression in the trunk region of wild-type sibling and *she* mutant embryos in *kdrl:GFP* background at 48 hpf. Fluorescence within the dorsal aorta region (boxed) was selected for quantification. (C) Quantification of relative *pdgfrb* mRNA expression. No significant difference was observed (p>0.05, Student's t-test).

Α

		ABL SITE 1		ABL SITE 2	
Human	204	ILEDYADPYDAK	228	ENDGYMEPYDAQ	
Mouse	207	ILEDYADPYDAK	231	ENDGYMEPYDAQ	
Fish	162	IVEDYADPFDAK	186	ENDGYMEPYDAQ	
		ABL SITE 3		ABL SITE 4	

OITE O

Human	290	PPQLYDTPYEPA	325	PAAEYEQPWEWK
Mouse	292	PPQLYDTPYEPS	328	PAAEYEQPWEWK
Fish	228	PPQIYDVPYEEV	254	PPAE <mark>YELP</mark> WEWK

Supplemental Figure S6. Consensus ABL phosphorylation sites YXXP are required for SHE function.

(A) Consensus ABL phosphorylation sites are conserved between zebrafish, mouse and humans.
(B) Vascular endothelial expression of a mutant construct *fli1:sheFXXP-2A-mCherry*, where all four consensus tyrosines have been substituted into phenylalanine, fails to rescue the pericardial edema in she mutants at 4 dpf. The first bar showing *she-/-* embryos (no Tg) is copied from Fig. 3J.
(C) DA diameter measurement in *fli1:sheFXXP-2A-mCherry* embryos and sibling mCherry-negative embryos at 28 hpf. 5 measurements were performed in each embryo, which were then averaged for statistical calculations. n corresponds to the number of embryos. ± SEM is shown. ***p<0.001, Student's t-test.

Supplemental Figure S7. Hybridization chain reaction (HCR) analysis of *cldn5b* mRNA expression at 24 hpf.

(A,B) *cldn5b* (purple) and *kdrl:GFP* fluorescence in the trunk region of *she* mutant and wild-type sibling embryos. DA, dorsal aorta; PCV, posterior cardinal vein. *cldn5b* fluorescence is shown in A',B'.
(C) Quantification of *cldn5b* fluorescence in the DA. *p=0.036, Student's t-test. Error bars show SEM. Data show combined results from two independent experiments.

Supplemental Figure S8. Cldn5 protein expression is increased in *she* mutant embryos.

(A,B) Immunostaining for Cldn5 (red) combined with *kdrl:GFP* fluorescence in wild-type sibling and *she* mutant embryos at 48 hpf. Red channel is shown in A',B'. DA, dorsal aorta; PCV, posterior cardinal vein.
(C) Quantification of Cldn5 immunofluorescence within the DA. Embryos were obtained from an incross of *she+/-; kdrl:GFP* parents and subsequently genotyped. *she+/+* and *she+/-* genotypes were combined for this analysis. Error bars show SEM; Student's t-test was used.

Supplemental Table S1. Primer sequences used to generate she mutant and transgenic lines and perform qPCR				
she_F1	ATCAATAATAGGGGCCACTTTGAG			
she_R1	CCGTCCTAACTCGATGGCAG			
she_gRNA1	GCGTAATACGACTCACTATAGGAGGCGAAGGTGAGGGGTCGTTTTAGAGCTAGAAATAG			
she_gRNA2	GCGTAATACGACTCACTATAGGCAGGGTGGGATCAACAATGTTTTAGAGCTAGAAATAGC			
she_gRNA_R1	AAAGCACCGACTCGGTGCCA			
she_gRNA left	TATGCTCTTGTGCAGAGATTCG			
she_gRNA right	TGACCAAAACATACCCTTTTCA			
she_gRNA midR	CTGACAGGGCTCTAACAATCTG			
she_attB_F1	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGGCGAAGTGGTTTAAAGATTTTCC			
she_attB_F3	GGGGACCACTTTGTACAAGAAAGCTGGGTTGTGTGTGCGTGGCACGGGGTG			
she_deltaSH2_attB_R	GGGGACCACTTTGTACAAGAAAGCTGGGTTGCTCTGTTTCTCCAATGGCAGG			
sheSH2_attB_F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGTGGTATCATGGCAGTGTGAGTCG			
she_attB_R3	GGGGACCACTTTGTACAAGAAAGCTGGGTTGTGTGTGCGTGGCACGGGGTG			
sheYXXP1_F1	CAGAACCGATCATCGTAGAGGATTTTGCCGACCCATTTGATGCTGAG			
sheYXXP1_R1	CTCAGCATCAAATGGGTCGGCAAAATCCTCTACGATGATCGGTTCTG			
sheYXXP2_F1	GAAGGAGAGAACGATGGCTTCATGGAGCCTTATGATGCCCAGCTC			
sheYXXP2_R1	GAGCTGGGCATCATAAGGCTCCATGAAGCCATCGTTCTCTCCTTC			
sheYXXP3_F2	GTCTGGACCCCCTCAGATCTTTGATGTCCCATATGAGGAGG			
sheYXXP3_R2	CCTCCTCATATGGGACATCAAAGATCTGAGGGGGTCCAGAC			
sheYXXP4_F1	CAGACCGCCGGCAGAGTTTGAGCTGCCCTGGGAGTGGAAGAAAG			
sheYXXP4_R1	CTTTCTTCCACTCCCAGGGCAGCTCAAACTCTGCCGGCGGTCTG			
cldn5a-F	GACAACGTGAAAGCGCGGG			
cldn5a-R	AGGAGCAGCAGAGTATGCTTCCC			
EF1a-F	TCACCCTGGGAGTGAAACAGC			
EF1a-R	ACTTGCAGGCGATGTGAGCAG			

MOVIE LEGENDS

Movie 1. Blood flow in the tail region of wild-type zebrafish embryos. Wild-type siblings obtained from an incross of *she^{ci26}* heterozygous adults in *kdrl:GFP; gata1:dsRed* background were imaged at 4 dpf using confocal microscopy.

Movie 2. Blood flow in the tail region of *she* **mutant embryos.** Mutant embryos obtained from an incross of *she*^{*ci*26} heterozygous adults in *kdrl:GFP; gata1:dsRed* background were imaged at 4 dpf using confocal microscopy.