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Chapter 1. Methods 

1.1. Mathematical Modeling 
We used ordinary differential equation systems to model the biosynthesis of IPP/DMAPP. The 

mathematical formalism used to describe the flux dynamics is the saturating cooperative 

formalism (Alves et al., 2008; Sorribas et al., 2007). This formalism allows us to approximate the 

kinetics of any given reaction using a rational expression, where parameters have physical 

interpretations that are common in enzyme kinetics. Vmax parameters represent the apparent 

rate constants of the reactions. Kms represent the apparent Michaelis-Menten constants for the 

substrate(s). Kis represent the apparent inhibition constants of inhibitors. While no activators 

were considered in our model, these can also be included using this formalism. 

1.2. The endogenous MVA and MEP pathways 
To model the wildtype (i.e., the endogenous MVA and MEP pathways), we used the reactions 

shown in Figure 1 and modelled the kinetics of each process using the rate expressions in Table 

S1 and Table S2, as well as the exchange fluxes of IPP and DMAPP between cytoplasm and plastid 

(Table S4). We assume that the cell maintains homeostasis of Acetyl-CoA and Acetoacetyl-CoA. 

1.3. The ectopic MVA pathway in plastid 
The difference between the WT and mutant rice lines is that the mutant rice lines have genes 

that code for plastid-localized enzyme versions of the MVA pathway.  

To model type I mutants, we added the reaction that transforms HMG-CoApl into MVApl to the 

plastid (Table S3), as well as the cytoplasm-plastid exchange reactions for these two metabolites 

(Table S4). In Figure 1, we sequentially added ectopic MVA pathway from type I (only the green), 

to type II (adding green and purple), and to type III (whole ectopic pathway) 

1.4. Exchange of MVA and MEP pathway metabolites between the cytoplasm and 

the plastid 
Under physiological conditions, IPP and DMAPP flow from the plastid into the cytosol in a mostly 

unidirectional way (Bick & Lange, 2003). We implemented this observation by assuming that 

metabolites flow from the plastid to the cytosol at ten times the rate of the import reaction from 

the cytosol. Bick and Lange (Bick & Lange, 2003) also reported that other pathway intermediates 

were not actively transported between the two compartments. Nevertheless, early 

intermediates of the MVA pathway can be found in the plastid space (Schneider et al., 1977). As 

such, we assumed that HMG-CoA, MVA, MVP and MVPP enter and leave the plastid, albeit at 

slower rates. Table S4 summarizes all reactions of material interchanged between plastid and 

cytosol. 

1.5. Estimating rate constants, metabolite concentrations and variations in 

enzyme activity 
Table S5 presents the rate constants for each reaction in the models. Table S6 presents the 

concentrations for the independent variables of the model.  

We extensively searched the literature for quantitative and qualitative information about the 

correlation between changes in gene expression and enzyme activities in the MEP and MVA 

pathways. As we found no such information, we modeled variations in the enzyme activities of 

the mutant lines as described in Comas et al. (2016): changes in gene expression with respect to 

the WT are assumed to be proportional to changes in protein activity. This is the simplest 
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possible assumption about the relationship between changes in gene expression and changes in 

enzyme activity. 

We explicitly consider the enzymes that catalyze each reaction in the rate expressions. As 

𝑉𝑚𝑎𝑥 ≈ 𝑘𝑐𝑎𝑡𝐸𝑛𝑧𝑦𝑚𝑒, the model for the WT sets the enzyme activity to be 1 (the basal state). 

As we model mutant lines we assume that changes in gene expression are proportional to 

changes in enzyme activity and make 𝐸𝑛𝑧𝑦𝑚𝑒 = 𝐸𝑛𝑧𝑦𝑚𝑒𝑊𝑇
𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑚𝑢𝑡𝑎𝑛𝑡 𝑙𝑖𝑛𝑒

𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑊𝑇
. 

The values for the ectopic pathway enzymes are set to zero if the gene is absent. This ensures 

the reaction does no take place in the model. When they are present, 𝐸𝑛𝑧𝑦𝑚𝑒 =

𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑚𝑢𝑡𝑎𝑛𝑡
𝑙𝑖𝑛𝑒

𝐺𝑒𝑛𝑒
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑊𝑇. 

 

1.6. Assembling the models and solving the differential equations 
Each metabolite has its own differential equation in the model. The kinetic rate function, 𝑓𝑗, for 

each process that produces a metabolite M appears as a positive term in the differential 

equation that determines the dynamic behavior of that metabolite. Similarly, the kinetic rate 

function, 𝑓𝑘, for each process that consumes a metabolite appears as a negative term in the 

differential equation that determines the dynamic behavior of that metabolite: 

𝑑𝑀

𝑑𝑡
= ∑ 𝑓𝑗 − ∑ 𝑓𝑘 

(1) 

For each line of rice, we assemble a system of ordinary differential equations (ODEs) that 

describes the dynamic behavior of all metabolites in the system. To solve the ODEs, we assume 

that the metabolic concentrations are in rapid equilibrium with respect to the changes in gene 

expression (Comas et al. 2016). Because of that, we solve the systems of differential equations 

for the steady state of the pathways. 

1.7. Stability analysis 
Biological steady states should be stable (Savageau, 1975; Voit, 2013). Stability measures the 

capacity of a system to remain or return to the steady-state. Lack of stability indicates that the 

model is missing information (Savageau, 1975; Voit, 2013).  

As such, and to validate or correct our modeling assumptions, we performed a stability 

analysis of the models for each rice line. 

An efficient way to assess stability is by calculating the eigenvalues of the Jacobian matrix of 

the ODE system, which are complex numbers (Voit, 2013). If all real parts of all eigenvalues are 

negative, the system is stable. Otherwise, the system is unstable. The Jacobian matrix is 

constructed by taking the partial derivatives of the right-hand side of the ODEs (𝑓𝑖) with 

respect to each state variable (x𝑗), as shown in Eq. 2. 
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(2) 

 

1.8.  Sensitivity analysis 
In addition to stable, biological steady states should be robust, and have low sensitivity to 

parameter changes (Savageau, 1975; Voit, 2013). Sensitivity measures how much a dependent 

variable or output changes when a parameter is altered (Comas et al., 2016). Parameters with 

high sensitivities indicate regions of the network that are incomplete or inaccurate. 

As such, we performed a sensitivity analysis to investigate the robustness of the models and 

the places in the network where our assumptions may have been too simplifying. This allowed 

us to identify which steps of the pathway could have additional regulation that we were 

ignoring. 

We calculated logarithmic, or relative, steady-state parameter sensitivities, which measure the 

relative change in a system variable (X) that is caused by a relative change in a parameter (p)” 

(Voit, 1991): 

 

(3) 

1.9. Including hormone influence in the models 
Hormones were included in the models using a three-stage process. 

First, and for each pair of metabolite-hormone, we adjusted a linear model that assumes the 

metabolite is a function of the hormone. We calculate the adjusted R2 of the models and filter 

out all metabolite-hormone pairs with adjusted R2 below 0.20. 

Second, for the remaining metabolite-hormone pairs after filtering, we investigated how best to 

account for hormone influence in the ordinary differential equations. We tested two alternative 

mathematical formalisms. 

On the one hand, we considered the power-law formalism. This is a simple non-linear formalism 

that can be used to approximate unknown flux functions and has strong theoretical support 

(Alves et al., 2008; Sorribas et al., 2007). In this situation 

𝑀𝑖 = 𝛼𝐻
𝑗

𝑔𝑖𝑗 , (4) 

Where 𝑀𝑖 is the concentration of metabolite i in the model, Hj is the level of hormone j at twelve 

weeks, and 𝛼 and 𝑔 are constants. This formalism can be linearized as 

log 𝑀𝑖 = 𝑐 + 𝑔𝑖𝑗 log 𝐻𝑗 (5) 
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where 𝑐 = log 𝛼.  

On the other hand, we considered the saturating cooperative formalism, which is a more 

detailed approximation in situations where saturation needs to be described (Alves et al., 2008; 

Sorribas et al., 2007). Using this formalism, we can write 

𝑀𝑖 = 𝛼 (
𝐻𝑗

𝐾 + 𝐻𝑗
)

𝑔𝑖𝑗

, 
(6) 

where K is the concentration of hormone that produces half the effect. We linearized it for linear 

model fitting as 

1

√𝑀𝑖

𝑔𝑖𝑗
=

1

𝑑
+ 𝐾

1

𝑑 𝐻𝑗
, 

(7) 

where 𝑑 = √𝛼
𝑔𝑖𝑗

. 

To select which formalism to use when including hormone influence in each line we used a 

criterion that considers the adjusted 𝑅2 and the value for 𝑔𝑖𝑗.  A combination of low adjusted 

𝑅2 and high |𝑔𝑖𝑗| suggests a potentially strong influence of the hormone levels on metabolite 

concentrations (high d |𝑔𝑖𝑗|) over a small range of hormone levels (low adjusted 𝑅2). In this 

situation, we assumed a saturation effect and used the saturating cooperative formalism to 

model hormone influence on metabolite production and consumption. Otherwise, we used the 

power law formalism, as it uses a smaller number of parameters and minimizes the possibility 

of overfitting the model to the data. The threshold for selecting the one or the other formalism 

was set at 0.5 for the ratio |𝑅𝑎𝑑𝑗
2 /𝑔|. If |𝑅𝑎𝑑𝑗

2 /𝑔| > 0.5 we use the power law formalism. 

Otherwise, we use the saturation cooperative formalism. The resulting formalisms are 

summarized in Table S7. 

The final step was selecting the flux to which the hormone influence should be included in. To 

decide this, we calculated the correlation between gene expression levels and hormones using 

a standard linear model 

𝐺𝑖 = 𝑎 + 𝑏𝐻𝑗, (8) 

where Gi is the gene expression levels at 12 weeks. If a hormone was correlated to a metabolite, 

and at the same time was correlated to expression levels of a gene involved in the production 

or consumption of said metabolite, we multiplied the hormone dependency function by the flux 

function for the process catalyzed by the gene. If no strong and significant correlation was found, 

we multiplied the hormone dependency term by the overall production (consumption) flux of 

the metabolite if the correlation between hormone and metabolite was positive (negative). 

We note that, when hormones were below the experimental detection threshold, we revert 

the kinetic expression presented in Table  using a piece-wise approximation to solve the 

differential equations. 

1.10.  Phenotype models 
We took an algebraic approach to model different phenotype variables as a function of 

hormones, genes and intermediate metabolites of terpenoid biosynthesis. The phenotypic 

characteristics to be modeled were the plants’ Height, number of Leaves, Leaf Length, Leaf 
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Width, and Chlorophyl levels. Data is separated according to mutant type, so the analysis and 

model building is performed three times, one for each mutant type. 

First, we built linear models with one predictor variable and selected the predictor variables 

that had a significant (𝛼 = 0.05) effect on the phenotype and whose model had an Adjusted R2 

greater than 0.2. With the remaining phenotype variables and predictors, we built every 

possible multivariate model with all subsets of predictors. So, for a given subset of predictors 

{𝑥1, 𝑥2, … , 𝑥𝑛}, the model would be: 

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 (9) 

To avoid overfitting, we compared the models using AICc (AIC corrected for small sample sizes) 

and BIC estimators. In addition to AICc and BIC, the p-values of the multiple predictors’ effects 

and the adjusted R2 were considered when the best multivariate model was selected. 

 

1.11. Gene constructs and gene expression 
Table A summarizes the transgenes used to create a plastidic MVA pathway.  

Table A: Gene constructs 

Transgene Original 
organism 

Promoter/terminator 

BjHMGS Brassica 
juncea 

Hordeum vulgare D-hordein promoter and Agrobacterium 
tumefaciens nopaline synthase (nos) terminator 

tHMGR Arabidopsis 
thaliana 

Triticum aestivum low-molecular-weight glutenin promoter 
and rice ADPGPP terminator 

CrMK Catharanthus 
roseu 

H. vulgare D-hordein promoter and A. tumefaciens nos 
terminator 

CrPMK Catharanthus 
roseu 

Zea mays γ-zein promoter (GZ63) and A. tumefaciens nos 
terminator 

CrMVD Catharanthus 
roseu 

Orizae sativa prolamin promoter (RP5) and A. tumefaciens 
nos terminator 

 

We assembled BjHMGS, tHMGR, CrMK, CrPMK, CrMVD into two separate expression vectors. 

We inserted a transit peptide at the N-terminal region of the enzymes in order to direct them 

to the plastid. GenScript (Piscataway, NJ, USA) optimized the sequences of the transgenes for 

expression in rice and pre-assembled them onto two vectors. Vector one contained the three 

initial genes of the MVA pathway (BjHMGS:tHMGR:CrMK). Vector two contained the final two 

genes of the MVA pathway (CrPMK:CrMVD). An additional plasmid containing the hygromycin 

phosphotransferase (hpt) selectable marker gene (Christou et al. 1991) under the control of 

the constitutive cauliflower mosaic virus 35S promoter and the nos terminator to select the 

transgenic rice plants. 

We used the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) to isolate total seed RNA, which 

we quantified using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific). We used 

2 μg of total RNA as a template for first strand cDNA synthesis with Quantitech reverse 

transcriptase (Qiagen) in a 20-μL reaction volume. We used a CFX96 system (Bio-Rad, Hercules, 

CA, USA) for Real-time qRT-PCR, using 20-μL mixtures containing 5 ng cDNA, 1 × iQ SYBR Green 

Supermix and 0.5 μM of the forward and reverse primers designed for the transgenes BjHMGS, 
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tHMGR, CrMK, CrPMK, CrMVD, and the endogenous MVA and MEP pathway genes OsHMGS, 

OsHMGR, OsMK, OsPMK, OsMVD, OsDXS, OsDXR, OsMCT, OsCMK, OsMDS, OsHDS, OsHDR and 

OsIPPI . We used serial dilutions of cDNA (80–0.0256 ng) to generate standard curves for each 

gene. We performed triplicate PCR using 96-well optical reaction plates. We plotted the ΔCt 

values of different primer combinations of serial dilutions against the log of starting template 

concentrations using CFX96 software to calculate amplification efficiencies. We used the rice 

housekeeping OsActin1 (ABF98567.1) as an internal control. 

1.12. Hormone determinations 
We built calibration curves for each phytohormone (1, 10, 50 and 100 µg L−1) and corrected 

for 10 µg L−1 deuterated internal standards. These curves were used to quantify the hormones 

in transgenic rice lines. 

We homogenized 0.1 g of fresh leafs in liquid nitrogen. Then, we immersed the homogenate in 

1 mL 80:20 (v/v) methanol/water at –20 °C, separating the solids through centrifugation 

(20,000 × g, 15 min, 4 °C) and re-extracted for 30 min at 4 °C as above. We separated the 

pooled supernatants using Sep-Pak C18 Plus cartridges (Waters, Milford, MA, USA), thus 

removing interfering lipids and pigments. Finally, we evaporated the mix under vacuum (40 °C) 

to near dryness. We then dissolved the residue in an ultrasonic bath containing 0.5 mL 20:80 

(v/v) methanol/water. We passed the dissolved samples through 0.22-µm Millex nylon filters 

(Millipore, Bedford, MA, USA), and injected 10 µL of the filtered extract in an Accela Series 

ultra-high-performance liquid chromatography (UHPLC) system coupled to an Exactive mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) via a heated electrospray 

ionization (HESI) interface. We used Xcalibur v2.2 (Thermo Fisher Scientific) to obtain the mass 

spectra.  We achieved 92–95% target compound recovery. 
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Chapter 2. Results 

2.1. Gene expression measurements 
 

 

Figure A. Gene expression levels. (A): Endogenous genes, normalized with respect to the gene 

expression in WT rice. We normalized WT gene expression with respect to actin levels (B): 

Exogenous genes, normalized with respect to actin levels. 
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2.2. Hormone determinations 

 

 

Figure B – Experimental measurements for plant hormones in the four types of rice lines. See section 1.12 for technical details.
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2.3. Phenotype measurements 

 

Figure C - Phenotype measurements. Phenotypes were determined as described in the main 

text.  
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2.4. Sensitivity Analysis of the WT line 
Sensitivity analysis identifies the parameters to which the various variables of the model are 

most sensitive, as described in (Alves et al., 2008; Sorribas et al., 2007). A high sensitivity of a 

variable to a parameter indicates that small changes in that parameter might lead to big changes 

in the variable. 

We performed a logarithmic sensitivity analysis of the dependent concentrations of the WT 

model with respect to each parameter of the model. Table S9 shows the concentration 

sensitivities. We only present sensitivities with an absolute value larger than 0.5. 

 

2.5. Stabilization of the mutant models 
Biological steady states should be stable and robust, having low sensitivity to parameter changes 

(Savageau, 1975; Voit, 2013).  When implementing the modified models for each mutant line as 

described in sections 2.3 to 2.6, we found that the steady states were unstable for some of those 

lines, with a few intermediate metabolites accumulating indefinitely. Unstable steady states 

indicate that the models are not adequate representations of the biological situation (Savageau, 

1971, 1976). 

One possibility for explaining this instability is the existence of a non-proportional relationship 

between changes in gene expression and changes in enzyme activity (see section 2.5). To test 

this hypothesis, we investigated if the steady state of a line would stabilize if changes in enzyme 

activities and changes in gene expression were not proportional.  

Using a minimal intervention policy, we identified the metabolites that accumulated in each line, 

which were DXP, CDP-MEP, MEcPP, or combinations of them. Reactions r9, r12, and r13 of Table 

S2 either produce or consume these metabolites. Consequently, we scanned the values for the 

Vmax parameters of reactions Vmax9, Vmax12 and Vmax13 in order to identify the minimum 

change in those parameters that would stabilize the steady state of each mutant line.  

To find the values of Vmax that made the models stable we scanned one-dimensional, two-

dimensional and three-dimensional spaces, and we checked for steady state stability with each 

set of parameter values. The sets of Vmax that made the models stable were stored in a 

candidate sets list and we chose the best as the one with minimum Euclidian distance to the 

original set of values of that line. Figure S1 shows that, overall, the more complex the model is, 

the bigger must the change in parameter values be to stabilize the model. 

 

Chapter 3. Discussion  

The terpenoid family holds many chemicals with importance in pharmacy, biotechnology, 

biomedicine and cosmetics. IPP and DMAPP production and polymerization is key to their 

biosynthesis. Plants produce these monomers with two pathways: MVA pathway (cytosol) and 

MEP pathway (plastid). A part of the flux is used for the biosynthesis of developmental 

hormones, making redirection of the flux detrimental to the plant. Developing plants that 

produce IPP/DMAPP in high amounts is a requirement for their use as a platform to produce 

high value terpenoids, and an important goal in biotechnology. We participated in the creation 

of mutant rice lines that express the totality or parts of the MVA pathway in the plastid. Data 

was collected on the macroscopic and molecular phenotypes, gene expression, terpenoid 
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compounds and hormone levels of the different mutant lines. Intermediates of the pathways 

could not be measured with the current technology. Integrating the different data and 

understanding the changes brought by the ectopic pathway is complex. To generate 

understanding of this, we developed line specific mathematical models using the available data. 

We used ODEs to model terpenoid biosynthesis. We described the reactions in the pathways 
with cooperative formalisms, and power laws for diffusion rates, with a couple of exceptions 
where data was not available. For the different mutants, the ectopic pathway reactions were 
included as corresponded to the type of mutant and line specific Vmax were given by directly 
correlating gene expression data to enzyme activity, so that the new Vmax were the WT model 
Vmax multiplied by the factor of increase/decrease of gene expression with respect to the WT 
line. We integrated the hormone effects by searching correlation between them and the 
metabolites and representing the effect as either a power law or a saturation formalism 
depending on the strength and significance of the correlation. 

The WT model, or basal, model passed all generic quality controls for model behavior. The 
steady state of the WT model was stable, as proved by the eigenvalues. Out of 700 sensitivities 
variable-to-parameter calculated, 646 were lower than 0.1. An example of high sensitivity is 
IPPpla when Km6 is varied. From the sensitivities of eigenvalues to parameters, 677 out of 700 
were below 0.1. High sensitivities help identify places where the model can be improved, 
because such places act as weak links of a chain towards stability and robustness of the steady 
state values. The concentrations given by its steady state are also within ranges that make 
biological sense. Even if the current technology does not allow to validate this experimentally, 
due to these intermediates having a short residence time, the models allow us to see differences 
on the steady states based on the gene expression levels. The changes in metabolites propagate 
as expected when one flux is increased or reduced, with the model being more susceptible to 
instability in the MEP pathway, due to feedback regulation only existing in the first step of the 
pathway. The models tell us that, due to the differences in gene expression and the ectopic 
pathway, the IPP and DMAPP levels should decrease in the mutant lines. 

We scanned Vmax9, Vmax12 and Vmax 13 to make the mutant models stable. For each line, we 

detected which of those three metabolites accumulated, and the corresponding Vmax was 

tweaked. This “simplest solution” approach would not work alone, because increasing upstream 

rates was causing the problem to be displaced downstream (e.g., if only DXP was accumulating 

and we increased its depletion rate, then CDP-MEP would accumulate instead). Therefore, the 

Vmax downstream were scanned as well. We tried to stabilize by decreasing Km9, Km12 and 

Km13 instead, but the impact was not enough to avoid metabolite accumulation, so we 

discarded this approach. Our analysis of sensitivity of eigenvalues to parameters would make us 

expect that at least changing Vmax12 and Vmax13 would affect the stability of the model. 

However, the eigenvalues that become destabilized do not correspond with DXP, CDP-MEP, 

MEcPP. Such metabolite specific correlation could be hidden in multivariate sensitivity, as 

stabilizing often required changing more than one of those parameters. 

Our models assume that changing gene expression directly correlates to changing enzyme 

activities. That, together with the fact that Vmax9, Vmax12 and Vmax 13 required adjustment, 

could imply that regulation not described in literature is required at those steps of the pathway. 

Said regulation would cause the decoupling between gene expression and protein synthesis or 

be post-translational regulation of protein activity.  

The method used in the transformation of the lines results in a non-targeted integration of the 
ectopic genes in the genome of the endosperms. This could explain different behaviors between 
lines within the same mutant type. While some lines are unstable and others are not within the 
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same type, once stabilized, the difference in metabolite levels among lines is usually not greater 
than one order of magnitude. The model is restricted to the MVA and MEP pathways, and 
squalene, sterols and Vitamin E could not be integrated as we were missing transcriptomic data 
on the enzymes responsible for the creation and consumption of said metabolites.  

The lack of data for testing makes impossible for now to validate the model quantitatively. 
Metabolite data is obtained in-silico from the models without the hormone effects, so we could 
not use it for validation of the final models. However, metabolite-hormone correlation could be 
carried over from the steady state simulations in case where gene expression-hormone 
correlation exists. That is, the models without the hormones are still implicitly correlating 
metabolite levels to gene expression (even though at a multivariate scale), so if expression-
hormone correlation is found, hormone to metabolite effects could be inferred. 

Additionally, non-expected tendencies with other metabolites are observed when adding the 
hormone effects. Different hypothesis could be attributed to this observation. First, these 
correlations were filtered out with the adjusted R2. This could be detected with more data 
points, or by trying different thresholds for filtering candidate hormone effects. Second, these 
correlations propagate from upstream or downstream effects. The fact that one correlation is 
detected but not others could imply additional regulation in the pathway. Our model would not 
reflect those regulations and therefore effects would propagate to other metabolites 
proportionately. Testing different models that have been modified to include such regulation 
could be a way to detect this. Alternatively, removing one source of variation of our model and 
focusing on the factor of interest could help. Our models have two sources of variation: one is 
the variables and rates considered in the specific mutant-type model (the “shape” of the model 
itself), and the other is the different Vmax values given to each line, which are directly correlated 
to gene expression. For example, there is no reason to not include the plastid versions of MVA 
pathway intermediates in the WT model, other than Ockham’s Razor, as we consider to be 
exchange between cytosol and plastid. 

As for the phenotype models, the predicted versus observed plots give us an idea of the 
performance of the selected linear models, thought we need to mind that part of the data 
(hormones and gene expression) is the same that was used to build the models. In other words, 
we lack a traditional test set. Predicted values are in the range of the real values, and Type I 
models perform well. The performance seems progressively worse in Type II and then Type III 
models. This drop in performance could be explained as the increasing complexity of the ODE 
models adding noise to the metabolite in silico data, but some of the low performing linear 
models do not include metabolite predictors at all, ruling out that possibility. Thus, the building 
of the models itself is faulty, as confirmed by the lower significance of the predictors’ coefficients 
in those models. The tendency of the low performing models is to overestimate lower values of 
the independent variable and underestimate higher values.  
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Appendix A. Supplementary Figures 
 

 

Supplementary Figure S1. Distribution of each line’s Normalized Euclidean distance of Vmax9, Vmax12 and 
Vmax13 to the original values. 

 



1 
 

Appendix B. Supplementary tables. 
 

Table S1. MVA pathway reactions that were considered in the model. 

MVA pathway (cytoplasm) Rate Expression Rate 

Acetoacetil-CoAcyt → HMG-CoAcyt (𝑉𝑚𝑎𝑥1 𝐻𝑀𝐺𝑆 𝑎𝑐𝑒𝑡𝑜𝑎𝑐𝑒𝑡𝑦𝑙-𝐶𝑜𝐴cyt)/(𝑎𝑐𝑒𝑡𝑜𝑎𝑐𝑒𝑡𝑦𝑙-𝐶𝑜𝐴cyt + 𝐾𝑚1 (1

+ (𝐻𝑀𝐺-𝐶𝑜𝐴cyt)/𝐾𝑖1) ) 

𝑟1  

HMG-CoAcyt → MVAcyt 𝑉𝑚𝑎𝑥2 𝐻𝑀𝐺𝑅 𝐻𝑀𝐺-𝐶𝑜𝐴cyt

𝐻𝑀𝐺-𝐶𝑜𝐴cyt + 𝐾𝑚2 (1 +
𝑀𝑉𝐴cyt

𝐾𝑖2
)

 
𝑟2 

MVAcyt → MVPcyt 𝑉𝑚𝑎𝑥3 𝑀𝑉𝐾 𝑀𝑉𝐴cyt

𝑀𝑉𝐴cyt + 𝐾𝑚3 (1 +
𝑀𝑉𝑃cyt

𝐾𝑖31 +
𝐹𝑃𝑃cyt

𝐾𝑖32 +
𝐺𝑃𝑃cyt

𝐾𝑖33 +
𝐺𝐺𝑃𝑃cyt

𝐾𝑖34 +
𝑃ℎ𝑦𝑃𝑃cyt

𝐾𝑖35
)

 
𝑟3 

MVPcyt → MVPPcyt 𝑉𝑚𝑎𝑥4 𝑃𝑀𝐾 𝑀𝑉𝑃cyt

𝑀𝑉𝑃cyt + 𝐾𝑚4 (1 +
𝑀𝑉𝑃𝑃cyt

𝐾𝑖4
)

 
𝑟4 

MVPPcyt → IPPcyt 𝑉𝑚𝑎𝑥5 𝑀𝑉𝐷 𝑀𝑉𝑃𝑃cyt

𝑀𝑉𝑃𝑃cyt + 𝐾𝑚5 
 

𝑟5 

IPPcyt → DMAPPcyt 𝑉𝑚𝑎𝑥6 𝐼𝐷𝐼 𝐼𝑃𝑃cyt

𝐼𝑃𝑃cyt + 𝐾𝑚6 (1 +
𝐷𝑀𝐴𝑃𝑃cyt

𝐾𝑖6
)

 
𝑟6 

DMAPPcyt → IPPcyt 𝑉𝑚𝑎𝑥7 𝐼𝐷𝐼 𝐷𝑀𝐴𝑃𝑃cyt

𝐷𝑀𝐴𝑃𝑃cyt  + 𝐾𝑚7 
 

𝑟7 

2 IPPcyt + 4 DMAPPcyt → 𝑘1 𝐼𝑃𝑃cyt𝐷𝑀𝐴𝑃𝑃cyt 𝑟20 
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Table S2. MEP pathway reactions that were considered in the model. 

MEP pathway (plastid) Rate Expressions Rate 

Glyceraldehyde-3-P + Pyruvate → DXP 𝑉𝑚𝑎𝑥8 𝐷𝑋𝑆 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒

𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝐾𝑚8 (1 +
𝐼𝑃𝑃𝑝𝑙

𝐾𝑖81 +
𝐷𝑀𝐴𝑃𝑃𝑝𝑙

𝐾𝑖82 )

 
𝑟10 

DXP → MEP 𝑉𝑚𝑎𝑥9 𝐷𝑋𝑅 𝐷𝑋𝑃𝑝𝑙

𝐷𝑋𝑃𝑝𝑙 + 𝐾𝑚9 
 

𝑟11 

MEP → CDP-ME 𝑉𝑚𝑎𝑥10 𝑀𝐶𝑇 𝑀𝐸𝑃𝑝𝑙

𝑀𝐸𝑃𝑝𝑙 + 𝐾𝑚10 
 

𝑟12 

CDP-ME→CDP-MEP 𝑉𝑚𝑎𝑥11 𝐶𝑀𝐾 𝐶𝐷𝑃 − 𝑀𝐸𝑝𝑙

𝐶𝐷𝑃 − 𝑀𝐸𝑝𝑙 + 𝐾𝑚11 
 

𝑟13 

CDP-MEP → MEcPP 𝑉𝑚𝑎𝑥12 𝑀𝐷𝑆 𝐶𝐷𝑃 − 𝑀𝐸𝑃𝑝𝑙

𝐶𝐷𝑃 − 𝑀𝐸𝑃𝑝𝑙 + 𝐾𝑚12 
 

𝑟14 

MEcPP → HMBPP 𝑉𝑚𝑎𝑥13 𝐻𝐷𝑆 𝑀𝐸𝑐𝑃𝑃𝑝𝑙

𝑀𝐸𝑐𝑃𝑃𝑝𝑙 + 𝐾𝑚13 
 

𝑟15 

HMBPP → IPPpl 𝑉𝑚𝑎𝑥14 𝐻𝐷𝑅 𝐻𝑀𝐵𝑃𝑃𝑝𝑙

𝐻𝑀𝐵𝑃𝑃𝑝𝑙 + 𝐾𝑚14 
 

𝑟16 

HMBPP → DMAPPpl 𝑉𝑚𝑎𝑥14 𝐻𝐷𝑅 𝐻𝑀𝐵𝑃𝑃𝑝𝑙

𝐻𝑀𝐵𝑃𝑃𝑝𝑙 + 𝐾𝑚14 
 

𝑟17 

IPPpl → DMAPPpl 𝑉𝑚𝑎𝑥6 𝐼𝐷𝐼 𝐼𝑃𝑃pl

𝐼𝑃𝑃pl + 𝐾𝑚6 (1 +
𝐷𝑀𝐴𝑃𝑃pl

𝐾𝑖6
)

 
𝑟18 

DMAPPpl → IPPpl 𝑉𝑚𝑎𝑥7 𝐼𝐷𝐼 𝐷𝑀𝐴𝑃𝑃pl

𝐷𝑀𝐴𝑃𝑃pl  + 𝐾𝑚7 
 

𝑟19 

3 IPPcyt + DMAPPcyt → 𝑘1′ 𝐼𝑃𝑃cyt𝐷𝑀𝐴𝑃𝑃cyt 𝑟22 
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Table S3. Exchange of MVA and MEP intermediates between the cytosol and the plastid. 

Exchange of material between cytoplasm and plastid Rate expressions Rate 

IPPcyt → IPPpl 𝑘2 𝐼𝑃𝑃𝑐𝑦𝑡 𝑟8 

IPPpl → IPPcyt 𝑘3 𝐼𝑃𝑃𝑝𝑙  𝑟9 

DMAPPcyt → DMAPPpl 𝑘2′ 𝐷𝑀𝐴𝑃𝑃𝑐𝑦𝑡 𝑟25 

DMAPPpl → DMAPPcyt 𝑘3′ 𝐷𝑀𝐴𝑃𝑃𝑝𝑙 𝑟26 

HMG-CoAcyt → HMG-CoApl 𝑘4 𝐻𝑀𝐺-𝐶𝑜𝐴𝑐𝑦𝑡 𝑟32 

HMG-CoApl → HMG-CoAcyt 𝑘5 𝐻𝑀𝐺-𝐶𝑜𝐴𝑝𝑙 𝑟33 

MVAcyt → MVApl 𝑘6 𝑀𝑉𝐴𝑐𝑦𝑡 𝑟34 

MVApl → MVAcyt 𝑘7 𝑀𝑉𝐴𝑝𝑙 𝑟35 

MVPcyt → MVPpl 𝑘8 𝑀𝑉𝑃𝑐𝑦𝑡 𝑟36 

MVPpl → MVPcyt 𝑘9 𝑀𝑉𝑃𝑝𝑙 𝑟37 

MVPPcyt → MVPPpl 𝑘10 𝑀𝑉𝑃𝑐𝑦𝑡 𝑟38 

MVPPpl → MVPPcyt 𝑘11 𝑀𝑉𝑃𝑝𝑙 𝑟39 
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Table S4. Ectopic MVA pathway reactions that were considered in the model. 

Ectopic MVA plastid 
pathway 

Rate Expressions Rate 

Acetoacetil-CoApl → 
HMG-CoApl 

(𝑉𝑚𝑎𝑥1 𝐻𝑀𝐺𝑆𝐵𝑗 𝑎𝑐𝑒𝑡𝑜𝑎𝑐𝑒𝑡𝑦𝑙-𝐶𝑜𝐴pl)/(𝑎𝑐𝑒𝑡𝑜𝑎𝑐𝑒𝑡𝑦𝑙-𝐶𝑜𝐴pl + 𝐾𝑚1 (1 + (𝐻𝑀𝐺-𝐶𝑜𝐴pl)/𝐾𝑖1) ) 𝑟27  

HMG-CoApl → MVApl 𝑉𝑚𝑎𝑥2 𝑡𝐻𝑀𝐺𝑅 𝐻𝑀𝐺-𝐶𝑜𝐴pl

𝐻𝑀𝐺-𝐶𝑜𝐴pl + 𝐾𝑚2 (1 +
𝑀𝑉𝐴pl

𝐾𝑖2 )

 
𝑟28 

MVApl → MVPpl 𝑉𝑚𝑎𝑥3 𝑐𝑟𝑀𝑉𝐾 𝑀𝑉𝐴pl

𝑀𝑉𝐴pl + 𝐾𝑚3 (1 +
𝑀𝑉𝑃pl

𝐾𝑖31 +
𝐹𝑃𝑃pl

𝐾𝑖32 +
𝐺𝑃𝑃pl

𝐾𝑖33 +
𝐺𝐺𝑃𝑃pl

𝐾𝑖34 +
𝑃ℎ𝑦𝑃𝑃pl

𝐾𝑖35
)

 
𝑟29 

MVPpl → MVPPpl 𝑉𝑚𝑎𝑥4 𝑐𝑟𝑃𝑀𝐾 𝑀𝑉𝑃pl

𝑀𝑉𝑃pl + 𝐾𝑚4 (1 +
𝑀𝑉𝑃𝑃pl

𝐾𝑖4
)

 
𝑟30 

MVPPp →  IPPpl 𝑉𝑚𝑎𝑥5 𝑐𝑟𝑀𝑉𝐷 𝑀𝑉𝑃𝑃pl

𝑀𝑉𝑃𝑃pl + 𝐾𝑚5 
 

𝑟31 
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Table S5. Kinetic Parameters. All concentration units in mM. All time units in s-1. 

Parameter Value Reference 
Vmax1 0.454 

Biochem J. 383:517-27 Km1 0.043 

Ki1 0.009 

Vmax2 0.033 Phytochemistry 21:2613-2618 
J. Mol. Recognit. 21, 224-232 

Biochem. J. 381, 831-840 
Km2 0.056 

Ki2 0.081 

Vmax3 234.4 

Int. J. Biol. Macromol. 72, 776-783 
Biochem. J. 133, 335-347 

Biochim. Biophys. Acta 279, 290-296 
Org. Lett. 8, 1013-1016 

Km3 0.046 

Ki31 0.18 

Ki32 0.0071 

Ki33 0.031 

Ki34 0.049 

Ki35 0.0036 

Vmax4 27.53 Phytochemistry 52, 975-983 
Biochemistry 19, 2305-2310 

J. Biol. Chem. 278, 4510-4515 
Km4 0.35 

Ki4 0.014 

Vmax5 9.3 Phytochemistry 24, 2569-2571 
Biochemistry 44, 2671-2677 Km5 0.01 

Vmax6 5.7 Eur. J. Biochem. 249, 161-170 
Km6 0.005 Eur. J. Biochem. 271, 1087-1093 
Ki6 0.092 PNAS 108, 20461-20466 

Vmax7 5.7 
Eur. J. Biochem. 249, 161-170 

Km7 0.017 

k1 2.0×106 
1.6×104 

Fitted 
k1’ 
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Table S5 (continued). Kinetic Parameters. All concentration units in mM. All time units in s-1. 
 

Parameter Value Reference 

Vmax8 1.22  
Km8 0.019 J. Biol. Chem. 288, 16926-16936 
Ki81 0.065  
Ki82 0.081  

Vmax9 1.2 FEBS J. 273, 4446-4458 
Km9 0.15 Plant Sci. 169, 287-294 

Vmax10 31.17 Biochemistry 43, 12189-12197 
Km10 0.37  

Vmax11 174.8 Chem Biol. 16:1230-1239 
Km11 0.2 Bioorg. Med. Chem. 19, 5886-5895 

Vmax12 0.61 ChemMedChem 5, 1092-1101 
Km12 0.48  

Vmax13 0.20 J. Org. Chem. 70, 9168-9174 
Km13 0.7  

Vmax14 4.18 J. Korean Soc. Appl. Biol. Chem. 56, 35-40 
Km14 0.03  

k2, k2’ 0.1 PNAS 100, 6866-6871 
Arch Biochem Biophys. 415, 146-54 

k3, k3’ 1 PNAS 100, 6866-6871 
Arch Biochem Biophys. 415, 146-54 

k4, k6, k8, k10 1000 Assumes rapid equilibrium between cytoplasm and plastid, in the absence of quantitative information about exchange. Equilibrium is 
favored towards the cytoplasm 

PNAS 100, 6866-6871 k5, k7, k9, k11 10000 
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Table S6. Concentration of independent Variables (Albe et al., 1990). 

Metabolite Concentration 
(mM) 

Ac-CoA 0.350 

GA3P 0.006 

Pyruvate 1.600 
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Table S7. Expressions for each hormone effect. 

 Effect Reaction it is applied to 

Mutant Type I 𝑖𝑃0.44 𝑟3 

𝐼𝐴𝐴−0.26 
𝑟4 

𝐼𝐴𝐴0.28 

𝑖𝑃

0.069 + 𝑖𝑃

0.58

 
𝑟13 

𝐴𝐵𝐴

0.023 + 𝐴𝐵𝐴

0.98

 

𝑖𝑃0.36 𝑟6, 𝑟7, 𝑟18, 𝑟19 

𝐼𝐴𝐴0.14 𝑟28 

Mutant Type II 𝑖𝑃0.18 𝑟18, 𝑟22 

𝑖𝑃0.19 𝑟19, 𝑟22 

𝐺𝐴3−0.32 𝑟2 

𝑡𝑍

0.011 + 𝑡𝑍

−2.27

 𝑟3 

𝐺𝐴40.25 𝑟4 

𝑡𝑍

0.031 + 𝑡𝑍

−2.26

 
𝑟5 

𝐺𝐴40.26 

𝐺𝐴40.33 

𝑟13 𝐺𝐴40.26 

𝐽𝐴−1.06 
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𝑍𝑅

61.6 + 𝑍𝑅

0.89

 

𝑟16, 𝑟17 
𝐼𝐴𝐴

9.99 ∙ 103 + 𝐼𝐴𝐴

0.58

 

𝐽𝐴

0.351 + 𝐽𝐴

1.11

 

𝑍𝑅0.41 𝑟6, 𝑟7, 𝑟18, 𝑟19 

𝐺𝐴3−1.07 

𝑟11 𝐼𝐴𝐴−0.91 

𝐴𝐵𝐴

0.005 + 𝐴𝐵𝐴

2.44

 

𝐺𝐴40.34 𝑟14 

Mutant Type III 𝐺𝐴10.27 𝑟17, 𝑟18 

𝐺𝐴3

17.5 + 𝐺𝐴3

1.15

 𝑟1 

𝑍𝑅

1.20 + 𝑍𝑅

−1.09

 𝑟2 

𝑍𝑅−1.31 𝑟3 

𝐺𝐴3

0.200 + 𝐺𝐴3

−1.76

 𝑟4 

𝐺𝐴3

0.329 + 𝐺𝐴3

−2.46

 𝑟5 

𝐺𝐴1

0.813 + 𝐺𝐴1

1.20

 𝑟10 

𝐴𝐶𝐶−0.52 𝑟12 
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𝑖𝑃

1.08 + 𝑖𝑃

5.70

 
𝑟13 

𝐺𝐴3−1.07 

𝐼𝐴𝐴0.25 

𝑟16, 𝑟17 

𝐼𝐴𝐴1.27 

𝑖𝑃

0.344 + 𝑖𝑃

8.22

 

𝐺𝐴3

0.014 + 𝐺𝐴3

−1.02

 

𝐴𝐵𝐴

0.004 + 𝐴𝐵𝐴

−2.62

 
𝑟6, 𝑟7, 𝑟18, 𝑟19 

𝐺𝐴30.5 

𝑍𝑅

0.145 + 𝑍𝑅

1.09

 
𝑟27 

𝐺𝐴3

2.37 + 𝐺𝐴3

1.15

 

𝐺𝐴3

0.059 + 𝐺𝐴3

1.78

 𝑟29 

𝐺𝐴3

0.303 + 𝐺𝐴3

2.98

 𝑟30 

𝐺𝐴30.35 
𝑟11 

𝑍𝑅0.90 

𝐴𝐵𝐴

0.021 + 𝐴𝐵𝐴

1.56

 
𝑟14 

𝐼𝐴𝐴0.43 

𝐺𝐴30.35 𝑟15 
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𝐴𝐵𝐴0.84 

𝑡𝑍

0.003 + 𝑡𝑍

−2.86
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Table S8. Logarithmic sensitivities of the eigenvalues to reaction parameters. Only the top 24 sensitivities 
with largest absolute value are shown. Full table in Supplementary Data S1. 

Eigenvalue Parameter Logarithmic 

sensitivity 

 Eigenvalue Parameter Logarithmic 

sensitivity 

EV5 Km3 -13965  EV5 Ki81 -4881 

EV5 Ki31 -13961  EV5 Ki82 -4374 

EV5 Km4 -13951  EV5 Km6pl -1813 

EV5 Ki4 -13933  EV5 k1 1745 

EV5 Ki34 -13468  EV13 Vmax4 1024 

EV5 Ki33 -13178  EV12 Vmax3 1009 

EV5 Ki6pl -12927  EV6 Km3 -221 

EV5 Ki32 -10525  EV6 Ki31 -221 

EV5 Ki2 -10475  EV6 Km4 -221 

EV5 Ki6 -9495  EV6 Ki4 -220 

EV5 Km6 -7504  EV6 Ki34 -213 

EV5 Ki35 -7179  EV6 Ki33 -208 
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Table S9. Logarithmic sensitivities of the concentrations to reaction parameters. Only sensitivities with an 
absolute value larger than 0.5 are shown. 

Variable Parameter Sensitivity Variable Parameter Sensitivity 

HMGCoAcyt Ki1 0.945 MEP Km8 -0.922 

HMGCoAcyt Km1 -0.953 MEP Vmax8 1.00 

HMGCoAcyt Vmax1 1.02 MEP Km10 1.00 

HMGCoAcyt Vmax2 -1.02 MEP Vmax10 -1.00 

MVAcyt Vmax2 0.945 CDPME Km8 -0.920 

MVAcyt Km3 1.00 CDPME Vmax8 0.999 

MVAcyt Vmax3 -1.00 CDPME Km11 1.00 

MVPcyt Vmax2 0.948 CDPME Vmax11 -1.00 

MVPcyt Km4 1.00 CDPMEP Km8 -1.09 

MVPcyt Vmax4 -1.00 CDPMEP Vmax8 1.19 

MVPPcyt Vmax2 0.948 CDPMEP Km12 1.00 

MVPPcyt Km5 1.00 CDPMEP Vmax12 -1.19 

MVPPcyt Vmax5 -1.00 MECPP Ki81 0.584 

IPPcyt Vmax6 -0.929 MECPP Ki82 0.725 

IPPcyt Vmax7 1.79 MECPP Km8 -1.79 

IPPpla Vmax6pl -2.86 MECPP Vmax8 1.94 

IPPpla Vmax7pl 2.89 MECPP Km13 1.00 

IPPpla k1’ -0.621 MECPP Vmax13 -1.94 

DMAPPcyt Vmax6 0.929 MECPP k1’ 0.638 

DMAPPcyt Vmax7 -1.79 HMBPP Km8 -0.930 

DMAPPcyt k1’ -0.500 HMBPP Vmax8 1.01 

DMAPPpla Vmax6pl 2.86 HMBPP Vmax14 -0.505 

DMAPPpla Vmax7pl -2.89 HMBPP Km14 0.501 

DXP Km8 -1.00 HMBPP Vmax14’ -0.507 

DXP Vmax8 1.09    

DXP Km9 1.00    

DXP Vmax9 -1.09    
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Table S10. Levels of each intermediary metabolite (left) at the steady states of each mutant type’s average 
model and the eigenvalues (right) of the Jacobian matrix at these steady states. 

St
ea

d
y 

st
at

e
 c

o
n

ce
n

tr
at
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s 
[m

M
] 

 Type I Type II Type III 

St
ab

ili
ty

 

 Type I Type II Type III 

HMGCoAcyt 5.76 × 10-1 4.67 2.97 
EV1 

-11249 -12515 -14205 

MVAcyt 4.86 × 10-5 1.15 × 10-4 6.55 × 10-5 
EV2 

-11000 -11009 -12624 

MVPcyt 6.61 × 10-4 1.57 × 10-3 8.43 × 10-4 
EV3 

-4678 -11000 -11306 

MVPPcyt 9.68 × 10-5 1.41 × 10-4 7.53 × 10-5 
EV4 

-1994 -3946 -11000 

IPPcyt 1.14 × 10-3 9.42 × 10-4 7.93 × 10-4 
EV5 

-1124 -1098 -3373 

IPPpla 7.45 × 10-4 9.22 × 10-4 1.09 × 10-3 
EV6 

-402 -1053 -2001 

DMAPPcyt 8.19 × 10-6 1.35 × 10-5 1.58 × 10-5 
EV7 

-357 -618 -1904 

DMAPPpla 2.90 × 10-3 3.41 × 10-3 3.96 × 10-3 
EV8 

-163 -595 -669 

DXP 5.24 × 10-1 8.41 × 10-1 1.06 EV9 -132 -156 -602 

MEP 4.58 × 10-3 7.10 × 10-3 5.10 × 10-3 EV10 -91 -117 -184 

CDPME 4.12 × 10-4 3.45 × 10-4 4.60 × 10-4 EV11 -65 -85 -171 

CDPMEP 7.55 × 10-1 2.76 3.48 EV12 -32 -84 -98 

MECPP 9.46 4.00 5.05 EV13 -1.94 × 10-1 -30 -71 

HMBPP 1.08 × 10-3 1.73 × 10-3 3.52 × 10-3 EV14 -7.64 × 10-2 -3.79 × 10-2 -54 

HMGCoApla 5.76 × 10-2 4.67 × 10-1 2.97 × 10-1 
EV15 

-6.17 × 10-2 -2.70 × 10-2 -4.42 × 10-2 

MVApla 9.37 × 10-6 1.77 × 10-5 1.10 × 10-5 
EV16 

-1.09 × 10-3 -1.04 × 10-2 -3.20 × 10-2 

MVPpla - 1.60 × 10-4 8.52 × 10-5 
EV17 

- -8.93 × 10-3 -8.61 × 10-3 

MVPPpla - - 8.86 × 10-6 
EV18 

- - -7.70 × 10-3 
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Table S11. Cross-validation of the models, showing the confidence intervals (95%) of the adjusted R2 and 
relative errors, also when using a model to predict different mutant types. 

  

Adjusted R2 
(Mean [CI (95%)]) 

  

Log10 Relative error 
(Mean [CI (95%)]) 

Type I Type II Type III 

Chlorophyll I 0.74 [0.72, 0.75] -1.45 [-1.5, -1.41] -0.71 [-0.72, -0.71] -0.8 [-0.82, -0.78] 

Chlorophyll II 0.72 [0.69, 0.75] -0.62 [-0.63, -0.61] -1.84 [-1.91, -1.77] -0.87 [-0.88, -0.85] 

Chlorophyll III 0.44 [0.38, 0.49] -0.9 [-0.91, -0.89] -1.21 [-1.23, -1.19] -1.28 [-1.33, -1.23] 

Height I 0.51 [0.47, 0.54] -1.14 [-1.2, -1.08] 0.21 [0.12, 0.31] -0.42 [-0.43, -0.42] 

Height II - - - - 

Height III 0.61 [0.57, 0.64] 0.25 [0.21, 0.29] 0.09 [0.03, 0.14] -1.07 [-1.27, -0.87] 

Leaf Length I 0.67 [0.64, 0.69] -1.21 [-1.26, -1.15] 4.51 [4.47, 4.55] -0.01 [-0.07, 0.05] 

Leaf Length II 0.78 [0.75, 0.8] -0.29 [-0.31, -0.27] -1.09 [-1.22, -0.97] -0.68 [-0.71, -0.65] 

Leaf Length III 0.41 [0.37, 0.45] -0.17 [-0.18, -0.16] -0.71 [-0.73, -0.68] -1.38 [-1.42, -1.33] 

Leaves I 0.68 [0.63, 0.72] -1.31 [-1.48, -1.15] 0.76 [0.66, 0.86] -0.98 [-1.01, -0.96] 

Leaves II 0.69 [0.64, 0.73] -0.66 [-0.69, -0.63] -1.5 [-1.73, -1.26] -0.62 [-0.67, -0.58] 

Leaves III - - - - 

Leaf Width I - - - - 

Leaf Width II 0.58 [0.54, 0.61] -0.25 [-0.29, -0.22] -0.95 [-1, -0.9] -0.73 [-0.75, -0.71] 

Leaf Width III 0.41 [0.39, 0.42] -0.2 [-0.22, -0.19] -0.62 [-0.65, -0.6] -1.25 [-1.31, -1.19] 

 


