
Methods

Model architecture and implementation details

The different modules of MoDN are multilayer perceptrons (MLP). MLPs are
fully connected feedforward neural networks. The weights and biases of each
neuron are optimized via the backpropagation algorithm.

We used ReLU activations and one or two hidden layers for each module.
The overall architecture thus remained quite simple. For each training data
point, the state S is initialized as a random PyTorch tensor of size s. The
initial state is also optimized throughout the training process. The input layers
are of size 1 + s, s and s respectively for the encoders, feature decoders and
disease decoders. The output layer is of size s for the encoders and 2 for the
continuous feature decoders (predicting the mean and standard deviation). The
disease decoders and the categorical feature decoders also both have an output
of size 2, with a softmax activation applied to the output layer to compute the
probabilities of the two classes.

Feature decoding

We present here an extended version of the MoDN, including some additional
modules to perform ‘feature decoding’. This allows the clinician to retrieve
the values for previously encoded features or to get predictions for unavailable
features. For each feature, we defined a feature decoder. Depending on the
nature of the feature, they are either continuous or binary. The feature decoders
are applied to the state S to predict the value of the feature. If feature j
is continuous, Fj , Fj : Rs −→ (R, R+). It predicts the mean and standard
deviation of feature j. If feature j is binary, we have Fj : Rs −→ {0, 1}.

In the optimization process of our model we included an auxiliary loss func-
tion to train our model to perform feature decoding. The feature decoding loss
is made of two components. A ‘known’ part, corresponding to the features that
have already been encoded, and an ‘unknown’ part, for the features from a later
stage in the tree. The ‘known’ part ensures that the model retains past informa-
tion, and the ‘unknown’ infers correlations between encoded features and later
features in the tree.

The continuous features are optimized using the negative log-likelihood loss
and the binary features with the cross-entropy loss.
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where ℓ is the negative log-likelihood loss or the cross-entropy loss, depending
on the nature of the feature. We sum over all the N patients in the dataset and
their corresponding ordered lists ztp. Similarly, the unknown part of the model
is given by
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where we sum over the predicted information that has not yet been provided to
the model.

As explained in the model optimisation during each SGD step, once all
the features in a level of the consultation tree have been encoded, the disease
decoders are applied. At this stage, we also apply all the feature decoders and
compute the feature loss known and feature loss unknown.

Idempotence

We trained the MoDN to be idempotent. An operator is idempotent if it has
the same effect whether it is applied once or several times. In our setting, it
means that the information vector for a patient should not change even if the
same feature is encoded twice or more. To enforce that constraint, an additional
loss, the idempotence loss was added to the global loss minimized during the
optimization. For each feature, we computed the mean squared error between
the state after having encoded all the features once and the state after re-
encoding the given feature. Let F be the number of different features in the
model, Sp

b the state for patient p once all the features have been encoded once,
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p the state after re-encoding feature f . Then, the loss is given by
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Calibration curves

The calibration curves were computed using the observations of the test set.
The probability space was split into 13 equally space bins. The x−axis shows
the mean final predicted probability by the MoDN for the observations in each
bin. The y−axis shows the proportion of positive diagnoses for the observations
in each bin. For a given disease d, let P̂ (d) = p be the estimated probability by

the MoDN of having d. Then the y−axis is an estimate of P
(
d | P̂ = p

)
, the

true probability of having d, knowing that the MoDN predicted p.


