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Reviewer #1 (Remarks to the Author): 

In this manuscript, Lin et al. propose a major update to their method for single-cell data 

integration called scMerge2 that makes a number of improvements over the previous method to 

better enable large-scale, many-sample integration. The main advances here are a hierarchical 

integration approach that utilizes pseudo-bulk for scalability and pseudo-replication for removing 

unwanted variability. They demonstrate the method on a large collection of COVID-19 PMBC 

samples and show improved performance in terms of several downstream analytical tasks. Overall, 

this work presents a fairly performant integration method for single cell data but there are a few 

areas where improvements could be made. I have the following specific comments: 

Main comments: 

1. Given that the method is called scMerge2, it would be nice to see comparisons in some of the 

benchmarks to the initial implementation in scMerge (assuming that it is able to run on the 

benchmark datasets). This would also help highlight the necessity of the update. 

2. Hierarchical integration is one of the three key innovations put forth by scMerge2. However, 

scMerge2 isn’t the only method that offers this feature. Both fastMNN (via the merge.order 

parameter) and Seurat (via the sample.tree parameter) enable this functionality. For comparison 

purposes, the same hierarchical structure of merging/integration should be applied when 

comparing to methods that offer that functionality. 

3. One of the major selling points of scMerge2 is that it can return fully corrected gene expression 

matrices as opposed to just integrated low dimensional embeddings. One aspect that is explored 

here is improvements to differential expression (or differential state) analysis and the results are 

compared to Seurat and fastMNN. However, neither of these other software packages recommend 

using corrected expression data for differential statistical analyses as the correction procedure 

introduces cell-cell dependencies that invalidate the assumptions of the downstream statistical 

tests. Is there a similar concern about dependency introduction with scMerge2? An alternate 

common workflow is to use the integrated low dimensional embeddings to define cell types and 

then run differential tests using the uncorrected data with a model that allows for covariates like 

batch, sample, etc. How does scMerge2 compare on these differential expression based metrics if 

this strategy is used for the other methods? 

4. One feature that makes this method attractive is the purported scalability. It would be nice to 

see how both time and memory requirements increase with dataset size. 

Minor comments: 

1. There is quite a bit of background given on merging strategies in the third paragraph of the 

discussion. I think much of this could be better placed earlier in the article, with details in the 

methods section. 

2. In Figure 3a, in the UMAP where cells are colored by study, it is a bit hard to tell how well mixed 

the studies are since the yellow color is plotted over top of everything. Sometimes, randomizing 

the plotting order of the points can make this easier to see, though the supplementary figure does 

help with this as well. It might also be worth showing an unintegrated version of this dataset 

(similar to the CyTOF example). 

3. The color choice for Figure 4 panel D makes it difficult to distinguish the two states. I would 

recommend changing to more contrasting colors. 

Reviewer #2 (Remarks to the Author): 

The authors present scMerge2 that is an algorithm for integration of single cell data across 

samples, conditions and studies. scMerge2 is an improvement to their previous tool, scMerge that 

has been published previously (https://www.pnas.org/doi/10.1073/pnas.1820006116). It seems 

that the biggest change between scMerge and scMerge2 is the addition of hierarchical integration 



and pseudo-bulk construction. 

scMerge2 works on data from different single cell technologies. The authors demonstrate tests on 

CYTOF and CITE-Seq. The algorithm is tested on a large example that uses a COVID-19 data 

collection and the results recapitulate existing knowledge on increase of certain cell types with 

disease severity, such as macrophages. I agree with the increased need for such methods to 

integrate atlases across individuals and conditions. This is currently a very active area of research 

with lots of tools available. 

The performance of scMerge2 is compared against five different batch correction/integration tools. 

However, I do wonder how scMErge2 performance is improved from scMerge and also how its 

performance compares to two of the top performing single cell integration methods scVI and 

scanorama in a benchmarking study that was published earlier in the year. The authors do not test 

scMerge2 against those top performing tools. 

Reviewer #3 (Remarks to the Author): 

In this work, the authors developed scMerge2, which is a framework based on factor analysis 

model that integrates scRNA-Seq datasets from multiple samples and multiple biological 

conditions. scMerge2 was also implemented to integrate multiple CITE-Seq datasets, where gene 

expression and epitopes are jointly profiled. To enable more efficient computation, scMerge2 

leverages pseudo-bulk by aggregating cells from similar cell types. The authors demonstrated that 

scMerge2 can be applied to atlas-level data with millions of cells. Another key feature of scMerge2 

is that it can obtain the adjusted gene expression matrix (instead of merely the low-dimensional 

embeddings), which can be used for gene-level downstream analysis. This is an interesting work. 

The followings are my comments: 

1. The authors demonstrated that scMerge2 can be implemented on atlas-level datasets. It would 

be great if the memory cost and CPU time can also be reported, when the number of cells varies. 

2. k-nearest neighbor batch-effect test (kBET) is a popular criterion to evaluate the performance of 

batch effect correction for data integration. It would be great if the authors can add this criterion 

in the comparison. 

Reference for kBET: 

Zhichao Miao, F Alexander Wolf, Sarah A Teichmann, and Fabian J Theis. A test metric for 

assessing single-cell RNA-seq batch correction. Nature Methods, 16(1):43-49, 2019. 

3. In scMerge2, a set of single-cell stable genes was used to guide the estimate of the factor 

analysis model. How is this set of genes selected, is it the same for all the datasets? 

4. To broaden the impact of scMerge2, it would be interesting to demonstrate the integration 

results across different platforms, for example, the integration of smart-seq datasets with 10X 

Visium datasets. And maybe also cross-species integration? 

5. scMerge2 aggregates cells from the same cell type identified by Louvain clustering. It would be 

great if the authors can comment on the case when there is a developmental lineage of cells, will it 

affect the performance of scMerge2? 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In this manuscript, Lin et al. propose a major update to their method for single-cell data

integration called scMerge2 that makes a number of improvements over the previous method to

better enable large-scale, many-sample integration. The main advances here are a hierarchical

integration approach that utilizes pseudo-bulk for scalability and pseudo-replication for removing

unwanted variability. They demonstrate the method on a large collection of COVID-19 PMBC

samples and show improved performance in terms of several downstream analytical tasks.

Overall, this work presents a fairly performant integration method for single cell data but there

are a few areas where improvements could be made. I have the following specific comments:

Response: We thank the reviewer for the positive feedback and we have addressed each raised

comment in detail below.

Main comments:

1. Given that the method is called scMerge2, it would be nice to see comparisons in some of the

benchmarks to the initial implementation in scMerge (assuming that it is able to run on the

benchmark datasets). This would also help highlight the necessity of the update.

Response: We appreciate the reviewer’s suggestion. As suggested, we performed the

comparison between scMerge and scMerge2, in terms of integration performance as well as its

computational usage. Due to the intensive computation resource demand, we only

benchmarked the integration performance of COVID60k data. As shown in Figure R1, scMerge2

outperforms its previous version in terms of both integration and computational performance.

Notably, we have significantly improved the computational efficiency of the method, which now

requires only ~3 minutes ~20Gb for 50k cells with 17k genes, compared to over 4 hours and 50

Gb in the previous version (Figure R1c-d).





1+2 with 3; batch 4 with 5, and then 4+5 with 6; and finally, 1+2+3 with 4+5+6, while scMerge2h

can merge batch 1, 2, 3 together; batch 4, 5, 6 together; and finally merge 1+2+3 and 4+5+6.

That being said, we have followed the suggestion and performed the comparison of scMerge2-h

with fastMNN (merge.order) and Seurat (sample.tree with user specified merging order as

required). The results is shown in Figure R2, we find that among the three methods that allow

hierarchical merging, the overall performance of scMerge2h outperforms the other two methods

(Also see Figure R6c in Reviewer #2 comment 2 for the overall rankings). It is noted that

specifying the order of Seurat and fastMNN do not necessarily perform better than its default

settings, which will decide the merging order automatically. We have added the results and

discussion of these two methods in our results section of the manuscript (See Line 100-105 in

Page 4 for discussion, Line 126 - 129 in Page 5 and Supplementary Fig. S1 for results).

Figure R2 (Supplementary Fig. S1) Data integration evaluation to compared methods with

hierarchical merging settings: Scatter plots of evaluation metrics of data integration of a 200k

cells COVID-19 data for scMerge2, scMerge2-h, SeuratRPCA, SeuratRPCA-h, fastMNN and

fastMNN-h: (a) Adjusted rand index (ARI) , where x-axis indicates 1 minus batch ARI and y-axis

indicates cell type ARI; (b) Average silhouette width (ASW), where the x-axis is 1 minus batch

ASW and y-axis is the cell type ASW.

3. One of the major selling points of scMerge2 is that it can return fully corrected gene

expression matrices as opposed to just integrated low dimensional embeddings. One aspect

that is explored here is improvements to differential expression (or differential state) analysis

and the results are compared to Seurat and fastMNN. However, neither of these other software

packages recommend using corrected expression data for differential statistical analyses as the

correction procedure introduces cell-cell dependencies that invalidate the assumptions of the

downstream statistical tests. Is there a similar concern about dependency introduction with

scMerge2? An alternate common workflow is to use the integrated low dimensional embeddings

to define cell types and then run differential tests using the uncorrected data with a model that

allows for covariates like batch, sample, etc. How does scMerge2 compare on these differential

expression based metrics if this strategy is used for the other methods?

Response:



We thank the reviewer for the insightful comments and suggestions. Following the

recommendation of the reviewer, we performed additional comparisons with the following

settings in the differential state (DS) analysis:

(1) uncorrected data with batch information as covariates (logcounts (batch))

(2) scMerge2 normalized data with batch information as covariates (scMerge2 (batch))

(3) scMerge2 normalized data with batch information as covariates, and force the original

zeros as zeros (scMerge2 (batch + binary))

(4) Seurat normalized data with batch information as covariates (Seurat (batch))

(5) Seurat normalized data with batch information as covariates, and force the original zeros

as zeros (Seurat (batch + binary))

We used the same simulated data we used in Figure 2c and Supplementary Fig. S3-S5. In

particular, we focused on the scenario when the threshold of the p-value is 0.05, the percentage

of DS genes in the simulated data is 5%, and we used trend limma on the aggregated bulk data.

As Figure R3 shows, we find that scMerge2 performed comparably to uncorrected data with

batch information as covariates (logcounts (batch)) in terms of F1, while exhibiting a more stable

performance in controlling FDR. We also explore the performance of incorporating the batch

information in scMerge2 and Seurat normalized data. We find that incorporating the batch

covariate in scMerge2 normalized data (scMerge2 (batch) and scMerge2 (batch + binary)) in

general further improves the stability and performance in terms of TPR and F1, although it

slightly increases FDR. We note that all three settings of scMerge2 outperformed the three

settings in Seurat.

In addition, we would like to highlight that our evaluation of other downstream analytics, such as

prediction modeling, revealed that scMerge2 was able to better predict the outcome of interest in

the COVID dataset, as demonstrated in Figure 3c. Despite the potential dependency introduced

by scMerge2, we did not observe any adverse impact on downstream analysis. Moreover, as

shown in Figure 4, the ability of scMerge2 to provide a fully corrected gene expression matrix

significantly enhances the flexibility of downstream analysis, including gene set enrichment

analysis and cell-cell interaction analysis.

Together, we believe scMerge2 provides a more reliable normalized matrix compared to the

other existing methods which can be used to enhance diverse downstream analysis.



Figure R3 Performance of DS analysis with additional methods comparison on the scenario

when the threshold of the p-value is 0.05, the percentage of DS genes in the simulated data is

5%, with varying mean logFC of DS genes. The row shows three evaluation metrics: F1, TPR

and FDR and the column indicates 4 cell types in the simulated data.

4. One feature that makes this method attractive is the purported scalability. It would be nice to

see how both time and memory requirements increase with dataset size.

Response: We appreciate the reviewer’s comment. As suggested, we performed additional

experiments to evaluate the time and memory requirements as the dataset size increases.

Using two of the COVID CITE-seq dataset (Liu and Stephenson), which in total have ~1M cells,

we benchmarked the scalability of the integration methods by varying the number of cells from

5k to 1M in four scenarios:

1. scRNA-seq - ~17k genes with 2 batches;

2. scRNA-seq - ~17k genes with 6 batches;

3. ADT - 87 proteins with 2 batches;

4. ADT - 87 proteins with 6 batches.

The running time was measured using 1 core with the maximum number of threads of OpenMP

library that can be used by a parallel region is set to 1. The peak resident set size, which is the

highest amount of memory used by a process, was recorded to measure the memory usage. All

methods were run using a research server equipped with dual Intel(R) Xeon(R) Gold 6148

Processor with 40 cores and 768 GB of memory and we set the runtime limit as 10 hours. We

performed evaluation on all eight methods. In particular, for Seurat and scMerge2, we evaluated



these methods under two settings: one that adjusts the expression matrix for full gene matrix

and another that only adjusts the top 2000 highly variable genes.

We find that among all the methods that are able to return the adjusted gene expression matrix,

scMerge2 is the most efficient in terms of computational time in all comparison (Figure R4-R5),

requiring around ~1 hour to integrate 1 million of cells with 17k genes and ~25 min to integrate 1

million cells with 87 proteins. In terms of memory usage, to return a full adjusted gene

expression matrix, scMerge2 requires more memory than fastMNN and scVI, but significantly

less than Seurat, as Seurat (RPCA) encountered a memory error when integrating the fully gene

expression matrix of 500k cells. We suggest that users consider returning a subset of genes,

such as highly variable genes, when computational resources are limited. This can be done by

setting return_subset = TRUE and specifying the gene list in return_subset_genes in

scMerge2(). We have included these results in our manuscript (See Page 5, Line 131 - 138,

Supplementary Fig. S2-S3, and Method Section Computational efficiency comparison).

Figure R4 (Supplementary Fig. S2) Scalability of each data integration method of the RNA

integration task with (a-b) 2 batches in the data and (c-d) 6 batches in the data, colored by the

methods and the type of the lines indicate the output type of the methods. (a, c) shows



computational time (min) for each method increase with the number of cells in the data; (b, d)

shows memory usage (Gb) for each method increase with the number of cells. Note that

SeuratRPCA encountered a memory error when integrating the full gene expression matrix of

500k cells, and SeuratRPCA (hvg) encountered a memory error when integrating the full gene

expression matrix of 1 million cells for 6 batches cases.

Figure R5 (Supplementary Fig. S3) Scalability of each data integration method of the ADT

integration task with (a-b) 2 batches in the data and (c-d) 6 batches in the data, colored by the

methods and the type of the lines indicate the output type of the methods. (a, c) shows

computational time (min) for each method increase with the number of cells in the data; (b, d)

shows memory usage (Gb) for each method increase with the number of cells.

Minor comments:

1. There is quite a bit of background given on merging strategies in the third paragraph of the

discussion. I think much of this could be better placed earlier in the article, with details in the

methods section.



Response: We thank the reviewer for the suggestions. We included and expanded the method

description of the merging strategies in the method section (Line 425-429 in Page 15) and

added the reference to the method section in our results section. We have further highlighted the

flexibility of our hierarchical merging strategies compared to the other two methods in the results

section, as also discussed in the comment 2 above (See Line 100-105 in Page 4). As our

discussion currently mainly focuses on the variety of hierarchical merging strategies, we believe

it should stay in the discussion.

2. In Figure 3a, in the UMAP where cells are colored by study, it is a bit hard to tell how well

mixed the studies are since the yellow color is plotted over top of everything. Sometimes,

randomizing the plotting order of the points can make this easier to see, though the

supplementary figure does help with this as well. It might also be worth showing an unintegrated

version of this dataset (similar to the CyTOF example).

Response: We appreciate the reviewer for the suggestion. We agree that with the ~5 million

points, it is very hard to visualize the data effectively. The current plot in Figure 3a is already

with points randomized, and therefore, we also put in Supplementary Fig. S9 which overlays

each dataset on the full UMAP coordinates to help with the visualization, as the reviewer pointed

out.

3. The color choice for Figure 4 panel D makes it difficult to distinguish the two states. I would

recommend changing to more contrasting colors.

Response: Thank you for your comment. We acknowledge that the color choice used in Figure

4D may not be ideal. However, we made a conscious decision to maintain consistency with the

color legend in Supplementary Fig. S8, which resulted in a trade-off between consistency and

clarity during the color selection process.

Reviewer #2 (Remarks to the Author):

The authors present scMerge2 that is an algorithm for integration of single cell data across

samples, conditions and studies. scMerge2 is an improvement to their previous tool, scMerge

that has been published previously (https://www.pnas.org/doi/10.1073/pnas.1820006116). It

seems that the biggest change between scMerge and scMerge2 is the addition of hierarchical

integration and pseudo-bulk construction.

scMerge2 works on data from different single cell technologies. The authors demonstrate tests

on CYTOF and CITE-Seq. The algorithm is tested on a large example that uses a COVID-19

data collection and the results recapitulate existing knowledge on increase of certain cell types

with disease severity, such as macrophages. I agree with the increased need for such methods

to integrate atlases across individuals and conditions. This is currently a very active area of

research with lots of tools available.

The performance of scMerge2 is compared against five different batch correction/integration

tools. However, I do wonder how scMErge2 performance is improved from scMerge and





In this work, the authors developed scMerge2, which is a framework based on factor analysis

model that integrates scRNA-Seq datasets from multiple samples and multiple biological

conditions. scMerge2 was also implemented to integrate multiple CITE-Seq datasets, where

gene expression and epitopes are jointly profiled. To enable more efficient computation,

scMerge2 leverages pseudo-bulk by aggregating cells from similar cell types. The authors

demonstrated that scMerge2 can be applied to atlas-level data with millions of cells. Another key

feature of scMerge2 is that it can obtain the adjusted gene expression matrix (instead of merely

the low-dimensional embeddings), which can be used for gene-level downstream analysis. This

is an interesting work. The followings are my comments:

Response: We thank the reviewer for the positive feedback and we have provided a detailed

response to each raised comment below.

1. The authors demonstrated that scMerge2 can be implemented on atlas-level datasets. It

would be great if the memory cost and CPU time can also be reported, when the number of cells

varies.

Response: In response to the suggestion, we conducted further experiments to assess how the

time and memory requirements change with an increase in the dataset size. Please see our

response to Reviewer #1 comment 4 and Figure R4-R5 for details. Overall, we find that our

method outperforms the other methods that can return a full adjusted gene expression matrix,

with faster computational time and similar performance in terms of memory cost.

2. k-nearest neighbor batch-effect test (kBET) is a popular criterion to evaluate the performance

of batch effect correction for data integration. It would be great if the authors can add this

criterion in the comparison.

Reference for kBET:

Zhichao Miao, F Alexander Wolf, Sarah A Teichmann, and Fabian J Theis. A test metric for

assessing single-cell RNA-seq batch correction. Nature Methods, 16(1):43-49, 2019.

Response: We appreciate the reviewer’s suggestions. While we acknowledge the importance of

this popular metric in the field, we find that in our benchmark studies, this metric is very sensitive

to batch effects as well as the sample size of the data. This is due to the fact that the metric is

based on Chi-squared statistics, which are known to be sensitive to sample size. This issue has

also been discussed in one of the Github issues of kBET

(https://github.com/theislab/kBET/issues/47), where the maintainer commented that “We are

aware that kBET is a sensitive tool and often reports rejection rates close to 1.” This is

consistent with what Figure R7 below shows, where we subsampled 0.1~20% of cells from the

COVID200k data and calculated kBET metrics. We find that the metric is very sensitive to the

number of cells used as input and all methods report rejection rates close to 1 when equal or

more than 10k cells (only 5% of the data) are subsampled from the data. This makes the

performance of the data integration methods indistinguishable. As a result, we made the

decision not to include this metric in our benchmarking.



Figure R7 Boxplots indicates the kBET observed value for each method using different

proportions of cells (0.1% ~ 20%) in the data.

3. In scMerge2, a set of single-cell stable genes was used to guide the estimate of the factor

analysis model. How is this set of genes selected, is it the same for all the datasets?

Response: We appreciate the reviewer’s comment. This set of gene is a predefined gene list

that was defined from our previous studies (Lin, Ghazanfar, Strbenac, et al., 2019; Lin,

Ghazanfar, Wang, et al., 2019), where we selected the genes with minimal association with cell

types and developmental stages from a human early development single-cell dataset. Similar to

Fig 2C in scMerge paper, we performed additional experiments to investigate scMerge2

performance using different lists of stably expressed genes, where we benchmarked our stably

expressed genes against three choices of negative controls. These are (1) all genes; (2) all non

highly variable genes with insignificant p-value; (3) top non highly variable genes based on the

p-value. As Figure R8 shows, We find that in general, scMerge2 performance is stable against

the choice of negative control, with using stably expressed genes performs relatively better than

the other choice of negative control genes.



Figure R8 Robustness analysis of the choice of negative control list used in scMerge2 using

COVID-19 60k data: Adjusted rand index (ARI) (left panel), where x-axis indicates 1 minus batch

ARI and y-axis indicates cell type ARI; Average silhouette width (ASW), where x-axis indicates 1

minus batch ASW and y-axis indicates cell type ASW (right panel).

4. To broaden the impact of scMerge2, it would be interesting to demonstrate the integration

results across different platforms, for example, the integration of smart-seq datasets with 10X

Visium datasets. And maybe also cross-species integration?

Response: We thank the reviewer’s comment. As suggested, we demonstrate scMerge2

capacity in integrating data from different platforms and cross-species.

Different platforms

We integrated a spatially resolved dataset generated from MERFISH from mouse primary motor

cortex (MOp) (Zhang et al., 2021) with a scRNA-seq dataset generated by SMARTER platform

(Yao et al., 2021). We combine the two datasets via the 250 common genes shared between the

two platforms. It is also notable that these two datasets have the following properties:

(1) Unbalanced number of cells: MERFISH data has ~280k cells and SMARTer data has

~6.3k cells

(2) Distinguished cell type proportions: MERFISH data has 8 cell types uniquely presented

(“L4/5 IT”, “L5/6 NP”, “L6 IT Car3”, “Micro”, “Oligo”, “OPC”, “Peri” and “PVM”) (Figure R8 a-b).

As Figure R9 shows, scMerge2 is capable of removing the batch effect between these two very

different platforms and at the same time reveal the unique cell types in each platform.





variation. We demonstrated the capability of scMerge2 in integrating data with a developmental

lineage of cells. Specifically, we integrated a scRNA-seq dataset from human hematopoiesis,

consisting of 6 samples from CD34 + BMMC, BMMC and PBMC (Granja et al., 2019), with a

smaller number of neighbors set (specified by k_knn = 5). As Figure R11 shows, scMerge2

effectively removes the batch effect in the dataset, revealing both the leukemic developmental

trajectory and distinct cell types from different sample sources.

Figure R11UMAP plots of human hematopoiesis data integration.
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Reviewer #1 (Remarks to the Author): 

I appreciate the authors’ work to address my questions and concerns. All major concerns have 

been addressed and I can recommend publication. 

Reviewer #3 (Remarks to the Author): 

All my previous comments have been reasonably addressed. I do not have any further comments. 


