Supplementary materials for In vivo treatment of tyrosinaemia with hypercompact Cas12f1

Ruochen Guo^{1,2†}, Zhifang Li^{1,3†}, Guoling Li^{2†}, Hainan Zhang^{4†}, Chang Zhang^{2†}, Xiaona Huo^{1,3}, Xiaoyin Zhang^{1,3}, Xiali Yang², Rongrong Yang^{1,3}, Yuanhua Liu², Xiaozhi Sun^{1,5}, Xinyu Liu², Hui Yang^{2,3,4*}, Yingsi Zhou^{4*}, Chunlong Xu^{1,3,5*}

†These authors contributed equally to this work.

*Corresponding author Email: huiyang@huidagene.com;

yingsizhou@huidagene.com;xucl@lglab.ac.cn

This PDF file includes:

Materials and Methods

Figure S1 Genotyping results for offspring from Cas12f1-edited mouse embryos. Figure S2 On-target editing analysis of Hpd gene for mouse liver DNA after Un1Cas12f1 treatment.

Figure S3 On-target editing analysis of Hpd gene for mouse liver DNA after CjCas9 treatment.

Figure S4 H&E analysis of liver for Cas12f1 and CjCas9-treated mice.

Figure S5 Phenotypic evaluation of Cas12f1-treated Fah-/- mice.

Figure S6 Klkb1 knockout via Cas12f1.

Figure S7 Off-target analysis of predicted off-target loci after Un1Cas12f1 treatment.

Figure S8 Off-target analysis of predicted off-target loci after CjCas9 treatment. Figure S9 Off-target analysis of predicted off-target loci after Klkb1 editing by Un1Cas12f1.

Figure S10 Genome-wide off-target analysis for Un1Cas12f1 with PEM-seq. Table S1 Summary table of gRNA tested with or without editing activity for three different Cas12f1 orthologs

Table S2-7 gRNA and primer sequence

Materials and Methods Study approval

The objectives of the present study were to show proof-of-concept evidence for in vivo therapeutic efficacy of Cas12f1 delivered by AAV. All animal experiments were approved by the Animal Care and Use Committee of Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.

Plasmid constructions

The pCAG-Un1Cas12f1-hU6-Bpil plasmid encoded a human codon-optimized Un1Cas12f1 driven by CAG promoter, and hU6-driven crRNAs with *Bpi*l cloning site. The sgRNAs were designed suitable for Un1Cas12f1 and CjCas9, then synthesized as DNA oligonucleotides and cloned into pCAG-Un1Cas12f1 to form the CRISPR targeting plasmids (listed in Supplementary Tables S2-7).

Cell culture, transfection and flow cytometry analysis

HEK293T were maintained in Dulbecco's modified eagle medium (DMEM) (Gibco, 11965092) supplemented with 10% fetal bovine serum at 37 °C and 5% CO₂ in a humidified incubator. For sgRNA screening, CRISPR targeting plasmids and reporter were co-transfected using polyethylenimine (PEI) transfection reagent. After transfected cells were cultured with 48 hours, we carefully resuspended the cell pellet, and then analyzed or sorted by BD FACSAria II. Flow cytometry results were analyzed with FlowJo X (v.10.0.7).

In vitro transcription of Un1Cas12f1 and sgRNA

Un1Cas12f1 mRNA was transcribed using the mMESSAGE mMACHINE T7 Ultra Kit(Invitrogen, AM1345). T7 promoter was added to sgRNA template by PCR amplification of pCX1991 using primer F and R. The PCR products purified with Omega gel extraction Kit(Omega, D2500-02), templates were transcribed using the MEGAshortscript Kit(Invitrogen, AM1354). The un1Cas12f1 mRNA and sgRNAs were purified by MEGAclear Kit(Invitrogen, AM1908), eluted with RNase-free water and stored at -80°C.

Zygote injection and embryo transplantation

Eight-week-old B6D2F1 female mice were super ovulated and mate with B6D2F1 male mice, and fertilized embryos were collected from oviduct. The mixture of un1Cas12f1 mRNA(100ng/µl) and sgRNA(100ng/µl) was injected into the cytoplasm of fertilized eggs using a FemtoJet microinjector(Eppendrof). The injected embryos were cultured in KOSM medium with amino acids at 37°C under 5% CO₂ in a humidified incubator overnight and then transferred into oviducts of pseudo-pregnant ICR foster mothers at 0.5-d.p.c.

Mice and hydrodynamic injection

All animal study protocols were approved by the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. Fahmut/mut mice were kept on 10mg/L NTBC (Sigma-Aldrich, Cat. No. PHR1731) in drinking water when indicated. For hydrodynamic liver injection, AAV8 (4×10^{11} vg/mouse) in 200 µl saline were injected via the tail vein into 8-10 weeks old male and female mice. Mice were kept off NTBC water at 7 days post injection, and their body weights were recorded every 3-5 days. Mice were harvested at 75 days after NTBC water withdrawal for histology and DNA analysis. Control mice off NTBC water were harvested when reaching >20% weight loss.

AAV virus production

The adeno-associated virus 8 (AAV8) serotype was used in this study. The Cas12f1 or Cjcas9 plasmids with target or nontarget gRNA was sequenced before packaging into AAV8 vehicle, and the AAV vectors were packaged by

PackGene Biotech. The virus titer was 2.57×10^{13} (Ad-Cas12f1-Hpd), 2.32×10^{13} (Ad-Cas12f1-Null), 2.62×10^{13} (Ad-CjCas9-Hpd) and 1.93×1013 (Ad-CjCas9-Null) genome copies/ml as determined by qPCR specific for the inverted terminal repeat.

Histological analysis and Serum biochemistry

Liver tissues were harvested, and sections were fixed in 4% PFA overnight. The following antibodies were used: anti-HPD antibody (SantaCruz, sc-390279; dilution 1:100), anti-P21 antibody (Abcam, ab109199; dilution 1:200). Immunohistochemistry, immunofluorescence and hematoxylin and eosin (H&E) staining were performed by the standard procedures. Blood was collected using retro-orbital puncture before mice was sacrificed. ALT, AST, ALB, tyrosine and bilirubin levels in serum were determined using diagnostic ELISA Kits (Abcam, HWRK chem).

Targeted deep sequencing

To analyze un1Cas12f1 targeting efficiency, the DNA of successfully transfected cells or AAV8 treatment tissues were extracted with TIANamp Genomic DNA Kit(TIANGEN,) according to the manufacturer protocol. DNA was amplified with Phanta max super-fidelity DNA polymerase (Vazyme, P505-d1) for Sanger or deep sequencing methods. And deep sequencing libraries were used to add Illumina flow cell binding sequences and specific barcodes on the 5' and 3' end of the primer sequence. The products were pooled and sequenced with 150 paired-end reads on an Illumina Hiseq instrument. FASTQ format data were analyzed using the Cutadapt (v.2.8)41 according to assigned barcode sequences.

PEM-seq analysis

Genome-wide off-target analysis was performed following PEM-seq protocol previously described¹². The 20 µg genomic DNA from Un1Cas12f1 edited or

control samples were fragmented with Covaris sonicator to generate 300-700 bp DNA. DNA fragments was tagged with biotin at 5'-end by one-round PCR extension using a biotinylated primer, primer leftover removed by AMPure XP beads and purified by streptavidin beads. The single-stranded DNA on streptavidin beads is ligated with a bridge adapter containing 14-bp random molecular barcode, and PCR product was generated via nested PCR to enrich DNA fragment containing the bait DSB events and tagged with illumine adapter sequences. The prepared sequencing library was sequenced by Hiseq 2500 with 150 bp pair-end reads.

Statistical analysis

The number of independent biological replicates were shown in the figure legend. The data are presented as means \pm SEM. Differences were assessed using unpaired two-tailed Student's t tests. Differences in means were considered statistically significant at *P* < 0.05.

Supplementary figures & legend

Fig. S1 Genotyping results for offspring from Cas12f1-edited mouse embryos. a Sanger sequencing results for site 18 in *Tyr* gene of offspring derived from Cas12f1-injected embryos. **b** Sanger sequencing results for site-25 in *Tyr* gene of offspring derived from Cas12f1-injected embryos. **c** Sanger sequencing results for site-39 in *Hpd* gene of offspring derived from Cas12f1injected embryos.

Figure S2

a Mouse 1

b Mouse 2

A	A	GG	TG	A	A G	T	ГΤ	GC	Т	G 1	T G	С	T	GC	А	G A	CO	GG	T	G A	A G	Т	G A	A	С	A C	Т	G A	С	GC	Т	CC	A	CC	A	GG	А	G A	С	A C	C	A G	G A	C	СС	CC	-20.4	7%	(635	13 1	reads)
A	A	GG	TG	A	A G	Т	ΤТ	GC	СТ	G 1	T G	С	TC	GC	А	G A	С		-			-		-	-	A C	Т	G A	С	GC	Т	CC	A	CC	A	GG	A	G A	С	A C	CI	A G	G A	C	СС	CC	-9.38	3% (2910	3 re	ads)
A	A	GG	TG	A	A G	T	ΤТ	GC	ТС	G 1	T G	С	Т	GC	А	G A	C	GG	T			-		-	С	A C	т	G A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	C	A G	G A	C	СС	СС	-4.85	5% (1503	5 re	ads)
A	A	GG	TG	A	A G	T	ГΤ	GC	СТ	G 1	T G	С	TC	GC	А	G A	CO	GG	÷ -			-		-	С	A C	Т	G A	С	GC	Т	CC	A	СС	A	GG	А	G A	С	A C	CI	A G	G A	C	СС	CC	-4.24	-% (1315	1 re	ads)
A	A	GG	TG	A	A G	T	ГΤ	GC	СТ	G 1	T G	С	TC	GC	А	G A	C	GG	F T	G ·		-		A	С	A C	Т	G A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	C	A G	G A	C	СС	CC	-3.89	9% (1206	0 re	ads)
A	A	GG	ΤG	A	A G	Т	ΓТ	GC	Т	G 1	T G	С	Т	зC	А	G A	C	GG	T	G ·		-		-	С	A C	т	G A	С	GC	Т	СС	A	СС	A	GG	A	G A	С	A C	C	A G	G A	C	СС	СС	-3.82	2% (1185	8 re	ads)
A	A	GG	TG	A	A G	T	ΓТ	GC	СТ	G 1	T G	С	TC	GC	А	G A	C	GG	G T	G ·		-		-	-	A C	Т	G A	С	GC	Т	CC	A	CC	A	GG	A	G A	С	A C	C	A G	G A	C	СС	CC	-2.88	3% (8945	rea	ids)
A	A	GG	TG	A	A G	T	ΤТ	GC	ТС	G 1	T G	С	Т	GC	А	G A	C		-			-		-	-		Т	G A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	C	A G	G A	C	СС	СС	-2.50)% (7773	rea	ids)
A	A	GG	TG	A	A G	Т	ΤТ	GC	СТ	G 1	T G	С	TC	GC	А	G A	С		-			-		-	С	A C	Т	G A	С	GC	Т	CC	A	CC	A	GG	A	G A	С	A C	CI	A G	G A	C	СС	CC	-1.77	'% (5505	rea	ids)
A	A	GG	T G	A	A G	Т	ГΤ	GC	ТС	G 1	T G	С	Т	GC	А	G A	CO	G -	-			-		-	С	A C	Т	G A	С	GC	Т	CC	A	СС	A	GG	А	G A	С	A C	C	A G	G A	C	СС	СС	-1.68	3% (5218	rea	ids)
A	A	GG	T G	A	A G	T	ΓТ	GC	Т	G 1	T G	С	Т	GC	А		-		-			-		-	-	- C	Т	G A	С	GC	Т	CC	A	СС	A	GG	А	G A	C	A C	C	A G	G A	C	СС	СС	-1.46	5% (4516	rea	ids)
A	A	GG	TG	A	A G	T	ГΤ	GC	ТС	G 1	T G	С	Т	GC	А	GA	C	GG	T	G ·		-		-	-		-	- A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	C	A G	G A	C	СС	CC	-1.43	3% (4445	rea	ids)
A	A	GG	TG	A	A G	T	ΓТ	GC	Т	G 1	T G	С	Т	GC	А	G A	C	GG	Τ			-		-	-	A C	Т	G A	С	GC	Т	CC	A	СС	A	GG	А	G A	С	A C	C	A G	G A	C	СС	СС	-1.23	3% (3831	rea	ids)
A	A	GG	TG	A	A G	Т	ТΤ	GC	ТС	G 1	T G	С	Т	GC	А	G A	C	GG	÷ -			-		-	-	A C	Т	G A	С	GC	Т	CC	A	CC	A	GG	A	G A	С	A C	C	A G	G A	C	СС	CC	-1.16	S% (3588	rea	ids)
A	A	GG	T G	A	A G	T	ΓТ	GC	Т	G 1	T G	С	Т	GC	А	G A	CO	G -	-			-		-	-	- C	Т	G A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	CI	A G	G A	C	СС	CC	- 1.08	3% (3341	rea	ids)
A	A	GG	T G	A	A G	T	ГΤ	GC	ТС	G 1	T G	С	Т	GC	А	G -	-		-			-		-	С	A C	Т	G A	С	GC	Т	CC	A	СС	A	GG	А	G A	С	A C	C	A G	GA	C	СС	CC	- 1.05	5% (3252	rea	ids)
A	A (GG	ΤG	A	A G	T	ГΤ	GC	ТС	G 1	ΤG	С	TC	GC	А	G A	CO	GG	G T	G ·		-		-	-	- C	Т	G A	С	GC	Т	CC	A	СС	A	GG	А	G A	С	A C	C	A G	G A	C	СС	CC	-0.96	3% (2969	rea	ids)
A	A	GG	ΤG	A	A G	T	ГΤ	GC	СТ	G 1	T G	С	Т	GC	А	G A	C	G -	-			-		-	-		-		-	- 0	Т	CC	A	СС	A	GG	А	G A	С	A C	C /	A G	G A	C	СС	СС	-0.83	3% (2590	rea	ıds)
A	A	GG	TG	A	A G	T	ГΤ	GC	ТС	G 1	ΤG	С	TC	GC	А	G A	C	GG	G T			-		-	-	- C	Т	G A	С	GC	Т	CC	A	CC	A	GG	A	G A	С	A C	C	A G	G A	C	СС	CC	-0.83	3% (2583	rea	ids)
A	A	GG	ΤG	A 6	A G	T	ТΤ	GC	СТ	G 1	T G	С	Т	GC	А	G A	C	GG	÷ -			-		-	-		-	- A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	C	A G	GΑ	C	СС	CC	-0.71	% (2188	rea	ıds)
A	A	GG	T G	A	A G	T	ГΤ	GC	ТС	G 1	T G	С	Т	GC	А	G A	CO	GG	- 6			-		-	-	- C	Т	G A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	C	A G	G A	C	СС	CC	-0.66	6% (2036	rea	ids)
A	. A (GG	ΤG	A	A G	T	ГΤ	GC	СТ	G 1	T G	С	Т	GC	А	G A	CO	G -	-			-		-	-		-		-				-		-		-		-					-			•0.63	3% (1944	rea	ıds)
A	A	GG	TG	A	A G	T	ГΤ	GC	Т	G 1	T G	С	TC	GC	А	G A	C	GG	T	G /	۰ ۱	-		-	-	A C	Т	G A	С	GC	Т	CC	A	СС	A	GG	A	G A	С	A C	C	A G	G A	C	СС	CC	0.55	5% (1713	rea	ids)
A	A	GG	TG	A	A G	T	ГΤ	GC	СТ	G 1	T G	С	TC	GC	-		-		-			-		-	-		Т	GA	С	GC	Т	CC	A	CC	A	GG	A	G A	C	A C	C	A G	G A	C	СС	CC	-0.51	% (1585	rea	ıds)
A	A	GG	TG	A	A G	T	ТΤ	GC	СТ	G 1	T G	С	Т	GC	А	G A	C	GG	T	G ·		-	- A	A	С	A C	Т	GA	С	GC	Т	CC	A	CC	A	GG	A	G A	С	A C	CI	A G	G A	C	СС	CC	-0.35	5% (1085	rea	ids)
A	A	GG	TG	A	A G	T	ТΤ	GC	СТ	G 1	T G	С	TC	GC	А	G A	C	G -	-			-		-	-		-	- A	С	GC	Т	CC	A	CC	A	GG	A	G A	C	A C	CI	A G	G A	C	СС	CC	-0.32	2% (1004	rea	ids)

C Mouse 3

Fig. S2 On-target editing analysis of *Hpd* **gene for mouse liver DNA after Un1Cas12f1 treatment. a-c** Deep-seq results for Hpd gene editing in three Un1Cas12f1-treated mice. **d** Percentage of Indel mutations induced by AAV-Un1Cas12f1 in three mice.

C Mouse 3

т g т т т g т т с т - - - - - - - - - - - с а а т с с с т g g а а с а а а g g = 0,27% (936 reads)

T G T T T G T T C T I - - - - - - C T C T C A A T C C C T G G A A C A A A G G •0.22% (758 reads)

- G C T C T G C T C T C A A T C C C T G G A A C A A A G G = 0.33%

- - C T C T G C T C T C A A T C C C T G G A A C A A A G G • 0.31% (1091 reads

TGCTCTGCTCTCAATCCCTGGAACAAAGG • 0,26% (917 reads

1324 reads

1167 reads

T G T T T G T T C T - - - - T G C T C T C A A T C C C T G G A A C A A A G G -0.38%

d Mouse 4

T G T T T G T T C T

sgRNA T G T T T G T T C T C C T C C T C C C T C C A A T C C C T G G A A C A A A G G -23.45% (80653 reads) T G T T G T T C T - - G C T C T G C T C T C A A T C C C T G G A A C A A A G G - 15,55% (53489 reads) T G T T T G T T C T - T G C T C T G C T C T C A A T C C C T G G A A C A A A G G -4.15% (14275 reads) T G T T T G T T C T - - C T C T G C T C T C A A T C C C T G G A A C A A A G G -4.15% (14275 reads) C T C T C T C T C T C T C T C C A A T C C C T G G A A C A A A G G -3.73% (12839 reads) T G T T T G T T C T - - C T C T G C T C T C A A T C C C T G G A A C A A A G G -2.32% (7975 reads) T G T T T G T T C - C T G C T C T G C T C T C A A T C C C T G G A A C A A A G G -2.32% (7975 reads) -2.32% (7975 reads) T G T T T G T T C T - - - T C T G C T C T C A A T C C C T G G A A C A A A G G -2.11% (7240 reads) T G T T T G T T C T - - - C T G C T C T C A A T C C C T G G A A C A A A G G -2.11% (7240 reads) TGTTTGTTCTACTGCTCTGCTCTCAATCCCTGGAACAAAG -1.75% (6016 reads T G T T G T - - - C T G C T C T G C T C T C A A T C C C T G G A A C A A A G G -1.02% (3520 reads T G T T T G T T C T U C T G C T C T G C T C T C A A T C C C T G G A A C A A A G -0.76% (2628 reads T G T T T G T T C T - - - - T G C T C T C A A T C C C T G G A A C A A A G G -0.39% (1340 reads) TGTTTGTTCT - - - - - - - - - - - - - - C A A T C C C T G G A A C A A A G G = 0.28% (971 reads) - - - - - • 0.28% (953 reads TGTT-----CTGCTCTGCTCTCAATCCCTGGAACAAAGG •0.28% (948 reads T G T T T - - - - C T G C T C T G C T C T C A A T C C C T G G A A C A A A G G • 0.26% (890 reads T G T T T G - - - - - C T C T G C T C T C A A T C C C T G G A A C A A A G G -0.26% 889 reads TGTTTGT---GCTCTGCTCTCAATCCCTGGAACAAAGG -0.26% (882 reads - GCTCTGCTCTCAATCCCTGGAACAAAGG -0.25% (844 reads L T G C T C T G C T C T C A A T C C C T G G A A C A A A G G • 0.24% (813 reads T G T - - - - - C T G C T C T G C T C T C A A T C C C T G G A A C A A A G G = 0.21% (738 reads

Saline Mouse 1 Mouse 2 Mouse 3 Mouse 4

Fig. S3 On-target editing analysis of *Hpd* **gene for mouse liver DNA after CjCas9 treatment. a-d** Deep-seq results for Hpd gene editing in four CjCas9-treated mice. e Percentage of Indel mutations induced by AAV- CjCas9 in four mice.

Fig. S4 H&E analysis of liver for Cas12f1 and CjCas9-treated mice.

Control represents liver from mice maintained with NTBC and without treatment. Cas12f1 only group indicate liver from mice treated with Cas12f1 and non-target RNA. Cas12f1 + gRNA and CjCas9 + gRNA represent liver from mice treated with Cas protein and gRNA against *Hpd* gene.

Fig. S5 Phenotypic evaluation of Cas12f1-treated Fah-/- mice. a Tyrosine metabolism pathway. b P21 staining results for mouse liver with or without Cas12f1 treatment (30 days post NTBC off). Red and blue indicate P21 and DAPI signal respectively. c-f Biochemical analysis of serum indicators for liver metabolic function in Cas12f1-treated or untreated mice (n=3). Liver damage markers aspartate aminotransferase (AST), alanine aminotransferase (ALT), Albumin (ALB), bilirubin and tyrosine were measured in peripheral blood from Fah-/- mice injected with Cas12f without or with gRNA (NTBC off, day 30). Fah-/- mice on NTBC water (NTBC on) served as a control. Data are represented as means \pm SEM. Unpaired two-tailed Student's t tests. * P < 0.05, *** P < 0.001, NS non-significant. Scale bars, 100 µm.

Fig. S6 Klkb1 knockout via Cas12f1. a Indel mutations for Klkb1 knockout by Cas12f1. **b** Knockout efficiency for Klkb1.

Fig. S7 Off-target analysis of predicted off-target loci after Un1Cas12f1

treatment. Sanger sequencing results were shown for top 10 off-target loci (OT1 to OT10) predicted by OFFinder. OT: off-target.

Figure S8

Off-target analysis for CjCas9-edited liver

Fig. S8 Off-target analysis of predicted off-target loci after CjCas9 treatment. Sanger sequencing results were shown for top 10 off-target loci (OT1 to OT10) predicted by OFFinder. OT: off-target.

Fig. S9 Off-target analysis of predicted off-target loci after Klkb1 editing

by Un1Cas12f1. Sanger sequencing results were shown for top 10 off-target loci (OT1 to OT10) predicted by OFFinder. OT: off-target.

CAGC

CAGC

TGCAGCAC

CAGCAC

TGCAGCACAG

CAGCACAG

GCAGCACAG

G

CCG

С

A C A G

AGCAGAC

A G

G T C T G C A G C A C A G C A A A C T C C A C C

G T C T G C A G C G C A G C A A A C T T C A C C

T C T G C A G C A C A G C A A A C T T C T C C

ACAGCAAAC

CAAAC

CAAAC

CA

C A

AGC

AAC

AAC

CACC

CACC

CACC

TCACC

TCACC

TCACA

A C C

0.0283%(20)

0.0269%(19)

0.0269%(19)

0.0241%(17)

0.0241%(17)

0.0227%(16)

0.0227%(16)

0.0227%(16)

0.0213%(15)

0.0213%(15)

е

ょ

-

Fig. S10 Genome-wide off-target analysis for Un1Cas12f1 with PEM-seq.

a,c,e No genome-wide translocation events detected by PEM-seq for unedited (a) versus edited mouse tissue via embryonic injection (c) or AAV transduction (e) of Un1Cas12f1 targeting Hpd. **b,d,f** Indel mutations detected in unedited (b) versus edited mouse tissue (d,f) by PEM-seq.

Supplementary Tables

Table S1. Summary table of gRNA tested with or without editing activity for three different Cas12f1 orthologs

Gene editing tool	Number of tested site	Number of effective editing
		site
AsCas12f1	30	0
SpCas12f1	29	0
Un1Cas12f1	32	5

Table S2. AsCas12f1 target site sequences in this study.

sgRNA	Target site sequences (5'-3')	oligos
Trp53-site1	CTGCCCCAGGATGTTGAGGA	GAAC
		CTGCCCCAGGATGTTGAGGA
		АААА
		TCCTCAACATCCTGGGGCAG
Trp53-site2	AGGAGTTTTTTGAAGGCCCA	GAAC
		AGGAGTTTTTTGAAGGCCCA
		АААА
		TGGGCCTTCAAAAAACTCCT
Trp53-site3	AAGGCCCAAGTGAAGCCCTC	GAAC
		AAGGCCCAAGTGAAGCCCTC
		АААА
		GAGGGCTTCACTTGGGCCTT
Trp53-site4	GGCCTTCAAAAAACTCCTCA	GAAC
		GGCCTTCAAAAAACTCCTCA
		АААА
		TGAGGAGTTTTTTGAAGGCC
Trp53-site5	TCCCTTCTCAAAAAACTTAC	GAAC TCCCTTCTCAAAAAACTTAC
		AAAA GTAAGTTTTTTGAGAAGGGA
Trp53-site6	AGAAGGGACAAAAGATGACA	GAAC
		AGAAGGGACAAAAGATGACA
		AAAA TGTCATCTTTTGTCCCTTCT
Trp53-site7	GCTGTCCCAGACTGCAGGAA	GAAC
		GCTGTCCCAGACTGCAGGAA
		АААА
		TTCCTGCAGTCTGGGACAGC
Trp53-site8	TGTGCACGGTGAGTGGGCCC	GAAC
		TGTGCACGGTGAGTGGGCCC
		АААА
		GGGCCCACTCACCGTGCACA
Trp53-site9	AGGGGAGGAGAGTACTGGAA	GAAC
		AGGGGAGGAGAGTACTGGAA
		AAAA TTCCAGTACTCTCCTCCCCT

Trp53-	TGGGTCAGCGCCACACCTCC	GAAC
site10		TGGGTCAGCGCCACACCTCC
		АААА
		GGAGGTGTGGCGCTGACCCA
Trp53-	TAGATGGCCATGGCGCGGAC	GAAC
site11		TAGATGGCCATGGCGCGGAC
		АААА
		GTCCGCGCCATGGCCATCTA
Trp53-	TCCGGGTGGAAGGAAATTTG	GAAC
site12		TCCGGGTGGAAGGAAATTTG
		AAAA CAAATTTCCTTCCACCCGGA
Trp53-	TATCCCGAGTATCTGGAAGA	GAAC
site13		TATCCCGAGTATCTGGAAGA
		AAAA TCTTCCAGATACTCGGGATA
Trp53-	TGAGCCACCCGAGGTCTGTA	GAAC
site14		TGAGCCACCCGAGGTCTGTA
		АААА
		TACAGACCTCGGGTGGCTCA
Trp53-	TAGTGGATGGTGGTATACTC	GAAC TAGTGGATGGTGGTATACTC
site15		AAAA GAGTATACCACCATCCACTA
Trp53-	CACATGTACTTGTAGTGGAT	GAAC CACATGTACTTGTAGTGGAT
site16		AAAA ATCCACTACAAGTACATGTG
Trp53-	CCATCATCACACTGGAAGAC	GAAC
site17		CCATCATCACACTGGAAGAC
		АААА
		GTCTTCCAGTGTGATGATGG
Trp53-	AGGTTCGTGTTTGTGCCTGC	GAAC
site18		AGGTTCGTGTTTGTGCCTGC
		АААА
		GCAGGCACAAACACGAACCT
Trp53-	TGCCTGCCCTGGGAGAGACC	GAAC
site19		TGCCTGCCCTGGGAGAGACC
		АААА
		GGTCTCTCCCAGGGCAGGCA
Trp53-	CGGAAATTTTCTTCTTCTGT	GAAC CGGAAATTTTCTTCTTCTGT
site20		АААА
		ACAGAAGAAGAAAATTTCCG
Trp53-	CCCTGAACTGCCCCCAGGGA	GAAC
site21		CCCTGAACTGCCCCCAGGGA
		АААА
		TCCCTGGGGGCAGTTCAGGG
Trp53-	TGCAGGTGGGCAGCGCTGTG	GAAC
site22		TGCAGGTGGGCAGCGCTGTG

-		
		АААА
		CACAGCGCTGCCCACCTGCA
Trp53-	CGGGGGAGAGGCGCTTGTGC	GAAC
site23		CGGGGGAGAGGCGCTTGTGC
		АААА
		GCACAAGCGCCTCTCCCCCG
Trp53-	ATGGAGAGTATTTCACCCTC	GAAC
site24		ATGGAGAGTATTTCACCCTC
		AAAA GAGGGTGAAATACTCTCCAT
Trp53-	AGGGTGAAATACTCTCCATC	GAAC
site25		AGGGTGAAATACTCTCCATC
		AAAA GATGGAGAGTATTTCACCCT
Trp53-	GTACCTTGAGGGTGAAATAC	GAAC
site26		GTACCTTGAGGGTGAAATAC
		AAAA GTATTTCACCCTCAAGGTAC
Trp53-	CGCCCGCGGATCTGCAGCAG	GAAC
site27		CGCCCGCGGATCTGCAGCAG
		АААА
		CTGCTGCAGATCCGCGGGCG
Trp53-	GAGTTAAAGGATGCCCATGC	GAAC
site28		GAGTTAAAGGATGCCCATGC
		AAAA GCATGGGCATCCTTTAACTC
Trp53-	AAGGATGCCCATGCTACAGA	GAAC
site29		AAGGATGCCCATGCTACAGA
		AAAA TCTGTAGCATGGGCATCCTT
Trp53-	CCTGGAGTGAGCCCTGCTGT	GAAC
site30		CCTGGAGTGAGCCCTGCTGT
		AAAA
		ACAGCAGGGCTCACTCCAGG

Table S3. SpCas12f1 target site sequences in this study.

sgRNA	Target site sequences (5'-3')	oligos
Trp53-site1	CAGGCTTATGGAAACTGTGA	AAAC
		CAGGCTTATGGAAACTGTGA
		AAAA TCACAGTTTCCATAAGCCTG
Trp53-site2	CATAAGCCTGAAAATGTCTC	AAAC CATAAGCCTGAAAATGTCTC
		AAAA GAGACATTTTCAGGCTTATG
Trp53-site3	TTGAAGGCCCAAGTGAAGCC	AAAC
		TTGAAGGCCCAAGTGAAGCC
		АААА
		GGCTTCACTTGGGCCTTCAA
Trp53-site4	TGAAGGCCCAAGTGAAGCCC	AAAC
		TGAAGGCCCAAGTGAAGCCC

		АААА
		GGGCTTCACTTGGGCCTTCA
Trp53-site5	GAAGGCCCAAGTGAAGCCCT	AAAC
		GAAGGCCCAAGTGAAGCCCT
		AAAA
		AGGGCTTCACTTGGGCCTTC
Trp53-site6	AAGGCCCAAGTGAAGCCCTC	AAAC
		AAGGCCCAAGTGAAGCCCTC
		AAAA
		GAGGGCTTCACTTGGGCCTT
Trp53-site7	GTCCCTTCTCAAAAAACTTA	AAAC GTCCCTTCTCAAAAAACTTA
		AAAA TAAGTTTTTTGAGAAGGGAC
Trp53-site8	TCCCTTCTCAAAAAACTTAC	AAAC TCCCTTCTCAAAAAACTTAC
		AAAA GTAAGTTTTTTGAGAAGGGA
Trp53-site9	TCATCTTTTGTCCCTTCTCA	AAAC
		TGAGAAGGGACAAAAGATGA
		AAAA TCATCTTTTGTCCCTTCTCA
Trp53-	GTCATCTTTTGTCCCTTCTC	AAAC
site10		GAGAAGGGACAAAAGATGAC
		AAAA GTCATCTTTTGTCCCTTCTC
Trp53-	AGAAGGGACAAAAGATGACA	AAAC
site11		AGAAGGGACAAAAGATGACA
		AAAA TGTCATCTTTTGTCCCTTCT
Trp53-	CTTCCACCCGGATAAGATGC	AAAC
site12		CTTCCACCCGGATAAGATGC
		АААА
		GCATCTTATCCGGGTGGAAG
Trp53-	TATCCCGAGTATCTGGAAGA	AAAC TATCCCGAGTATCTGGAAGA
site13		AAAA TCTTCCAGATACTCGGGATA
Trp53-	CGCCACAGCGTGGTGGTACC	AAAC
site14		CGCCACAGCGTGGTGGTACC
		АААА
		GGTACCACCACGCTGTGGCG
Trp53-	TTCTTCTGTACGGCGGTCTC	AAAC
site15		TTCTTCTGTACGGCGGTCTC
		АААА
		GAGACCGCCGTACAGAAGAA
Trp53-	CTTCTTCTGTACGGCGGTCT	AAAC
site16		CTTCTTCTGTACGGCGGTCT
		АААА
		AGACCGCCGTACAGAAGAAG
Trp53-	CGGAAATTTTCTTCTTCTGT	AAAC CGGAAATTTTCTTCTTCTGT
site17		АААА

		ACAGAAGAAGAAAATTTCCG
Trp53-	CGCAAAAAGGAAGTCCTTTG	AAAC
site18		CGCAAAAAGGAAGTCCTTTG
		AAAA CAAAGGACTTCCTTTTTGCG
Trp53-	TGCGGAAATTTTCTTCTTCT	AAAC TGCGGAAATTTTCTTCTTCT
site19		AAAA
		AGAAGAAGAAAATTTCCGCA
Trp53-	GCGGAAATTTTCTTCTTCTG	AAAC GCGGAAATTTTCTTCTTCTG
site20		AAAA
		CAGAAGAAGAAAATTTCCGC
Trp53-	CGCTCCCTGGGGGGCAGTTCA	AAAC
site21		CGCTCCCTGGGGGCAGTTCA
		AAAA
		TGAACTGCCCCAGGGAGCG
Trp53-	CGGGGGAGAGGCGCTTGTGC	AAAC
site22		CGGGGGAGAGGCGCTTGTGC
		AAAA
		GCACAAGCGCCTCTCCCCCG
Trp53-	GCGGGGGAGAGGCGCTTGTG	AAAC
site23		GCGGGGGAGAGGCGCTTGTG
		АААА
		CACAAGCGCCTCTCCCCCGC
Trp53-	TTTTGCGGGGGGAGAGGCGCT	AAAC
site24		TTTTGCGGGGGAGAGGCGCT
		АААА
		AGCGCCTCTCCCCCGCAAAA
Trp53-	CTTTTGCGGGGGGAGAGGCGC	AAAC
site25		CTTTTGCGGGGGGAGAGGCGC
		AAAA
		GCGCCTCTCCCCCGCAAAAG
Trp53-	TTCTTTTGCGGGGGGAGAGGC	AAAC
site26		TTCTTTTGCGGGGGGAGAGGC
		AAAA
		GCCTCTCCCCCGCAAAAGAA
Trp53-	ACCCTCAAGGTACCAAGGCT	AAAC
site27		ACCCTCAAGGTACCAAGGCT
		AAAA
		AGCCTTGGTACCTTGAGGGT
Trp53-	CGCCCGCGGATCTGCAGCAG	AAAC
site28		CGCCCGCGGATCTGCAGCAG
		АААА
		CTGCTGCAGATCCGCGGGCG
Trp53-	ACTCTAAGGCCTCATTCAGC	AAAC

site29	ACTCTAAGGCCTCATTCAGC
	АААА
	GCTGAATGAGGCCTTAGAGT

Table S4. Un1Cas12f1 target site sequences in this study.

sgRNA	Target site sequences (5'-3')	oligos
Trp53-site1	CAGGCTTATGGAAACTGTGA	CAAC
		CAGGCTTATGGAAACTGTGA
		AAAA TCACAGTTTCCATAAGCCTG
Trp53-site2	CATAAGCCTGAAAATGTCTC	CAAC CATAAGCCTGAAAATGTCTC
		AAAA GAGACATTTTCAGGCTTATG
Trp53-site3	TTGAAGGCCCAAGTGAAGCC	CAAC
		TTGAAGGCCCAAGTGAAGCC
		AAAA
		GGCTTCACTTGGGCCTTCAA
Trp53-site4	TGAAGGCCCAAGTGAAGCCC	CAAC
		TGAAGGCCCAAGTGAAGCCC
		АААА
		GGGCTTCACTTGGGCCTTCA
Trp53-site5	GAAGGCCCAAGTGAAGCCCT	CAAC
		GAAGGCCCAAGTGAAGCCCT
		AAAA
		AGGGCTTCACTTGGGCCTTC
Trp53-site6	AAGGCCCAAGTGAAGCCCTC	CAAC
		AAGGCCCAAGTGAAGCCCTC
		АААА
		GAGGGCTTCACTTGGGCCTT
Trp53-site7	GTCCCTTCTCAAAAAACTTA	CAAC GTCCCTTCTCAAAAAACTTA
		AAAA TAAGTTTTTTGAGAAGGGAC
Trp53-site8	TCCCTTCTCAAAAAACTTAC	CAAC TCCCTTCTCAAAAAACTTAC
		AAAA GTAAGTTTTTTGAGAAGGGA
Trp53-site9	TTGAGAAGGGACAAAAGATG	CAAC
		TTGAGAAGGGACAAAAGATG
		AAAA CATCTTTTGTCCCTTCTCAA
Trp53-	TGAGAAGGGACAAAAGATGA	CAAC
site10		TGAGAAGGGACAAAAGATGA
		AAAA TCATCTTTTGTCCCTTCTCA
Trp53-	GAGAAGGGACAAAAGATGAC	CAAC
site11		GAGAAGGGACAAAAGATGAC
		AAAA GTCATCTTTTGTCCCTTCTC
Trp53-	AGAAGGGACAAAAGATGACA	CAAC
site12		AGAAGGGACAAAAGATGACA
		AAAA TGTCATCTTTTGTCCCTTCT

Trp53-	CTTCCACCCGGATAAGATGC	CAAC
site13		CTTCCACCCGGATAAGATGC
		АААА
		GCATCTTATCCGGGTGGAAG
Trp53-	TATCCCGAGTATCTGGAAGA	CAAC
site14		TATCCCGAGTATCTGGAAGA
		AAAA TCTTCCAGATACTCGGGATA
Trp53-	CGCCACAGCGTGGTGGTACC	CAAC
site15		CGCCACAGCGTGGTGGTACC
		АААА
		GGTACCACCACGCTGTGGCG
Trp53-	GCCACAGCGTGGTGGTACCT	CAAC
site16		GCCACAGCGTGGTGGTACCT
		АААА
		AGGTACCACCACGCTGTGGC
Trp53-	AGGTTCGTGTTTGTGCCTGC	CAAC
site17		AGGTTCGTGTTTGTGCCTGC
		АААА
		GCAGGCACAAACACGAACCT
Trp53-	TTCTTCTGTACGGCGGTCTC	CAAC
site18		TTCTTCTGTACGGCGGTCTC
		АААА
		GAGACCGCCGTACAGAAGAA
Trp53-	CTTCTTCTGTACGGCGGTCT	CAAC
site19		CTTCTTCTGTACGGCGGTCT
		АААА
		AGACCGCCGTACAGAAGAAG
Trp53-	CGGAAATTTTCTTCTTCTGT	CAAC CGGAAATTTTCTTCTTCTGT
site20		АААА
		ACAGAAGAAGAAAATTTCCG
Trp53-	CGCAAAAAGGAAGTCCTTTG	CAAC
site21		CGCAAAAAGGAAGTCCTTTG
		AAAACAAAGGACTTCCTTTTTGCG
Trp53-	TGCGGAAATTTTCTTCTTCT	CAAC TGCGGAAATTTTCTTCTTCT
site22		АААА
		AGAAGAAGAAAATTTCCGCA
Trp53-	GCGGAAATTTTCTTCTTCTG	CAAC GCGGAAATTTTCTTCTTCTG
site23		АААА
		CAGAAGAAGAAAATTTCCGC
Trp53-	CCCTGAACTGCCCCCAGGGA	CAAC
site24		CCCTGAACTGCCCCCAGGGA
		АААА
		TCCCTGGGGGCAGTTCAGGG

Trp53-	CGCTCCCTGGGGGCAGTTCA	CAAC
site25		CGCTCCCTGGGGGCAGTTCA
		AAAA
		TGAACTGCCCCAGGGAGCG
Trp53-	CGGGGGAGAGGCGCTTGTGC	CAAC
site26		CGGGGGAGAGGCGCTTGTGC
		AAAA
		GCACAAGCGCCTCTCCCCCG
Trp53-	GCGGGGGAGAGGCGCTTGTG	CAAC
site27		GCGGGGGAGAGGCGCTTGTG
		АААА
		CACAAGCGCCTCTCCCCCGC
Trp53-	TTTTGCGGGGGAGAGGCGCT	CAAC
site28		TTTTGCGGGGGAGAGGCGCT
		АААА
		AGCGCCTCTCCCCCGCAAAA
Trp53-	CTTTTGCGGGGGGAGAGGCGC	CAAC
site29		CTTTTGCGGGGGGAGAGGCGC
		AAAA
		GCGCCTCTCCCCCGCAAAAG
Trp53-	TCTTTTGCGGGGGAGAGGCG	CAAC
site30		TCTTTTGCGGGGGAGAGGCG
		AAAA
		CGCCTCTCCCCCGCAAAAGA
Trp53-	TTCTTTTGCGGGGGGAGAGGC	CAAC
site31		TTCTTTTGCGGGGGGAGAGGC
		АААА
		GCCTCTCCCCCGCAAAAGAA
Trp53-	ACCCTCAAGGTACCAAGGCT	CAAC
site32		ACCCTCAAGGTACCAAGGCT
		АААА
		AGCCTTGGTACCTTGAGGGT
<i>Tyr</i> -site1	GTATTGCCTTCTGTGGAGTT	CAAC
		GTATTGCCTTCTGTGGAGTT
		АААА
		AACTCCACAGAAGGCAATAC
<i>Tyr</i> -site2	TATTGCCTTCTGTGGAGTTT	CAAC TATTGCCTTCTGTGGAGTTT
		АААА
		AAACTCCACAGAAGGCAATA
Tyr-site3	CAGATCTCTGATGGCCATTT	CAAC CAGATCTCTGATGGCCATTT
		AAAA AAATGGCCATCAGAGATCTG
Tyr-site4	CCTCGAGCCTGTGCCTCCTC	CAAC
		CCTCGAGCCTGTGCCTCCTC

		АААА
		GAGGAGGCACAGGCTCGAGG
<i>Tyr</i> -site5	CTCGAGCCTGTGCCTCCTCT	CAAC
		CTCGAGCCTGTGCCTCCTCT
		AAAA
		AGAGGAGGCACAGGCTCGAG
<i>Tyr</i> -site6	GCCAACAAGTTCTTAGAGGA	CAAC
		GCCAACAAGTTCTTAGAGGA
		AAAA TCCTCTAAGAACTTGTTGGC
Tyr-site7	AGGCAGAGGTTCCTGCCAGG	CAAC
		AGGCAGAGGTTCCTGCCAGG
		АААА
		CCTGGCAGGAACCTCTGCCT
Tyr-site8	AAGGGGAACTGAGGTCCAGA	CAAC
		AAGGGGAACTGAGGTCCAGA
		АААА
		TCTGGACCTCAGTTCCCCTT
Tyr-site9	ATAATAGGACCTGCCAGTGC	CAAC
-		ATAATAGGACCTGCCAGTGC
		AAAA GCACTGGCAGGTCCTATTAT
<i>Tyr</i> -site10	TAATAGGACCTGCCAGTGCT	CAAC
-		TAATAGGACCTGCCAGTGCT
		AAAA AGCACTGGCAGGTCCTATTA
Tyr-site11	AACTGCGGAAACTGTAAGTT	CAAC
		AACTGCGGAAACTGTAAGTT
		AAAA AACTTACAGTTTCCGCAGTT
Tyr-site12	CGCAGTTGAAACCCATGAAG	CAAC
		CGCAGTTGAAACCCATGAAG
		АААА
		CTTCATGGGTTTCAACTGCG
Tyr-site13	GATTTGGGGGCCCAAATTGT	CAAC
		GATTTGGGGGCCCAAATTGT
		АААА
		ACAATTTGGGCCCCCAAATC
Tyr-site14	GGGGCCCAAATTGTACAGAG	CAAC
-		GGGGCCCAAATTGTACAGAG
		АААА
		CTCTGTACAATTTGGGCCCC
Tyr-site15	GGCCCCCAAATCCAAACTTA	CAAC
-		GGCCCCCAAATCCAAACTTA
		АААА
		TAAGTTTGGATTTGGGGGGCC
Tyr-site16	TTCTAATCAAGACTCGCTTC	CAAC TTCTAATCAAGACTCGCTTC

		АААА
		GAAGCGAGTCTTGATTAGAA
Tyr-site17	GATTTGAGTGTCTCCGAAAA	CAAC
		GATTTGAGTGTCTCCGAAAA
		AAAA TTTTCGGAGACACTCAAATC
Tyr-site18	ATTTGAGTGTCTCCGAAAAG	CAAC
		ATTTGAGTGTCTCCGAAAAG
		AAAA CTTTTCGGAGACACTCAAAT
Tyr-site19	GGAGACACTCAAATCAAAAA	CAAC
		GGAGACACTCAAATCAAAAA
		AAAA TTTTTGATTTGAGTGTCTCC
Tyr-site20	CGGAGACACTCAAATCAAAA	CAAC
		CGGAGACACTCAAATCAAAA
		AAAA TTTTGCTAAAGTGAGGTAAG
Tyr-site21	TTACCTCACTTTAGCAAAAC	CAAC TTACCTCACTTTAGCAAAAC
		AAAA GTTTTGCTAAAGTGAGGTAA
Tyr-site22	GCAAAACATACTATCAGCTC	CAAC GCAAAACATACTATCAGCTC
		AAAA GAGCTGATAGTATGTTTTGC
Tyr-site23	CTAAAGTGAGGTAAGAAAAG	CAAC
		CTAAAGTGAGGTAAGAAAAG
		AAAA CTTTTCTTACCTCACTTTAG
Tyr-site24	GCTAAAGTGAGGTAAGAAAA	CAAC
		GCTAAAGTGAGGTAAGAAAA
		AAAA TTTTCTTACCTCACTTTAGC
Tyr-site25	GCCATAGGTGCCTGTGGGGA	CAAC
		GCCATAGGTGCCTGTGGGGA
		АААА
		TCCCCACAGGCACCTATGGC
<i>Tyr</i> -site26	ATGATATCAACATCTACGAC	CAAC ATGATATCAACATCTACGAC
		AAAA GTCGTAGATGTTGATATCAT
<i>Tyr</i> -site27	TATGGATGCATTACTATGTG	CAAC TATGGATGCATTACTATGTG
		AAAA CACATAGTAATGCATCCATA
<i>Tyr</i> -site28	AGAGCCCCCAAGCAGTGTGT	CAAC
		AGAGCCCCCAAGCAGTGTGT
		АААА
		ACACACTGCTTGGGGGGCTCT
<i>Tyr</i> -site29	GCCCATGAAGCACCAGGGTT	CAAC
		GCCCATGAAGCACCAGGGTT
		АААА
		AACCCTGGTGCTTCATGGGC
<i>Tyr</i> -site30	CCCATGAAGCACCAGGGTTT	CAAC
		CCCATGAAGCACCAGGGTTT
		AAAA

		AAACCCTGGTGCTTCATGGG
Tyr-site31	TGCCTTGGCACAGACTTTTC	CAAC
		TGCCTTGGCACAGACTTTTC
		АААА
		GAAAAGTCTGTGCCAAGGCA
Tyr-site32	CTTGTTATTGTGGGAACAAG	CAAC
		CTTGTTATTGTGGGAACAAG
		AAAA CTTGTTCCCACAATAACAAG
Tyr-site33	TTGTTATTGTGGGAACAAGA	CAAC
		TTGTTATTGTGGGAACAAGA
		AAAA TCTTGTTCCCACAATAACAA
Tyr-site34	TTGTTCCCACAATAACAAGA	CAAC TTGTTCCCACAATAACAAGA
		AAAA TCTTGTTATTGTGGGAACAA
Tyr-site35	TGCATCTCTCCAATCCCAGT	CAAC
		TGCATCTCTCCAATCCCAGT
		АААА
		ACTGGGATTGGAGAGATGCA
Tyr-site36	CTGCATCTCTCCAATCCCAG	CAAC
		CTGCATCTCTCCAATCCCAG
		AAAA
		CTGGGATTGGAGAGATGCAG
Tyr-site37	CACAGATGAGTACTTGGGAG	CAAC
		CACAGATGAGTACTTGGGAG
		AAAA CTCCCAAGTACTCATCTGTG
<i>Tyr</i> -site38	AGGGTGACGACCTCCCAAGT	CAAC
		AGGGTGACGACCTCCCAAGT
		АААА
		ACTTGGGAGGTCGTCACCCT
<i>Tyr</i> -site39	CAGGGTGACGACCTCCCAAG	CAAC
		CAGGGTGACGACCTCCCAAG
		АААА
		CTTGGGAGGTCGTCACCCTG
Hpd-site1	CACTCGGTGACCTTCTGGGT	CAAC
		CACTCGGTGACCTTCTGGGT
		АААА
		ACCCAGAAGGTCACCGAGTG
Hpd-site2	CAGGCTGCTTCCTTCTACTG	CAAC
		CAGGCTGCTTCCTTCTACTG
		АААА
		CAGTAGAAGGAAGCAGCCTG
Hpd-site3	AACCTCTGGCCTACAGGGGC	CAAC
		AACCTCTGGCCTACAGGGGC
		AAAA

		GCCCCTGTAGGCCAGAGGTT
Hpd-site4	CCTTGCTTGATGACGTGGCT	CAAC
		CCTTGCTTGATGACGTGGCT
		АААА
		AGCCACGTCATCAAGCAAGG
Hpd-site5	GATTGTGTTTGTTCTCTGCT	CAAC GATTGTGTTTGTTCTCTGCT
		АААА
		AGCAGAGAACAAACACAATC
Hpd-site6	TTCTCTGCTCTGCTCTCAAT	CAAC TTCTCTGCTCTGCTCTCAAT
		АААА
		ATTGAGAGCAGAGCAGAGAA
Hpd-site7	TTCCAGGGATTGAGAGCAGA	CAAC
		TTCCAGGGATTGAGAGCAGA
		AAAA TCTGCTCTCAATCCCTGGAA
Hpd-site8	ACCCCGTCGCCATGCTTCAC	CAAC
		ACCCCGTCGCCATGCTTCAC
		АААА
		GTGAAGCATGGCGACGGGGT
Hpd-site9	GCGCCCCGTTCTCGAGCTTT	CAAC
		GCGCCCCGTTCTCGAGCTTT
		AAAA
		AAAGCTCGAGAACGGGGCGC
Hpd-site10	TCTTGCTCCACCCATGGCTC	CAAC
		TCTTGCTCCACCCATGGCTC
		АААА
		GAGCCATGGGTGGAGCAAGA
Hpd-site11	GGAAGGTGAAGTTTGCTGTG	CAAC
		GGAAGGTGAAGTTTGCTGTG
		АААА
		CACAGCAAACTTCACCTTCC
Hpd-site12	CTGTGCTGCAGACGGTGAGT	CAAC
		CTGTGCTGCAGACGGTGAGT
		АААА
		ACTCACCGTCTGCAGCACAG
Hpd-site13	TTACCTGGATTCGAGGCCCC	CAAC
		TTACCTGGATTCGAGGCCCC
		АААА
		GGGGCCTCGAATCCAGGTAA
Hpd-site14	GAAGCAGGGTATCCTTGTAT	CAAC
		GAAGCAGGGTATCCTTGTAT
		AAAA ATACAAGGATACCCTGCTTC
Hpd-site15	TTGGTCGGGTTGGTTGCCTA	CAAC
		TTGGTCGGGTTGGTTGCCTA

		АААА
		TAGGCAACCAACCCGACCAA
Hpd-site16	AGGTACCTGCAGAGTGGCCA	CAAC
		AGGTACCTGCAGAGTGGCCA
		АААА
		TGGCCACTCTGCAGGTACCT
Hpd-site17	ATGGATTCCTCGTAGTTGGT	CAAC ATGGATTCCTCGTAGTTGGT
		AAAA ACCAACTACGAGGAATCCAT
Hpd-site18	GATGGATTCCTCGTAGTTGG	CAAC
		GATGGATTCCTCGTAGTTGG
		AAAA CCAACTACGAGGAATCCATC
Hpd-site19	TAGTAAGAAGATGGGGCGGC	CAAC
		TAGTAAGAAGATGGGGCGGC
		AAAA GCCGCCCCATCTTCTTACTA
Hpd-site20	TCGTCATAGTCGACTAGGAT	CAAC TCGTCATAGTCGACTAGGAT
		AAAA ATCCTAGTCGACTATGACGA
Hpd-site21	GAGCGGGCAACTTCAACTCT	CAAC
		GAGCGGGCAACTTCAACTCT
		АААА
		AGAGTTGAAGTTGCCCGCTC
Hpd-site22	AGATTGTGTTTGTTCTCTGC	CAAC AGATTGTGTTTGTTCTCTGC
		АААА
		GCAGAGAACAAACACAATCT
Hpd-site23	TAGATTGTGTTTGTTCTCTG	CAAC TAGATTGTGTTTGTTCTCTG
		AAAA CAGAGAACAAACACAATCTA
Hpd-site24	GGCGCCCCGTTCTCGAGCTT	CAAC
		GGCGCCCCGTTCTCGAGCTT
		АААА
		AAGCTCGAGAACGGGGCGCC

Table S5. CjCas9 target site sequences in this study.

sgRN	Target site sequences (5'-3')	Primer sequences (5'-3')
А		
Hpd-	GGGATTGAGAGCAGAGCAGA	CACCGGGGATTGAGAGCAGAGCAGA
site1	GA	GA
		AAAC TCTCTGCTCTGCTCTCAATCCC
		С
Hpd-	TTTGTCTTGCTCCACCCATGG	CACC G
Hpd- site2	C	CACC G TTTGTCTTGCTCCACCCATGGC
Hpd- site2	C	CACC G TTTGTCTTGCTCCACCCATGGC AAACGCCATGGGTGGAGCAAGACAAA
Hpd- site2	C	CACC G TTTGTCTTGCTCCACCCATGGC AAACGCCATGGGTGGAGCAAGACAAA C
Hpd- site2 Hpd-	GCGTCAGTGTTCACTCACCGT	CACC G TTTGTCTTGCTCCACCCATGGC AAACGCCATGGGTGGAGCAAGACAAA C CACC G

		AAACGACGGTGAGTGAACACTGACGC
		С
Hpd-	CTTCTCACCCCCAGTATGGAG	CACC G
site4	A	CTTCTCACCCCAGTATGGAGA
		AAAC TCTCCATACTGGGGGTGAGAAG
		С
Hpd-	TCACCCCCAGTATGGAGATAC	CACC G
site5	С	TCACCCCCAGTATGGAGATACC
		AAAC GGTATCTCCATACTGGGGGTGA
		С
Hpd-	TCCACCAGGGTGTGTGTGGTA	CACC G
site6	Т	TCCACCAGGGTGTGTGTGGTAT
		AAAC ATACCACACACACCCTGGTGGA
		С
Hpd-	ACACACCCTGGTGGAGAAGAT	CACCG
site7	С	ACACACCCTGGTGGAGAAGATC
		AAAC GATCTTCTCCACCAGGGTGTGT
		С
Hpd-	TTCTTACCTGGATTCGAGGCC	CACC G
site8	С	TTCTTACCTGGATTCGAGGCCC
		AAACGGGCCTCGAATCCAGGTAAGAA
		С
Hpd-	TGGATTCGAGGCCCCAACATA	CACC G
site9	С	TGGATTCGAGGCCCCAACATAC
		AAAC GTATGTTGGGGCCTCGAATCCA
		С
Hpd-	GTTCCACCGGTTCTGGTCCGT	CACC G
site10	G	GTTCCACCGGTTCTGGTCCGTG
		AAACCACGGACCAGAACCGGTGGAA
		СС
Hpd-	TTCTGGTCCGTGGACGACACG	CACC G
site11	С	TTCTGGTCCGTGGACGACACGC
		AAACGCGTGTCGTCCACGGACCAGAA
		С
Hpd-	CTGGTCCGTGGACGACACGC	CACCG
site12	AG	CTGGTCCGTGGACGACACGCAG
		AAAC
		CTGCGTGTCGTCCACGGACCAG C
Hpd-	GTGGACGACACGCAGGTGCA	CACCGGTGGACGACACGCAGGTGCA
site13	CA	СА
		AAAC TGTGCACCTGCGTGTCGTCCAC
		С
Hpd-	GGAGCGCAGAGAGCTGTACTC	CACCG
site14	С	GGAGCGCAGAGAGCTGTACTCC

		AAAC GGAGTACAGCTCTCTGCGCTCC
		С
Hpd-	GACTATAATGGGGGTGCTGGG	CACC G
site15	G	GACTATAATGGGGGTGCTGGGG
		AAAC CCCCAGCACCCCATTATAGTC
		С
Hpd-	TCTTGAGAGCGATGTGCTGGA	CACC G
site16	С	TCTTGAGAGCGATGTGCTGGAC
		AAAC GTCCAGCACATCGCTCTCAAGA
		С
Hpd-	ACAGATCCGCCACTTGAGGGA	CACC G
site17	G	ACAGATCCGCCACTTGAGGGAG
		AAAC CTCCCTCAAGTGGCGGATCTGT
		С
Hpd-	TCACCAAGCCCATGCAGGACC	CACC G
site18	G	TCACCAAGCCCATGCAGGACCG
		AAAC CGGTCCTGCATGGGCTTGGTGA
		С
Hpd-	AAGTCATTCAACGTCACAACCA	CACC G
site19		AAGTCATTCAACGTCACAACCA
		AAAC TGGTTGTGACGTTGAATGACTT
		С

Table S6. PCR and IVT primers used in this study.

Primer	Primer sequences (5'-3')
mTrp53-exon1-1f	TATTCTACCCTTTCCTATAAGCC
mTrp53-exon1-1r	AGGCTGGCCTCCAACTTGCTATG
mTrp53-exon1-2f	CATACAGTACACAATCTCTT
mTrp53-exon1-2r	GATTTACAGACACCCAACAC
mTrp53-exon3-1f	CAGAAGATATCCTGGTAAGGCCC
mTrp53-exon3-1r	TGGAGAGATGCAGAGAATATGAG
mTrp53-exon3-2f	CTTTGGTGTTGGGCTGGTAG
mTrp53-exon3-2r	GGCAAAACTAAACTCTGAGG
mTrp53-exon4-1f	AGGTCCCAGTCCTCTCTTTGCTG
mTrp53-exon4-1r	TTAAAGTAGACCCTGGGCTGGGC
mTrp53-exon4-2f	ATGGTGCTTGGACAATGTGT
mTrp53-exon4-2r	TAAGCCTAGCTAGCACTCAG
mTrp53-exon6-1f	ATCCCTACTACAACTAAAACT
mTrp53-exon6-1r	AAGGTCCAGTTACAGGAACCCCG
mTrp53-exon6-2f	ATTAGAGGCTATAGCCAGCC
mTrp53-exon6-2r	GACTTCATTTAGGTAGATAG
mTrp53-exon7-1f	CCTTTGGCTGCAGATATGACAAG
mTrp53-exon7-1r	GCACAGCCTCAGAGCATGAGCTC

mTrp53-exon7-2f	CTAGTTTACACACAGTCAGG
mTrp53-exon7-2r	AGATAAAGCCACTGAAAAAG
mTrp53-exon9-1f	TGGAGCCAGCTTAAGTTGGGAAC
mTrp53-exon9-1r	TGCAGCCCTAAGCATCTAGCAGG
mTrp53-exon9-2f	TAAAATCGTGAAAGTGGTTG
mTrp53-exon9-2r	TACAAAGGCTGAGCTGGAGG
mHpd-exon2-1f	GAGCAGGGTGAGTCCCATTCTCG
mHpd-exon2-1r	CAAGGTTCCAAAGTGCCAGTCCT
mHpd-exon2-2f	CTGCTTCCTGGGACTCATCC
mHpd-exon2-2r	CACTAGCCAATCCCAGTTCC
mHpd-exon3-1f	CAATCAGGGTCCCCAAGGACCTT
mHpd-exon3-1r	GAGAAGTTTGAAACCAGGAAGAT
mHpd-exon3-2f	AGAGTCTCCAAATGACGGAC
mHpd-exon3-2r	TACATCTTGGAACCAGCTAG
mHpd-exon4-1f	CTAGAACACGTGGTCCAGGGATC
mHpd-exon4-1r	GGCATTAGCTATCCCCATTTTGC
mHpd-exon4-2f	CAGAGGTGCCATAGAGCATG
mHpd-exon4-2r	CAGGGCAGACACACAGAAAG
mHpd-Exon6-1f	CCAGGTGACAAAGGATCCAGCTG
mHpd-Exon6-1r	GTAACTCCCAGAAGCCTCTGTGT
mHpd-Exon6-2f	CTTATATTAGGACTACCCAG
mHpd-Exon6-2r	CATTCTCAAAGGTCAGGCTT
mHpd-exon7-1f	CTGAGTTAGGGTCAGCTTCATGG
mHpd-exon7-1r	AAATGACGGAGCTGCCTGTGAAC
mHpd-exon7-2f	TAGAGAAGAGTGGGGGCTTT
mHpd-exon7-2r	GTTTCCCACCAGATGCTTAC
mHpd-exon8-1f	CATCAGGGCCTAATACGCCATCT
mHpd-exon8-1r	GTTCTCTGGCCTCCCAACATGTG
mHpd-exon8-2f	TATAGGTAAAGGGTTCATGG
mHpd-exon8-2r	CATATAATAAGCACACAGCC
mHpd-exon9-1f	TGAGGATCCTGTGTAACGGGTGT
mHpd-exon9-1r	GTTTGTGGGAGAGGAAAGGGACG
mHpd-exon9-2f	GAAGAGGGTGGGAAGGTCTC
mHpd-exon9-2r	CGCTACTCTCATCGGCAGAG
mHpd-exon10-1f	CTATAAGTGAGAGCCATCACTAG
mHpd-exon10-1r	TCTCCTATAGATTTCAGTTAAAG
mHpd-exon10-2f	TATCCTGACAGAACGTGGAT
mHpd-exon10-2r	TCAAGTGGTCTGCTGTAACT
mHpd-exon11-1f	ACACTTTCCAAGGCTCCCACAAG
mHpd-exon11-1r	GGCAAGGCGGACTCTTGTAATAG
mHpd-exon11-2f	CAAGGTCCAGTTTACCTTCC
mHpd-exon11-2r	TGGGTGGAGCCCTGAGGTTC
mTyr-1f	AACAGGCTGAGAGTATTTGATGT

mTyr-1r	ATTTTCTGCC	CTGAGATATTATC	
mTyr-2f	GTTGCTGGAAAAGAAGTCTG		
mTyr-2r	TGCTGAAGTA	CCAGTCTTTG	
Un1Cas12f1-Tyr-1f	GAATTC	NNNNN	GGATCC
	TAAGTTTGGA	TTTGGGGGCC	
Un1Cas12f1-Tyr-1r	TGATATCATTA	AACATGGGT	
Un1Cas12f1-Tyr-2f	GAATTC	NNNNN	GGATCC
	CAGAGAAGCO	GAGTCTTGATT	
Un1Cas12f1-Tyr-2r	GCATCCATAC	AAAGAGGTCG	
Un1Cas12f1-Fah-1f	GAATTC	NNNNN	GGATCC
	CTACTTGGTA	CCCCACGCAG	
Un1Cas12f1-Fah-1r	GGACTCTGAC	GGTATGCAAAT	
CjCas9-Fah-1f	GAATTC	NNNNN	GGATCC
	TAGAGCATGC	CAGGAAGATG	
CjCas9-Fah-1r	TCACCCTTGC	CCCAACCTAC	
Un1Cas12f1-Hpd-site12-	GAAATTAATAC	CGACTCACTATAGG	G
1f	ACCGCTTCAC	CTTAGAGTGA	
Un1Cas12f1-Hpd-site12-	CTCACCGTCT	GCAGCACAG GTTGCAT	TCCTTTCTTTGT
1r			
Un1Cas12f1-Tyr-site18-	CTTTTCGGAG	ACACTCAAAT GTTGCAT	TCCTTTCTTTGT
1r			
Un1Cas12f1-Tyr-site25-	TCCCCACAGO	GCACCTATGGC	
1r	GTTGCATTCC	TTTCTTTGT	

Table S7. Potential off-target sites of Hpd in the mouse genome.

	-	-
No.	sequences (5'-3')	Primer sequences (5'-3')
Un1Cas12f1	TTTG	1f: CTGGGCACAGTTCATACTTCAG
-Hpd-OT1	CTaTGCTGCAGAtGGcaAG	1r: TCCTCCTTCTCCTTATCCTCCT
	Т	2f: CTAGAAACCGCTGGATCAAAG
		2r: TCTGCCTCCTGAGTGCTAGATT
Un1Cas12f1	TTTG	1f: ACTGTTAGGGAAGAGGAAGACG
-Hpd-OT2	gTGTGCccCAGAtGGTGA	1r: CATTAACTTCCCCAAGTGATGG
	GT	2f: AGTCCCCGTGAGGATGAGAT
		2r: GACTTAAGGCTTTGGGAGATCA
Un1Cas12f1	TTTG	1f: CCTCACCCTTCATGTTTATCCT
-Hpd-OT3	CTGTGCTGCAcACccTGg	1r: CTTTGAAAAGAGGTCCTTTTGG
	GT	2f: TGACATCCATACGTTTGTTCATC
		2r: AAGCCTATCTGGACACAAGATCA
Un1Cas12f1	TTTG	1f: GCACCTGGTTCCTCTGTAAACT
-Hpd-OT4	CTGTGtTGgAtACaGTGAG	1r: AAAATGACTGTCCCCAAAGGTA
	Т	2f: ATGCTGTTGGCCATGTTGATAC
		2r: CAAAACCCACTGATAGGAAAGC
Un1Cas12f1	TTTG	1f: TTTTTCCCCCTAGTTTCACTCC

-Hpd-OT5	CTGTGCTGtgtACtGTGAG	1r: CACTCAAAGGAAGCTTCACAAA
	Т	2f: GCGCGCTTAATCTAATTTCTTC
		2r: TCCAGGAGATTTGGAAATCAGT
Un1Cas12f1	TTTG	1f: AGCCTCTTTGCTCATTCATAGG
-Hpd-OT6	CTGTGgTGgAGAtGGTGtG	1r: AGACAGGGAATGCCACATTAAG
	Т	2f: CCTCCCCCACTACAGACTACAT
		2r: GGGTCTGGTATAGGTTTTTGAGA
Un1Cas12f1	TTTA	1f: TGGGGACAGGAAACATCTACTT
-Hpd-OT7	CTGTGaTGCAGACttgGAG	1r: GATTCCTCCCGGTAAGTTTTTC
	Т	2f: TTGGTGTTAGAGATGGGGAACT
		2r: CCAGTAAGTACCCACAATGAAGC
Un1Cas12f1	TTTG	1f: GATTAGCAACTTTACACCCAGGA
-Hpd-OT8	CTtTcCTGCAGACGGgGAa	1r: TGTCTTGTTGGTGATGTGTCTG
	Т	2f: CAGTGAATTTTGCAAAGTGAGG
		2r: TGTAATGCCATCAGTATGTGCT
Un1Cas12f1	TTTG	1f: CATGGGGAAGCCTATCTTACAG
-Hpd-OT9	CTtTGCTGCAaACaGTGA	1r: CAGTTTGGGGATGGAGTCTTTA
	Ga	2f: AACCCATTCAATTTGTACAGCA
		2r: TAGGGAAAGAATGGAAGATGGA
Un1Cas12f1	TTTA	1f:
-Hpd-OT10	CTGaGtTGCAGACtGTGtG	GATAGAGGAAGAAGAGTGTGTGT
	т	G
		1r: AGCCTGTGAAGGCTCACATCTA
		2f: TTCGAATACAGCTTATACCATTGC
		2r: CTGGTCTCTCCTCTTTGGTGAT
CjCas9-	GGagagGAGAGCAGAGCA	1f: AACCAAGATAGGGATGCTTTGC
Hpd-OT1	GAGATATAATAC	1r:
		CAGCCACACAGATAGATAGTCAC
		А
		2f: AAGGAAGTTAGGCATGGTGTAC
		2r: TATAGACACAGACACACATGCA
CjCas9-	GGGATTtcGAGCAGgcCA	1f: TTCCATATTTTTGCCATTTGGT
Hpd-OT2	GAGAGCTGGTAC	1r: AGCCTTCTGTGAATAACAACTGA
		2f: TGTTTGTTTCTAGGTTTTTGACCA
		2r: AGGACCCCAAGTTTGAAGCTA
CjCas9-	GGGAcTGAGAGCtGAGCt	1f: TCACATTCTGTCTAGAGCTTGG
Hpd-OT3	GAcAAAGGATAC	1r: GATGACGAGGTTGTTCAGTGG
		2f: CAACTGGGAGCCTTGAAAATAC
		2r: TGAGGCAGGAGGATAGCATAGT
CjCas9-	GGcAgTGAGAGCAaAGaA	1f: TGCACACAAGATAGAGGCAACT
Hpd-OT4	GAGAGAAGACAC	1r: CAGGCCAATAGGGAATTTCTAA
		2f: CCAGTCATGTGTGTCAAGTGTC
		2r: AGTCTGACTGTCTCCCCACTGT
CjCas9-	GGGATTagGAGCAGAGgA	1f: ACAAGAATATGGCCCACAGAAT

Hpd-OT5	GgGAAGGAATAC	1r: TGTCTGCACAATTACAACAGAAA
		2f: CATAGGCCTGAACTGGATTCTC
		2r: CCTTCATGTTCCTATCCCAGAC
CjCas9-	GGGgaTGAGAGgcGAGCA	1f: GGAAACAAAAGCCTGTACCTTG
Hpd-OT6	GAGACCAGGCAC	1r: GGGACAGTGTCTTCTCCCATAC
		2f: AAAGCTGCAGATGGAACCAC
		2r: TTCCTGAAGGTCATGTCCATTTT
CjCas9-	GtGAcTGttAGCAGAGCAG	1f: TACAAGAGGGCCACTCACCTAT
Hpd-OT7	AGATTCAGTAC	1r: GGGGACAGGGTCTCACTATGTA
		2f: GGAAGGCAGCTGTTAGAACCTA
		2r: GTCTCTGCCTCCTGAGTGCT
CjCas9-	GGGgTTGAGgGtAaAGCA	1f: CAGAGAACCAGGCTGAAACACT
Hpd-OT8	GAGAGAACACAC	1r: GATGGTCATATAGTTGCGGAAA
		2f: CTGTCACCCACAGTAAGAGCAC
		2r: TGCTCTGAATGAGTGGCATATC
CjCas9-	GGGAaaGAGAGCAGAGC	1f: TAGGAAGGTAGAGAGCCACTGC
Hpd-OT9	catGATGGAACAC	1r: ATCAGAGAGGCATAGCAGGAAG
		2f: AGATGCAAGTCACCTGAGAAGC
		2r: AGAGTCTTCCTCCCTGGATTTT
CjCas9-	GGGATTGAaAtCAGgtCAtA	1f: ATAAAACAGCACCAGCCCTAAA
Hpd-OT10	GACTTGGCAC	1r: CTTTAGTCAAGGAAAAACCAGCA
		2f: CCTACAGAACAAAACCCAGCTC
		2r: GGCCCAACATAATCAAGTTGTAA