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Supplementary Figures

Supplementary Figure 1: Binary CXR prediction models. (a) Performance in terms of AUC for each task (Effusion, Atelectasis and
Abnormal). (b) Age information encoded in each model in terms of age MAE. UEB: Upper Error Bound, LEB: Lower Error Bound, as
determined experimentally. These bounds represent the limits for model age error in this dataset. The LEB is displayed as the mean
and standard deviation across 5 technical replicates. (c) Fairness of each model in terms of separation, with 0 meaning a perfectly fair
model (a separation value of 0.01 will correspond to a 10.5% change in model performance per decade; 0.02 will correspond to a
22.1% change per decade, see Methods).In all cases, each dot represents a different replicate of the model and error bars represent
the population variability (95% bootstrapped confidence intervals, n=17,723 independent samples), with the average metric
represented by a horizontal line. Source data are provided as a Source Data file.
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Supplementary Figure 2: Fairness-Performance results for other CXR labels. Separation is plotted against AUC, with the age
performance of each model represented by the color as in Figure 3. Similar patterns may be observed, whereby inducing a bias in the
training dataset results in much more unfair model performance, which can be ameliorated by gradient reversal (center column, green
dots), or exacerbated by increasing the age representation (purple dots). In contrast, balancing the training dataset results in baseline
models (orange) which are considerably fairer, and gradient reversal results in degraded model performance without further fairness
improvement. Source data are provided as a Source Data file.
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Supplementary Figure 3: ShorT analysis of original NIH and subsampled datasets for Atelectasis and Abnormal (the
complement of the No Finding label). Biased datasets (middle column) result in significant dependence of fairness on age
representation. In contrast, balanced datasets (right column), there is no such dependence. In the original dataset, there is no
dependence of fairness on age representation for Atelectasis, however there is a significant positive correlation between fairness and
age representation for the No Finding label. This implies that models which represent age more accurately (left) tend to be fairer
(closer to 0 on the y axis). This may be explained by an underuse of age information for this particular dataset and task. For all plots,
an AUC threshold was set at 0.7, with replicates with an AUC value less than this being excluded from the correlation analysis. We
chose 0.7 as the threshold as the performance of baseline models was lower for Atelectasis and Abnormal labels (Supplementary
Figure 1). One such replicate is not displayed on the Abnormal, Original Dataset plot, as it had a separation of > 0.1, and lies beyond the
limits of the y axis. All tests are two-sided Spearman correlations. Source data are provided as a Source Data file.
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Supplementary Figure 4: ShorT analysis of original NIH and subsampled datasets for Effusion using different fairness metrics.
(Top row) Independence, as computed by the coefficient of the logistic regression between the model’s predictions and age. (Middle
row) Sufficiency, as computed by the positive predictive value. (Bottom row) Maximum gap in performance across age subgroups,
with age bucketed in [18,30), [30, 45), [45, 65) and [65, 100). For all plots, an AUC threshold was set at 0.8, with replicates with an AUC
value less than this being excluded from the correlation analysis. All tests are two-sided Spearman correlations. Source data are
provided as a Source Data file.
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Supplementary Figure 5: Cross-Dataset Age comparison of fairness and performance at differing levels of age encoding in
the Effusion task. (a) Fairness. Results from Figure 5 are displayed on a single graph, with replicates pooled according to predefined
degrees of age encoding. In each degree of age encoding, we define its average (line) and estimate variability across models with
bootstrapping (95% confidence intervals, error bars). For a given level of age encoding, models trained on the Balanced (solid line),
Original (dashed line), or Biased (dotted line) datasets display vastly different fairness characteristics. (b) Age encoding vs
Performance. At the same level of age encoding, performance is very similar for the Balanced and Original datasets, although the
performance of the Balanced dataset drops off at higher age prediction errors. The Biased dataset results in a spuriously higher AUC
due to cleaner class separation (see Supplementary Figure 6). Source data are provided as a Source Data file (see Figures 2c, 3c and
3f).

Supplementary Figure 6: Cross-dataset performance and fairness for the effusion prediction task. AUC and Separation are
shown for baseline models (without an age prediction head) trained on biased, original, and balanced datasets (x axis), tested on all
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three datasets. In-distribution results are located on the top-left to bottom-right diagonal. Note that the best performance is obtained
in models trained on biased datasets, tested in-distribution; however, performance is degraded for out of distribution test sets, due
to shortcut learning; this increase in performance is therefore spurious. Models trained on balanced datasets obtain similar
performance results to those trained on the original dataset. However, separation is considerably improved in models trained on
balanced data.

Supplementary Figure 7: Effect of age head gradient scaling on age representation for the dermatology example in figure 6.
ShorT models covered a range of age prediction errors, although there appeared to be a wider plateau in the middle of the range of
age head scaling values, over which age prediction error was quite similar to baseline. This plateau, as well as the wide range between
the “Clinical Label” and “No Information” upper error bounds, likely occurs due to the richer soft labels used in this example, as well as
due to the stronger dependence between age and condition probability for many (but not all) dermatological problems. Each dot
represents a model trained (25 values of gradient scaling times 5 replicates), with error bars denoting 95% confidence intervals from
bootstrapping examples (n= 1,925 independent patients) within a model. Source data are provided as a Source Data file.

Supplementary Methods

CXR Datasets
We use two CXR datasets, NIH CXR, and CheXpert. The NIH CXR Dataset is provided by the NIH Clinical
Center and is available at https://nihcc.app.box.com/v/ChestXray-NIHCC. For experiments, images were first
downsized to 448x448 pixels. We select the “Effusion”, “Atelectasis” and “No findings” (which we report as
“Abnormal” for semantic consistency) labels provided with data as our binary outcomes, focussing on
Effusion.

https://nihcc.app.box.com/v/ChestXray-NIHCC
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CheXpert is available at https://stanfordmlgroup.github.io/competitions/chexpert/. Demographic labels are
available at https://stanfordaimi.azurewebsites.net/datasets/192ada7c-4d43-466e-b8bb-b81992bb80cf.
Following22, we focus on a binary distinction between Black and White patients, rather than treating race as a
multi-class prediction task. Images were downsized to 448x448 pixels, and we select cardiomegaly as a
binary outcome for reporting.

The demographic information for the NIH dataset is as follows, broken down by findings:

Train Tune

No Effusion Female Avg age 47.095458 44.460953

N 26200 16698

Male Avg age 48.625099 44.311849

N 32974 22931

Effusion Female Avg age 50.663645 48.79426

N 3199 2683

Male Avg age 51.563483 48.064258

N 3560 3875

No Atelectasis Female Avg age 47.10309 44.627401

N 26792 17335

Male Avg age 48.547831 44.307013

N 32751 23683

Atelectasis Female Avg age 51.395474 48.733138

N 2607 2046

Male Avg age 52.059212 49.004483

N 3783 3123

No Finding Female Avg age 46.252016 42.902625

N 16991 9448

Male Avg age 47.98801 43.51865

N 21268 12654

Finding Female Avg age 49.170374 47.113662

N 12408 9933

Male Avg age 50.197891 46.048544

N 15266 14152

Model Architectures
For the medical imaging models, we employ convolutional neural networks as image embedding models,
followed by multi-layer perceptrons (MLPs) as classification models for both clinical classification and

https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordaimi.azurewebsites.net/datasets/192ada7c-4d43-466e-b8bb-b81992bb80cf
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age/race prediction. We use modified ResNet 101x3 architectures1 pre-trained on the public Imagenet 21k
dataset. Model architectures for image embedding and checkpoints are available on tensorflow hub.

In the dermatology task, each clinical case includes 1 to 6 images. We average the embeddings across a
clinical case before passing them to the MLP. All clinical classification MLPs have 2 layers, with 512 hidden
units and ReLU activation, while all sensitive attribute MLPs have 3 layers, with 512 and 256 hidden units and
ReLU activation.

In array pseudocode, the architecture follows:
# images: array of size (num_instances, height, width, 3)

# num_classes: 27 if dermatology, else 2

image_embeddings = resnet_101x3(images)

if dermatology:

image_embeddings = image_embeddings.mean(axis='instance')

clinical_prediction = mlp(

image_embeddings,

layers=2,

units=(512, num_classes),

activations=('relu', 'softmax')

)

attribute_prediction = mlp(

reverse_gradient(image_embeddings),

layers=3,

units=(512, 256, 1),

activations=('relu', 'relu', None)

)

if age:

loss = (cross_entropy(clinical_prediction, labels) + lambda *

mse(attribute_prediction, sensitive_labels))

elif race:

loss = (cross_entropy(clinical_prediction, labels) +

lambda * binary_ce(attribute_prediction, sensitive_labels, from_logits=True))

Where the reverse_gradient is an operation that allows for gradient scaling and lambda is a hyper-parameter
(positive or negative) that controls for the strength of the scaling. See the code available at
https://github.com/google-research/google-research/tree/master/shortcut_testing for an example
implementation of these different operations.

Hyperparameter Tuning and model selection
All models were tuned for batch size, learning rate, weight decay, and dropout in the penultimate layer before
training. The same parameters were applied to models trained on each label in the CXR task.

https://paperpile.com/c/TSX7Jf/7akn
https://tfhub.dev/google/collections/bit/1
https://github.com/google-research/google-research/tree/master/shortcut_testing
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Batch Size Learning Rate Weight Decay Dropout

Age Prediction 16 1 x 10-5 1 x 10-7 0

CXR Prediction 16 4 x 10-5 1 x 10-6 0.1

Age Transfer 8 3 x 10-3 n/a 0

Models were trained for 17,500 epochs and the model with highest performance on the validation data was
selected. The decision threshold for each model was based on the maximum F1-score observed on validation
data.

Multitask Prediction
To adapt a single task prediction model to multitask prediction, we added a demographic (age prediction)
head at the final layer of the base model. There are no hidden layers between the feature extractor and the
condition output layer. However, the demographic head itself uses two fully connected hidden layers
between the gradient reversal layer and the final age output layer, to provide the network with capacity
during adversarial training.

Next, in order to approximately balance the losses between the age (mean square error) and condition
(cross-entropy) heads, we down-weighted the regression loss by a factor of 100. We then tested further
adjustments to this loss weighting using a grid search (in conjunction with a coarse gradient scaling
parameter sweep). In our case, we found that simple balancing of losses was sufficient.

Once the loss weighting was established, this was fixed for all further experiments. We then swept over 25
values for scaling of the gradient updates from the demographic head, ranging from -0.1 to +0.1 (spaced
exponentially). For each value of gradient scaling, 5 replicates were trained, resulting in 125 models per
experiment.

For attribute transfer experiments, the feature extractor was frozen and then a linear demographic prediction
head was applied and the model retrained to predict age. Hidden layers were not required in this simpler
(single task) prediction setup; we found that the addition of one or two hidden layers made no material
difference to our results.

Subsampling of training data
In order to produce datasets with a shift in the mean age between the ground truth classes, we use a logistic
probability function, which defines the probability of an example being retained as a function of the age of
the patient:

𝑝
𝑟𝑒𝑡𝑎𝑖𝑛

 =  𝑚 ÷ (1 + 𝑒−𝑘(𝑎−𝑎
0
))
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Where k is the slope of the function; a0 is the midpoint of the probability function (the age at which the
probability of being retained is 0.5); and m is a scale factor that increases the probability of retaining
examples. This defines a probability of retaining a positive example; for negative examples (patients without
the condition), we use 1-pretain

The following parameters were used to generate subsampled training sets. Since the process is stochastic,
these were obtained by trial and error.

k a0 m

Biased Balanced

Effusion 0.14 -0.07 50 4

Atelectasis 0.12 -0.08 50 4

Abnormal 0.14 -0.065 50 4

The training sets generated using these parameters are described below. These perturbed datasets do not
precisely match the desired shift in ages due to stochastic errors.

Number of training examples Positive Examples
(% of training set)

Mean Age of Positive /
Negative classes (years)

Performance (AUC)
Fairness (Separation coefficient)

Original Biased Balanced Original Biased Balanced Original Biased Balanced Original Biased Balanced

Effusion 65394 55634 61029 6731
(10.3%)

5612
(10.1%)

6421
(10.5%)

51.3
48.2

55.8
44.6

50.1
50.0

0.882
0.011

0.901
0.040

0.883
0.002

Atelectasis 65394 57800 59349 6354
(9.7%)

5592
(9.7%)

5959
(10.0%)

52.0
48.2

55.3
45.3

50.6
50.6

0.819
0.016

0.846
0.049

0.813
0.006

Abnormal 65394 55128 62294 27465
(42.0%)

22299
(40.5%)

22299
(40.5%)

50.0
47.5

55.1
44.2

49.2
49.0

0.766
0.010

0.806
0.057

0.765
0.008

Significance testing when comparing ShorT across datasets
Shortcut testing (ShorT) relies on calculating the correlation between the degree of age encoding and
fairness metrics. To test that the ShorT statistics differ across datasets, we perform permutation tests of
Spearman’s rho across different versions of the training dataset. We calculate the true difference in
correlation statistics, and compare it to an empirical null distribution of differences. The null distribution is
simulated using bootstrapping. We combine the data points from the two groups, shuffle them, and randomly
divide them into two groups. To calculate p-values, we compare the true difference to this null distribution.
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For CXR, we find that differences are highly significant when comparing the original and biased datasets, and
the original and balanced datasets (p = 1e-8; p = 1e-4, respectively), indicating that shortcutting happens
significantly more with biased datasets, and significantly less with a balanced dataset.

Race in cardiomegaly models
To test ShorT in the context of a spurious attribute, we apply it to race in chest x-ray analysis. Following
previous work2, we analyze self-reported race in the CheXpert dataset as a binary task of predicting White
and Black self-reported race from chest x-rays. We treat the Uncertain label for Cardiomegaly as negative.

The public validation set available for CheXpert only contains 9 individuals with self-reported Black race. Due
to this small sample size, we instead randomly re-split the training data into new training (85%), validation
(5%), and testing (10%).

This re-split has the following properties:

Tune Train

No Cardiomegaly Cardiomegaly No Cardiomegaly Cardiomegaly

White Female

Male

N = 4447
Avg Age = 64.9
N = 6652
Avg Age = 62.0

N = 491
Avg Age = 69.6
N = 979
Avg Age = 67.1

N = 40080
Avg Age = 64.9
N = 60011
Avg Age = 62.0

N = 4537
Avg Age = 70.3
N = 8427
Avg Age = 66.5

Black Female

Male

N = 480
Avg Age = 58.6
N = 501
Avg Age = 57.8

N = 120
Avg Age = 61.6
N = 89
Avg Age = 58.2

N = 4140
Avg Age = 56.4
N = 4508
Avg Age = 54.5

N = 1104
Avg Age = 58.6
N = 1028
Avg Age = 53.0

Other
Race

Female

Male

N = 3116
Avg Age = 57.7
N = 4454
Avg Age = 57.2

N = 420
Avg Age = 61.9
N = 609
Avg Age = 60.0

N = 28065
Avg Age = 57.5
N = 40125
Avg Age = 56.1

N = 3883
Avg Age = 63.2
N = 5381
Avg Age = 59.5

We focus on the cardiomegaly prediction, as the cardiomegaly label is imbalanced for race (prevalence for
White patients was 11.5%, prevalence for Black patients was 19.8%). Similar to our age models, we train
models to directly predict race to estimate the upper bound of performance on race (as per the AUROC on
this binary prediction task). We then train models to predict both cardiomegaly and race, while sweeping over
the gradient scale for the race prediction head. We set the weight of both heads as equal, as the scale of the
loss is the same order of magnitude, and vary the gradient scale between -0.1 and +0.1 to match other
experiments in the paper. Using an implementation inspired by Alabdulmohsin et al.3, we estimate fairness via
equalized odds.

https://paperpile.com/c/TSX7Jf/L2x6
https://paperpile.com/c/TSX7Jf/LMpO


12

Dermatology Dataset and experiments
For dermatology experiments, models are trained to predict 26 skin conditions with an additional “other”
category to capture the long tail of conditions, as a multiclass prediction task, as described in 4. Our approach
differs slightly from previously published results, as we use a more modern architecture (ResNet 101x3 rather
than Inception v4), and a slightly smaller training dataset. The commercial dataset used consists of
teledermatology images with associated diagnoses obtained by labeling by multiple dermatologists.
Unfortunately, this dataset is not available for public use.

We assess model performance for a single class by using binarised metrics. For AUC, we use the prediction
score of the chosen class. For separation, we define positive predictions to be examples where the top
ranking prediction score is for the chosen class. Using top-3 selection (i.e. a positive prediction is any
example where the score for the chosen class is in the top-3 scores) did not change our results.

Dermatology Dataset - Demographics

Since the dermatological dataset is not publicly available, we report here the basic demographics of the
training dataset used. This dataset comprises 12,027 cases obtained from teledermatology clinics in
California and Hawaii:

Attribute Percentage in
training set

Race American Indian /
Alaska Native

0.83

Asian 11.6

Black / African
American

5.99

Hispanic / Latino 41.9

Native Hawaiian /
Pacific Islander

1.52

White 35.5

Not Specified 2.71

Gender Male 38.1

Female 61.9

Age 18-19 7.33

20-29 22.4

30-39 19.2

40-49 16.8

https://paperpile.com/c/TSX7Jf/DiDkH
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50-59 19.5

60-69 11.6

70-79 2.27

80-89 0.782

90+ 0.191

Supplementary Note 1

Simulated data
We generated simulated data to assess the efficacy of ShorT. The data consisted of MNIST images5 with the
labels representing whether the number hand-written in the image was smaller than 5, or 5 and above. To
these images, we added a small colored square at a random location. The color of the square (red or green)
could be correlated with the label, and here plays the role of the sensitive attribute A. Noise was added to the
image and the square as the tasks were straightforward. We hence obtain a data generating process that
corresponds to Figure 1(b). As we control the data generating process, we are also able to generate
counterfactual samples, i.e. images for which the color of the square has been switched.

We implemented ShorT with Tensorflow6 v2 and Keras, using as feature extractor a small MLP of 3 dense
layers with 10 units each. For gradient reversal, we added one more dense layer of size 2 before the attribute’s
output layer while the label was directly predicted from the feature extractor. Attribute encoding was
assessed as the ROC AUC after training an output layer from a frozen feature extractor. Fairness was
computed via equalized odds. Baseline model accuracy was between 0.8 and 0.86.

Further hyper-parameter selection was needed to balance the losses of the target (weight =1) and of the
attribute (search between 0.5 and 1.0). The final value was selected as 0.75. We varied the correlation
between Y and A such that a label of Y=0 was associated with a red square between 50 and 95% of the time
(20 steps), while the label Y=1 was associated with a red square between 50 and 15% of the time (20 steps).

We observed that ShorT produces significant results for high correlations between Y and A (Supplementary
Figure 8a). This corresponds to our observations with counterfactuals that, given the simplicity of the task,
the model does not “need” to rely on the attribute for predictions if the correlation between A and Y is not
high. Focussing on the low correlation setting, we uniformly sampled the correlations between A and Y in the
0.4-0.6 range (n=50) and assessed the number of significant results for ShorT (at a threshold of p<0.05,
Bonferroni corrected). We note that only 3 instances lead to significant p-values for ShorT (i.e. 3/50=0.06 ≈
0.05, Supplementary Figure 8b). Finally, we focussed on the high correlation setting and sampled uniformly in
the 0.9-0.98 range for label Y=1 and in the 0.15-0.23 range for Y=0. Note that the asymmetry is needed to
obtain unfairness based on equalized odds. In this case, we observe that ShorT correctly identifies

https://paperpile.com/c/TSX7Jf/x2gXh
https://paperpile.com/c/TSX7Jf/n4G4P
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shortcutting in all instances (Supplementary Figure S8, 50/50), even after Bonferroni correction for multiple
comparisons (50/50).

Figure S8: ShorT on simulated data. (a) Increasing the correlation between label and color in a consistent
but asymmetric fashion leads to significant shortcutting for high values of the correlation. Each dot
represents the p-value of ShorT computed based on a different combination of correlations. We focus on two
areas (shaded on the plot): a low correlation setting (detailed in (b)) to assess type I error and a high
correlation setting (detailed in (c)) to assess type II error. (b) For low values of the correlation and a small
asymmetry (x-axis), we obtain a uniform distribution of ShorT p-values. (c) p-values are consistently lower
than p<0.05 when the asymmetry is high and the correlation between A and Y is large. All tests are two-sided
Spearman correlations, with p-values corrected for multiple comparisons using Bonferroni correction.

Supplementary Discussion
In our analysis, we have chosen to preserve age as a continuous variable, using logistic regression analysis to
characterize the fairness properties of the model. This avoids the need for arbitrary quantization of the data.
However, it does assume that discrepancies, where observed, will be monotonic - with weaker performance
for either older or younger patients. In cases where we may expect bimodal or more complex distributions of
fairness properties it might be more judicious to examine the model outputs rather than rely on particular
formulations of fairness metrics. Distribution-free approaches 7–9, may be considered if no particular form of
association can be expected, although these will in general be more limited in power and interpretability.
Secondly, the use of a LR model requires a binarised outcome per example, and would be unsuitable for
metrics such as prediction scores (continuous) or AUC (requires a set of observations). Alternative methods
10,11 may overcome some of these limitations, at the expense of interpretability. However, our framework does
not require the use of a continuous attribute, and may be applied to binary or discrete variables, by
substituting the model-based fairness metrics for conventional definitions.

https://paperpile.com/c/TSX7Jf/SAT8I+PFpIO+yAdba
https://paperpile.com/c/TSX7Jf/J3QL+MXoA
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