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Editorial Note: This manuscript has been previously reviewed at another journal that is not 

operating a transparent peer review scheme. This document only contains reviewer comments and 

rebuttal letters for versions considered at Nature Communications. 

 

Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

This manuscript presents a cancer associated fibroblast classification based on sequencing of 14 human 

breast cancers, then validated on public datasets from other tumor types, including pancreatic cancer. 

The authors identify several known populations of fibroblasts, as well as describe some new populations 

based on prevalent gene expression. The authors then use highly multiplexed imaging mass 

spectrometry to visualize expression of genes associated with each fibroblast population in cancer 

samples, to evaluate their spatial distribution. 

 

This manuscript follows a large number of studies using different gene expression parameters to identify 

specific fibroblast populations in cancer; such as PMID: 33981032. The use of imaging mass cytometry 

adds information as to protein expression; however, the study remains largely descriptive. 

 

Higher magnification and high resolution images of the mass cytometry data would be useful to better 

evaluate the data from the images. 

 

Given the number of articles defining fibroblast populations in healthy and diseased tissues, statements 

as to the novelty of this study should be moderated. In particular, the paragraph starting on line 56 

states taht previous studies of CAFs are cancer-type specific, but studies comparing fibroblast types 

across diseases exist: PMID: 33981032 

PMID: 36333338, among others 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

We commend the authors on the revised manuscript. They have addressed all of our original concerns. 



 

 

 

Reviewer #3 (Remarks to the Author): 

 

The revised manuscript by Cords et al includes improvements on the prior strategy to define a pan-CAF 

classification. However, many of the critiques raised by this reviewer, as well as from others, still remain. 

A few examples include: 

1) The ultimate calling of CAF subtypes is still based on arbitrary and subjective decisions. As an 

example, cluster 0 and 7 are combined because they are “characterized by high levels of expression of 

genes encoding matrix proteins…”. Yet, based on the heatmap there are other genes that clearly are 

differentially expressed between cluster 0 and 7, so why combine these cells into a heterogenous 

cluster? The same reasoning is true for the merging of clusters 8 and 10. Also, how can the clusters that 

were arbitrarily combined exhibit overlapping genes in an analysis of differentially expressed genes? Any 

such merging of clusters should be objective and based on the dendrogram of the clustering (which by 

the way is missing throughout the paper). Also, were the DEG analysis rerun after the merging of some 

clusters? 

2) In the description of vCAFs, it is stated that they do not express RGS5, whereas the heatmap clearly 

demonstrates prominent expression by a large proportion of these cells. 

3) The designation of tumor promoting CAFs based on upregulation of oncogenic pathways is not 

biologically sound. Whereas activation of the K-Ras pathway or mutation/loss of p53 may be tumor-

promoting in malignant cells, less is known about their effects in CAFs or other microenvironmental cell 

types. Without experimental evidence, this major concern still remains. 

4) Similarly, the designation of CAFs into “activated” or “non-activated” is not robust or based on any 

experimental evidence. Is the division also reflected in the dendrogram of the clustering? The reason for 

this division is also not clear, since it is not used in any meaningful way. 

5) The statement that similar pathways were upregulated in the GSEA of the pan-cancer dataset 

compared to the original discovery dataset is not true. As one example, the two distinguishing features 

of the vCAF subset in breast cancer, i.e. KRas down and PI3K signaling, are conspicuously absent from 

the pan-cancer analysis. 

6) The marker profiles of CAF subsets in the imaging mass cytometry still does not match that of the 

mRNA expression defining the same subsets in the scRNAseq analysis. As an example, the authors state 

that mCAFs are detected by IMC by being PDPN+ (among other markers), but in the heatmap, mCAFs 

are negative for PDPN. 



Reviewers' comments: 
 
 
Reviewer #1 (Remarks to the Author): 
This manuscript presents a cancer associated fibroblast classification based on sequencing of 
14 human breast cancers, then validated on public datasets from other tumor types, including 
pancreatic cancer. The authors identify several known populations of fibroblasts, as well as 
describe some new populations based on prevalent gene expression. The authors then use 
highly multiplexed imaging mass spectrometry to visualize expression of genes associated 
with each fibroblast population in cancer samples, to evaluate their spatial distribution. 
 
This manuscript follows a large number of studies using different gene expression parameters 
to identify specific fibroblast populations in cancer; such as PMID: 33981032. The use of 
imaging mass cytometry adds information as to protein expression; however, the study 
remains largely descriptive. Higher magnification and high resolution images of the mass 
cytometry data would be useful to better evaluate the data from the images. 
 
We are showing the images at the highest resolution possible for IMC. We now provide the 
images at higher magnification images of the areas of interest (Fig 4c, reproduced below) and 
hope that this facilitates their evaluation. 
  

 
Revised Figure 4c:  Zoomed in images acquired with IMC showing the expression of key markers used 
in our classification system on the image level. The indicated CAF type is highlighted by arrows. CAFs 
are identified as follows: vCAFs, CD146; hypoxic CAFs: CDH-11, CA9; tmCAFs, SMA, CD10; IDO CAFs: 
IDO, SMA; iCAFs: aSMA, CD34; rCAFs: CCL21. PanCK indicates tumour cells, CD20 indicates B cells, 
Iridium (blue) indicates nuclei in all images. The scalebar is indicating 100 µm. 



Given the number of articles defining fibroblast populations in healthy and diseased tissues, 
statements as to the novelty of this study should be moderated. In particular, the paragraph 
starting on line 56 states that previous studies of CAFs are cancer-type specific, but studies 
comparing fibroblast types across diseases exist: PMID: 33981032  
PMID: 36333338, among others. 
 
We agree with the reviewer and have toned down these claims and now cite the mentioned 
studies.  
 
 
Reviewer #2 (Remarks to the Author): 
We commend the authors on the revised manuscript. They have addressed all of our original 
concerns. 
 
We thank the review for the positive feedback.  
 
 
Reviewer #3 (Remarks to the Author): 
The revised manuscript by Cords et al includes improvements on the prior strategy to define 
a pan-CAF classification. However, many of the critiques raised by this reviewer, as well as 
from others, still remain. A few examples include: 
 
1) The ultimate calling of CAF subtypes is still based on arbitrary and subjective decisions. 
 
We respectfully disagree. Our classification and naming scheme is grounded in current 
knowledge and draws heavily on previously published studies. We discuss this in detail in the 
Discussion section. We provide references for the previous naming of several CAF types again 
below, studies are also cited in the manuscript. In many ways we unify with our scheme the 
various fragmented classifications out there in order to enable future work on CAFs by 
suggesting marker genes for generally identifiable and functionally interpretable CAF types. 
We have now explicitly stated this in the manuscript (lines 74-76). 
 
Previous studies have defined mCAFs (or ECM CAFs) (Bartoschek et al., 2018; Friedman et al., 
2020) , iCAFs (Wu et al., 2020), dCAFs (Bartoschek et al., 2018 (called cyclic CAFs), vCAFs 
(Bartoschek et al., 2018), apCAFs (Elyada et al., 2019; Friedman et al., 2020; Kieffer et al., 
2020). In all cases, we now explicitly cite previous studies that have defined similar CAF types 
in the relevant section. 
 
New categories we introduce that have not been proposed before are “rCAFs”, “IDO CAFs” 
and “tpCAFs”. The cells we call rCAFs have in previous work been included in the iCAF 
population (Kieffer et al., 2020). However, the expression pattern of these cells (i.e., CCL19+ 
and CCL21+) distinguishes them from iCAFs in our study. Since these markers mimic 
fibroblastic reticular cells in the lymph node, we labeled them reticular CAFs. Our IMC findings 
further support this, since they show that trCAFs are often in close proximity to TLS, in 
contrast to iCAFs which are significantly enriched in non-TLS containing images (Figure 4f).  In 



fact, a recent study labels a similar CAF type (Grout et al., 2022) as TLS CAFagain consistent 
with the term we use. 
 
The cells we call tpCAFs have in previous work been associated with chemo-resistance (Su et 
al., 2018). Given the spatial interaction of these cells with the tumour-stroma interface and 
given that they show similarly upregulated pathways as tumour cells, we called this 
population tumour promoting (tp)CAFs. However, as previously stated, and in response to the 
referee (point 3), we have renamed them tumour-mimicking CAFs.  
 
Finally, the cells we call IDO CAFs have in previous work been described (Curran et al., 2014) 
as CAFs secreting IDO in response to IFNs. The top differentially expressed genes of this cluster 
further include CXCL11, CXCL10, which are cytokines released in response to IFN stimulation, 
and GSEA analysis showed strong enrichment in IFN-α and IFN-γ response pathways, with 
enrichment scores higher than in other cell types where these pathways were also enriched 
(i.e., pericytes, dCAFs and rCAFs; see newly added Supp Table 7 for z scores). We thus named 
these cells IDO CAFs since IDO is a well-known marker for the cellular IFN response.   
 
As an example, cluster 0 and 7 are combined because they are “characterized by high levels 
of expression of genes encoding matrix proteins…”. Yet, based on the heatmap there are 
other genes that clearly are differentially expressed between cluster 0 and 7, so why combine 
these cells into a heterogenous cluster? The same reasoning is true for the merging of clusters 
8 and 10.  
 
We combined clusters 0 and 7, and clusters 8 and 10, because it is meaningful given our 
current biological understanding of CAFs and as they shared differentially expressed marker 
genes such as MMP11 and collagens (for 0 and 7, yielding mCAFs) and MHC-II machinery 
related genes (for 8 and 10, yielding apCAFs). Please note that clusters 8 and 10 are highly 
related in the first place, and that this is also true, albeit more distantly, for clusters 0 and 7 
(Fig. S1c, and reproduced below). Importantly, these shared differentially expressed genes 
belong to similar functional categories, and we focused on achieving a biologically meaningful 
grouping.  
 
If we avoid merging these clusters and instead simply accept the clusters at a resolution of 
0.4 in the dendrogram, the difficulty we face is that it is then very difficult/ to define separate 
markers that can be used to identify these cells in subsequent analyses. Given the strong 
biological overlap in the genes differentially expressed by these cells, we concluded that the 
better option would be to merge the clusters. Nevertheless, we acknowledge that the broad 
and functional classes of CAFs we defined may harbour subgroups with differences in gene 
expression patterns. This is now stated explicitly in the revised manuscript (line 410-413). 
 
 
 
 
 
 



Also, how can the clusters that were arbitrarily combined exhibit overlapping genes in an 
analysis of differentially expressed genes?  
 
This is precisely the point. Clusters such as 8 and 10, or 0 and 7, are similar to each other and 
therefore MUST have overlapping genes in the DGE analysis (which is done at the level of 
each cluster compared to all other clusters). This is in part the rationale for merging them. It 
is not unexpected in a clustering protocol that over-clustering can split up a functionally 
meaningful group into smaller groups. We do not claim here that the clusters we have 
selected and annotated represent the only way to look at the data or to understand CAF types. 
Rather we have sought a pragmatic and functionally/biologically motivated way to organize 
our  scRNA-Seq data on this important cell type.  
 
Any such merging of clusters should be objective and based on the dendrogram of the 
clustering (which by the way is missing throughout the paper). 
 
It is incorrect that the dendrograms are missing from the paper. The dendrogram in the form 
of clustrees for the breast cancer scRNA-Seq dataset is in Supplementary Fig. 1c, and is 
reproduced here. We further show such clustrees for each validation dataset in 
supplementary figures 2a, 3a, 4a, 5a, 6a and 7a. The dendrograms for IMC analyses are 
included for all shown heatmaps (Supp Fig. 8a, and Fig. 4b). As mentioned above, the 
dendrograms for the breast cancer dataset (Supp. Fig 1c) shows that both clusters 8 and 10, 
and clusters 0 and 7, are related. We would also like to state that the selection of the level of 
cluster granularity and the generation of metaclusters in the light of known biology is 
commonly done in the scRNA-seq and IMC studies.   

 
Supplementary figure 1c: Clustree showing hierarchical clustering for breast cancer fibroblasts with 
the black box indicating the chosen clustering resolution of 0.4. 



Also, were the DEG analysis rerun after the merging of some clusters? 
 
Yes, the results are shown in supplementary table 3. It might have been unclear before and 
we have now clearly stated this in the methods (line 601-602).  GE results for clustering at 
resolution of 0.4 and for the final CAF types including merged clusters 0 and 7, 8 and 10 are 
provided (Supp. Tables 2&3). 
 
2) In the description of vCAFs, it is stated that they do not express RGS5, whereas the heatmap 
clearly demonstrates prominent expression by a large proportion of these cells. 
 
We thank the reviewer for pointing this out. Indeed, some cells within the vCAF cluster do 
express RGS5, but it is not a consistent marker as it is for pericytes, and it is therefore also not 
among the top differentially expressed genes for vCAFs.  This is in line with fibroblasts 
characterised by genes involved in angiogenesis and NOTCH pathway that also partially 
expressed RGS5 and that clustered with pericytes identified in NSCLC by (Lambrechts et al., 
2018). Also, note that additional genes differentiate the vCAF cluster from pericytes, such as 
MHY11 and RERGL. We have revised the statement regarding RGS5 expression in vCAFs as 
follows: “A fraction of these cells showed expression of pericyte marker RGS5 (Figure 2a, b; 
Supplementary Tables 2 and 3), but RGS5 was not among the top differentially expressed 
genes of this cluster (Supp. Table 2, 3).”  
 
3) The designation of tumor promoting CAFs based on upregulation of oncogenic pathways is 
not biologically sound. Whereas activation of the K-Ras pathway or mutation/loss of p53 may 
be tumor-promoting in malignant cells, less is known about their effects in CAFs or other 
microenvironmental cell types. Without experimental evidence, this major concern still 
remains. 
 
We accept that this naming is speculative . We have renamed this cluster tumor-mimicking 
CAFs (tmCAFs) and avoid now any naming that is associated with function (also see next 
section) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4) Similarly, the designation of CAFs into “activated” or “non-activated” is not robust or based 
on any experimental evidence. Is the division also reflected in the dendrogram of the 
clustering? The reason for this division is also not clear, since it is not used in any meaningful 
way.  
 
The division between these groups is indeed clear in the dendrogram (Figure S1c, see above). 
Activated (i.e., FAP+) CAFs correspond to clusters 0, 2, 3, 4 in the breast cancer dataset, while 
non-activated (i.e., FAP-) CAFs correspond to clusters 1, at the lowest clustering resolution.  
This division is further plainly visible on the UMAP (Fig. R1). 
 

 
 
Fig. R1: UMAP of breast cancer fibroblasts coloured according to groups defined by FAP expression 
(left). Excerpt of Fig. 2b showing the FAP expression per cell (right). 
 
However, we have now removed the “activated” versus “non-activated” terminology and 
label these clearly separated groups simply as FAP+ and FAP- CAFs, also in line with the 
literature (Yang et al., 2016; Li et al., 2017; Öhlund et al., 2017; Costa et al., 2018). 
 
5) The statement that similar pathways were upregulated in the GSEA of the pan-cancer 
dataset compared to the original discovery dataset is not true. As one example, the two 
distinguishing features of the vCAF subset in breast cancer, i.e. KRas down and PI3K signaling, 
are conspicuously absent from the pan-cancer analysis. 
 
The referee is fully correct that the results of the GSEA analyses on the original breast 
discovery dataset and the pan-cancer validation dataset are not identical, that is why we use 
“similar” and not “identical” in the manuscript. We do not think this is in any way unexpected 
given that the validation dataset includes multiple cancer types, and given that pathway 
definitions are in themselves imperfect. However, there are strong overlaps in the enriched 
pathways for the two datasets.  
 
Comparing the top 5 enriched pathways in the breast cancer dataset shows high overlap 
among the enriched pathways (mCAF: 3/5, iCAF: 3/5, tpCAF: 4/5 apCAF:4/5, dCAF: 3/5, 
Revised Supplementary Table 7). Importantly, these almost always included 2 or 3 pathways 
corresponding to genes that we used in our functional annotation of the CAF type. The one 



exception was iCAFs, where only a single pathway (IL6-JAK-STAT signaling) fell into this 
category, with complement signaling and Kras signaling being enriched, but lower on the list.  
 
We have now revised the relevant text (line 253-262) in the manuscript as follows: 
“Analysis of this integrated dataset yielded similar top differentially expressed genes for each 
CAF type as identified in the breast cancer dataset (Figure 3b, c, e; Supplementary Tables 5 
and 6), and GSEA analysis showed that the top 5 enriched pathways in the breast cancer 
dataset were also enriched in the integrated dataset in 60-80% of cases (Supplementary Table 
7). Although imperfect, we saw particularly strong overlap in the pathways that informed our 
functional annotation of CAF types (Figure 3f, Supp. Table 7). Specifically, the top 5 enriched 
pathways in the integrated dataset included hypoxia in tmCAFs, the EMT pathway and KRAS 
signalling in mCAFs, IL6-JAK-STAT signalling in iCAFs, allograft rejection in apCAFs, and E2F 
targets and the G2M checkpoint in dCAFs, all of which overlapped with top enriched pathways 
in the breast cancer dataset (Figure 3f).” 
 
We now show the comparison of the top 20 enriched pathways in the breast cancer and 
integrated datasets in Supplementary Table 7 in the revised manuscript. We have also altered 
the markup of Fig. 3f (reproduced below) to make the extent of overlap clearer.  
 

 
Revised figure 3f: Heatmap showing the results of gene set enrichment analysis for all defined cell 
types in the integrated dataset. Boxes indicate the overlap of the top 5 enriched hallmark pathways 
between the integrated validation and breast cancer dataset. 
 
 
 
 
 
 
 
 
 



6) The marker profiles of CAF subsets in the imaging mass cytometry still does not match that 
of the mRNA expression defining the same subsets in the scRNA-seq analysis. As an example, 
the authors state that mCAFs are detected by IMC by being PDPN+ (among other markers), 
but in the heatmap, mCAFs are negative for PDPN. 
 
Indeed, PDPN expression in mCAFs is low; note that it is higher however than in iCAFs or 
vCAFs, and it is also higher than expression of the markers used for negative selection of 
mCAFs (CD146, CD10, CD34) (Figure 4b, reproduced below). Nevertheless, we should have 
written this more clearly and we are sorry for the confusion. We also noticed that fibronectin 
and collagen are in fact included in the same imaging channel, which was also not clear 
previously. The revised sentence is now “Due to the lack of an antibody suitable for detection 
of MMP11, mCAFs were identified as PDPNlow/collagen-fibronectinhigh/FAP+ cells that did not 
express CD10, CD34, or CD146”. We have carefully checked and revised the section to avoid 
similar lack of clarity regarding other markers used for identification of CAF types in IMC. 
 

 
Figure 4b: Heatmap of marker expression of CAF clusters defined by IMC in breast tumour samples. 
The histogram indicates the square root of all cell numbers per cluster in each CAF type. 
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This revised manuscript proposes a classification of cancer associated fibroblasts across tumor types. 

There is strong interest in CAFs and in understanding their characteristics. The main limitation of the 

current study is taht it is purely descriptive. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

Cords et al have further revised the text and argued their standpoint in light of the remaining 

comments. With respect to the merging of clusters on the grounds that they have similar differentially 

expressed genes, this reviewer still does not agree that this is a valid and objective approach. The 

reasoning to merge clusters based on biological understanding is made clear by the authors. But this is 

still not reason enough to disregard the relationships of clusters based on the objective measure of the 

dendrogram/clustree. Indeed, whereas clusters 8 and 10 are merged at a lower resolution of the 

dataset, clusters 0 and 7 were only merged at the very lowest resolution (and parts of them keep 

merging and splitting up at higher resolutions). Thus, the authors introduce a comparative analysis of 

different sets of clusters at varying resolutions. This is not biologically meaningful, as argued by the 

authors, since clusters at different levels of resolution may represent different fundamental 

characteristics of the cells, e.g. cell type (origin) at the lower resolutions and cell state (context) at the 

higher resolutions. 

 

In addition, the nomenclature proposed by the authors is inconsistent. Some clusters bear names that 

refer to the expression of classes of genes (matrix CAFs, inflammatory CAFs), others that refer to the 

localization of cells (vessel-associated CAFs), some that refer to similarities to other cell types (tumor-

mimicking CAFs, antigen presenting CAFs, reticular-like CAFs), and yet others that refer to the expression 

of single genes (IDO CAFs). The field is not furthered by introduction of such disparate nomenclatures, 

but instead needs a unifying framework for classification of CAFs. And again, the naming of tumor-

mimicking CAFs needs corroborating experimental data since the implications of the statement are 

broad (what does it mean that a CAF is "tumor-mimicking"?). 

 

Moreover, the fact that “similar” but not “identical” gene sets are enriched in the clusters of the 

integrated analysis illustrates the point that the authors cannot draw direct parallels between clusters 

from different cancers based on this analysis. GSEA is not an accurate analysis tool to determine identity 



of cellular clusters, since the expression of different genes within the same gene set can give rise to 

artificial similarities (e.g. the fact that cells in cluster A express genes 1, 2, and 3 of gene set X does not 

mean that they are identical/similar with the cells in cluster B that express genes 4, 5, and 6 of gene set 

X). Also, as illustrated by the revised heatmap provided by the authors, individual gene sets may be 

enriched by several clusters, again calling into question the strategy to base comparisons between 

specific clusters of cells on broadly defined gene sets of up to as many as 200 genes that may be 

enriched in several different subsets. 

 

 

 

Reviewer #4 (Remarks to the Author): Expert in scRNA-seq analysis; arbitrating reviewer 

 

The study by Cords et al, provides a classification scheme for cancer-associated fibroblasts. With scRNA-

seq and multiplexed imaging mass cytometry, they have identified generalizable CAF subtypes that can 

be identified across multiple cancers. This study will provide a good starting point for other researchers 

to classify CAFs in their own datasets. 

 

While reviewer #3 brings up good points about merging clusters, this reviewer does not necessarily think 

that these points lead to the loss of biological meaning. It must also be noted that clustering algorithms 

can also split clusters apart due to the quality of cells (i.e. high MT reads, low transcript count, etc.) 

despite being the same cell type. Moreover, conservatively calling clusters is likely the more prudent 

approach (to prevent the issue of over clustering) so long as they are substantiated by biological 

evidence. The authors have provided sufficient explanation regarding the known biological context of 

the various fibroblasts and their associated studies. Providing a carefully worded statement in the 

manuscript covering the points of reviewer #3 on merging clusters at varying resolutions would suffice. 

 

This reviewer agrees with the point of reviewer #3 where the nomenclature can seem inconsistent. In 

particular, the IDO CAFs stick out compared to the other names and would for example be better fitted 

to “ifnCAF” for “interferon response” or what the authors would deep appropriate. 

 

This reviewer finds it astonishing that even similar gene sets are called across different datasets. It’s 

highly unlikely that the same gene sets would be enriched in the CAF types across different datasets due 

to batch effects, sparsity of scRNA-seq, disease differences, etc. Thus, retaining any general 

characteristics across the board is quite substantial. 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
This revised manuscript proposes a classification of cancer associated fibroblasts across 
tumor types. There is strong interest in CAFs and in understanding their characteristics. The 
main limitation of the current study is taht it is purely descriptive. 
 
 
Reviewer #3 (Remarks to the Author): 
 
Cords et al have further revised the text and argued their standpoint in light of the remaining 
comments. With respect to the merging of clusters on the grounds that they have similar 
differentially expressed genes, this reviewer still does not agree that this is a valid and 
objective approach. The reasoning to merge clusters based on biological understanding is 
made clear by the authors. But this is still not reason enough to disregard the relationships of 
clusters based on the objective measure of the dendrogram/clustree. Indeed, whereas clusters 
8 and 10 are merged at a lower resolution of the dataset, clusters 0 and 7 were only merged at 
the very lowest resolution (and parts of them keep merging and splitting up at higher 
resolutions). Thus, the authors introduce a comparative analysis of different sets of clusters at 
varying resolutions. This is not biologically meaningful, as argued by the authors, since 
clusters at different levels of resolution may represent different fundamental characteristics of 
the cells, e.g. cell type (origin) at the lower resolutions and cell state (context) at the higher 
resolutions. 
 
We acknowledge that clusters 0 and 7 may be different subgroups within the merged matrix 
CAF (mCAF) cluster. Top differenƟally expressed genes exclusive to cluster 7 (MGP and BGN) 
could suggest an associaƟon of this small subgroup of CAFs with carƟlage.  
 
Nevertheless, we note that cluster 7 (435 cells) is much smaller than cluster 0 (4,090 cells) 
and strongly overlaps with the larger cluster 0 in terms of its top differenƟally expressed 
genes (Supplementary Fig. 1b, reproduced below). Also, cluster 7 does not show strongly 
differenƟally expressed genes that are exclusive to this cluster (i.e., rather than being shared 
with cluster 0). This may indicate that cluster 7 is the result of over clustering (i.e., too many 
clusters), which as reviewer 4 points out can happen for technical reasons.  
 
We had decided to merge clusters 0 and 7 in order to choose relaƟvely conservaƟve clusters 
that are also biologically meaningful, as also recognized by reviewer 4. We have retained the 
merging of clusters 0 and 7, and 8 and 10, in the revised manuscript. The process and 
raƟonale for merging was already described in the previous version.  Based on the 
comments of referees 3 and 4 we now include a further paragraph about clustering choices 
in the discussion lines 363-373), and state explicitly that the merged clusters may represent 
subgroups within mCAFs and apCAFs (lines 111-114; 190-191; 370-373). 
 



 
Supplementary Figure 1b: Heatmap showing the top 10 differenƟally expressed genes for each cluster 
at the resoluƟon of 0.4. Black boxes highlight clusters 0 and 7 as well as their top 10 differenƟally 
expressed genes. 



 
In addition, the nomenclature proposed by the authors is inconsistent. Some clusters bear 
names that refer to the expression of classes of genes (matrix CAFs, inflammatory CAFs), 
others that refer to the localization of cells (vessel-associated CAFs), some that refer to 
similarities to other cell types (tumor-mimicking CAFs, antigen presenting CAFs, reticular-
like CAFs), and yet others that refer to the expression of single genes (IDO CAFs). The field 
is not furthered by introduction of such disparate nomenclatures, but instead needs a unifying 
framework for classification of CAFs. And again, the naming of tumor-mimicking CAFs 
needs corroborating experimental data since the implications of the statement are broad (what 
does it mean that a CAF is "tumor-mimicking"?). 
 
We agree with the reviewer that the nomenclature is slightly inconsistent in terms of the 
naming categories.  Proposing a useful naming scheme is however not an easy task, 
especially since we wished to also respect established names for some cell types (specifically 
apCAFs1–4 and iCAFs2,5–8, but also to some extent mCAFs2,9,10  and vCAFs3,10).  
 
We have now made further efforts to consolidate the naming categories. We have changed 
IDO CAFs to interferon response CAFs (ifnCAFs) as suggested by referee 4, so that we no 
longer have any CAF type named based on a single marker. We have changed vessel-
associated CAFs to vascular CAFS (sƟll vCAFs) since there is some prior work that has used 
this term for the same cell type; this has eliminated one instance of a locaƟon category. We 
have changed tumour-mimicking CAFs (which we acknowledge could unintenƟonally give 
the impression of an acƟve mimicry process in these cells) into tumour-like cells (tCAFs). This 
is based on the overlap in gene expression paƩerns of tCAFs with that of tumour cells and is 
the most neutral term we could idenƟfy. We also include a speculaƟve paragraph in the 
discussion about the markers expressed by tCAFs having been previously associated with the 
promoƟon of tumour growth (lines 432-438). 
 
We thus now have a combinaƟon of established names (iCAFs, apCAFs, vCAFs, mCAFs), and 
names based either on a suggested funcƟonal associaƟon (mCAFs, ifnCAFs, dCAFs, but also 
iCAFs, apCAFs, vCAFs) or on similarity to other cell types (tCAFs, reƟcular CAFs). While this 
may not be a perfect strategy, the proposed scheme strikes a balance between pragmaƟsm 
and consistency. We thank the referees for their ongoing aƩenƟon to this point. 
 
Importantly however, we do not intend to suggest that this is the only or the best naming 
scheme possible. Certainly, further studies and funcƟonal experiments may result in these 
names being changed or modified. We now include a new paragraph in the discussion (lines 
375-383) explicitly discussing the challenges associated with naming cell types, outlining the 
decisions we have made in order to propose a useful scheme, and staƟng that further 
funcƟonal data will be needed to refine or confirm the names that we have proposed. 
 
Moreover, the fact that “similar” but not “identical” gene sets are enriched in the clusters of 
the integrated analysis illustrates the point that the authors cannot draw direct parallels 
between clusters from different cancers based on this analysis. GSEA is not an accurate 
analysis tool to determine identity of cellular clusters, since the expression of different genes 
within the same gene set can give rise to artificial similarities (e.g. the fact that cells in cluster 
A express genes 1, 2, and 3 of gene set X does not mean that they are identical/similar with 
the cells in cluster B that express genes 4, 5, and 6 of gene set X). Also, as illustrated by the 



revised heatmap provided by the authors, individual gene sets may be enriched by several 
clusters, again calling into question the strategy to base comparisons between specific 
clusters of cells on broadly defined gene sets of up to as many as 200 genes that may be 
enriched in several different subsets. 
 
The reviewer is correct that GSEA cannot be used to determine the idenƟty of cellular 
clusters, and we do not use GSEA in this way. We defined CAF types based on differenƟal 
gene expression as measured with scRNA-seq, further assessed by protein level imaging with 
IMC. Naming of these clusters, as well as choices about cluster merging, were based on a 
literature-driven biological interpretaƟon of the top differenƟally expressed genes. The GSEA 
was merely used to further invesƟgate the profile of the idenƟfied CAF types and to assess 
whether these funcƟonal annotaƟons based on prior knowledge were consistent with our 
proposed naming scheme. This analysis was proposed by a previous reviewer, and we see it 
as a useful orthogonal assessment of our defined clusters, but no more than that. 
 
It is not at all surprising that the pathways enriched in different CAF types are not idenƟcal 
between cancer types. As referee 4 points out, given technical noise (batch effects and data 
sparsity) and likely disease differences it is indeed surprising that there is considerable 
overlap, strongly supporƟng that there are similariƟes between the CAF types in these data 
sets corresponding to different diseases. We note as well that genes like FAP or PDPN 
overlap between the different CAF types, which would further confound any specific signals.   
 
 
Reviewer #4 (Remarks to the Author): Expert in scRNA-seq analysis; arbitrating reviewer 
The study by Cords et al, provides a classification scheme for cancer-associated fibroblasts. 
With scRNA-seq and multiplexed imaging mass cytometry, they have identified 
generalizable CAF subtypes that can be identified across multiple cancers. This study will 
provide a good starting point for other researchers to classify CAFs in their own datasets.  
 
We thank the reviewer for their supporƟve comments. 
 
While reviewer #3 brings up good points about merging clusters, this reviewer does not 
necessarily think that these points lead to the loss of biological meaning. It must also be noted 
that clustering algorithms can also split clusters apart due to the quality of cells (i.e. high MT 
reads, low transcript count, etc.) despite being the same cell type. Moreover, conservatively 
calling clusters is likely the more prudent approach (to prevent the issue of over clustering) so 
long as they are substantiated by biological evidence. The authors have provided sufficient 
explanation regarding the known biological context of the various fibroblasts and their 
associated studies. Providing a carefully worded statement in the manuscript covering the 
points of reviewer #3 on merging clusters at varying resolutions would suffice.  
 
We thank the reviewer for poinƟng out the value of conservaƟve clustering and the 
technical reasons that clusters may be split. We had already clearly stated our raƟonale for 
merging clusters in the previous version of the manuscript and, based on these comments, 
we have added a further paragraph about clustering choices to the discussion (lines 363-



373), and state explicitly that merged clusters may represent subgroups within mCAFs and 
apCAFs (lines 370-373, see also response to reviewer 3). 
 
 
This reviewer agrees with the point of reviewer #3 where the nomenclature can seem 
inconsistent. In particular, the IDO CAFs stick out compared to the other names and would 
for example be better fitted to “ifnCAF” for “interferon response” or what the authors would 
deep appropriate. 
 
We agree with reviewers 3 and 4 that the nomenclature is slightly inconsistent in terms of 
the naming categories.  Proposing a useful naming scheme is however not an easy task, 
especially since we wished to also respect established names for some cell types (specifically 
apCAFs and iCAFs, but also to some extent mCAFs).  
 
We have now made further efforts to consolidate the naming categories, including changing 
IDO CAFs to interferon response CAFs (ifnCAFs) as suggested by the reviewer. Please see the 
response to reviewer 3 for a full descripƟon of our changes. We now have a combinaƟon of 
established names (iCAFs, apCAFs, vCAFs, mCAFs), and names based either on a suggested 
funcƟonal associaƟon (mCAFs, ifnCAFs, dCAFs, but also iCAFs, apCAFs, vCAFs) or on similarity 
to other cell types (tCAFs, reƟcular CAFs). While this may not be a perfect strategy, the 
proposed scheme strikes a balance between pragmaƟsm and consistency. We thank the 
referees for their ongoing aƩenƟon to this point. 
 
Importantly however, we do not intend to suggest that this is the only or the best naming 
scheme possible. Certainly, further studies and funcƟonal experiments may result in these 
names being changed or modified. We now include a new paragraph in the discussion (lines 
375-383) explicitly discussing the challenges associated with naming cell types, outlining the 
decisions we have made in order to propose a useful scheme, and fact that further 
funcƟonal data will be needed to refine or confirm the names that we have proposed. 
  
 
This reviewer finds it astonishing that even similar gene sets are called across different 
datasets. It’s highly unlikely that the same gene sets would be enriched in the CAF types 
across different datasets due to batch effects, sparsity of scRNA-seq, disease differences, etc. 
Thus, retaining any general characteristics across the board is quite substantial.  
 
We agree. We do not, as suggested by reviewer 3, use the GSEA to identify cell clusters, but 
merely as an orthogonal analysis of our clusters and the proposed naming scheme. We were 
encouraged to find that there was some consistency between the annotated pathways and the 
names we had proposed based on the top differentially expressed genes in breast cancer, and 
indeed that there were even similarities between enriched pathway annotations in different 
cancer types.  
 
As mentioned also in our response to reviewer 3, we do not think it at all surprising that the 
enriched pathways are not identical between data sets, for the reasons reviewer 4 highlights 
here, but also because there are shared genes expressed across all CAF types, further 
confounding the enrichment signal, and because any such enrichment analysis is based on 
prior knowledge that will itself be incomplete. 



 
Overall, we share this reviewer’s position. We think the fact that there is similarity in 
enriched gene sets across data sets/cancer types, but also, and importantly, that there is 
similarity in the defined clusters, in the top differentially expressed genes, and in our defined 
marker genes, strongly supports that these CAF types are - at least in a broad sense - general.  
 
We thank the referee for their input and their support that this study will serve as a starting 
point for others to classify CAFs in their data. 
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REVIEWERS' COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

 

Differences of opinion are best settled openly and by the scientific community, and not through the peer 

review system. The authors are commended on their persistence. 

 

 

Reviewer #4 (Remarks to the Author): 

 

The manuscript has substantially benefited from the changes that Cords et al implemented in this 

revision round. The additional paragraph explaining the rationale behind their clustering approach puts 

things into a more conservative perspective, where future studies could potentially build on what this 

study has done, and is appreciated by this reviewer. No further comments. 
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