Supporting information

Structure-Activity Studies of 1*H*-Imidazo[4,5-c]quinolin-4-amine Derivatives as A₃ Adenosine Receptor Positive Allosteric Modulators

Lucas B. Fallot,^{1,2,3+} R. Rama Suresh,¹⁺ Courtney L. Fisher,⁴ Veronica Salmaso,¹ Robert D. O'Connor,¹ Noy Kaufman,¹ Zhan-Guo Gao,¹ John A. Auchampach,⁴ Kenneth A. Jacobson^{1*}

¹Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA 20892.

²Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA 20814.

³Department of Chemistry and Life Science, United States Military Academy, 646 Swift Road, West Point, NY, USA 10996.

⁴Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226.

+ equal contribution.

Corresponding Author's email address: kennethj@niddk.nih.gov

<u>Contents</u> Pa	<u>ge(s)</u>
Synthetic route, chemical synthesis and SAR discussion	
(Scheme S1, Table S1) S2	-S7
Pharmacological results (Tables S2-S4) S1	1–S13
Calculated ADMET parameters (Table S5) S1	4–S19
Off-target activity (PDSP screening) S2	0
Experimental ADMET (Tables S6–S8) S2	1–S22
NMR spectra (compounds 13–45t, 400 MHz) S2	3–S58
NMR spectra (compounds 27, 29 and 30, 600 MHz) S5	9–S68
Mass spectra S6	9–S97
HPLC Purity S9	8–S105
Orthosteric affinity of compounds 7 and 17 (Figures S1) S1	06–S107
Molecular modeling (Figures S2–S5) S1	08–S109
References S1	10–S111

^aReagents and conditions: i. polyphosphoric acid, 100 °C, 8–24 h; ii. *m*-CPBA, CHCl₃, CH₂Cl₂, MeOH, reflux, 30 min; iii. POCl₃, toluene, DMF, 100 °C, 1.5 h;^{1, 2} iv. General Procedure C (main text).

Scheme S2. Preparation of 5,5,5-Trifluoro-2-(3,3,3-trifluoropropyl)pentanoic Acid (45c).

Reagents and conditions: i. F₃CCH₂CH₂Br (2.5 equiv), K₂CO₃ (2.1 equiv), DMF (sufficient to achieve a concentration of 0.4 M **57**), 60 °C, 48 h; ii. aq. NaOH (2.5 N, 50 equiv), tetrabutylammonium bromide (TBAB), 90 °C, 36 h, ~50%.

Scheme S3. Preparation of cyclononane and cyclodecane carboxylic acids (45l-m).

Reagents and conditions: i. NBS, PTSA, DCM, rt, 16 h; ii. NaOCH₃, EtO₂, rt, 20 h; iii. aqueous

NaOH, reflux, 30 min, 27-29%.

Scheme S4. Preparation of (1R,2R,4R)- & (1S,2S,4S)-bicyclo[2.2.2]oct-5-ene carboxylic acid.

Reagents and conditions: i. cyclohexa-1,3-diene, methyl acrylate, toluene, 180 °C, 22 h; ii.

aqueous NaOH:MeOH, rt, 1h; iii. 1M HCl, 54%.

Reagents and conditions: i. PdCl₂(PPh₃)₂, (CH₃)₃Sn-Sn(CH₃)₃ or (CH₃(CH₂)₃)₃Sn-Sn((CH₂)₃CH₃)₃ dioxane, 70 °C, 2.5 h, 10–13%.

Scheme S6. Potential radioiodination reaction to synthesize an ¹²⁵I radioligand.

Reagents and conditions: i. [125]NaI, peracetic acid, rt, 10 min.

Scheme S5. Preparation of stannyl precursors to ¹²⁵I radioligand.

Chemical Synthesis:

All reagents and solvents were from Sigma-Aldrich (St. Louis, MO). Unless noted, ¹H-NMR spectra were obtained with a Bruker 400 MHz spectrometer in CDCl₃ (7.26 ppm), CD₃OD (HOD = 4.87 ppm), $(CD_3)_2SO$ (¹H=2.50 ppm), or in a mixture of CD₃OD/CDCl₃. The chemical shifts are expressed as ppm downfield, and coupling constants (J) are given in Hz. TLC analysis was carried out on glass sheets precoated with silica gel F254 (0.2 mm) from Aldrich. 3,4-Diaminoquinolines (53, 54 and 55) and 2-chloroquinoline-3,4-diamines (46a, b and d)³ were prepared by the literature procedures.^{1, 2} The purity of final compounds (5b, e and f) was checked using a Hewlett-Packard 1100 HPLC equipped with an Agilent Eclipse 5 µm XDB-C18 analytical column (50 mm × 4.6 mm; Agilent Technologies Inc., Palo Alto, CA). Mobile phase: linear gradient solvent system, 10 mM TEAA (triethylammonium acetate):CH3CN from 95:5 to 0:100 in 20 min; the flow rate was 1.0 mL/min. Peaks were detected by UV absorption with a diode array detector at 230, 254, and 280 nm. All derivatives tested for biological activity showed >95 % purity in the HPLC systems. Low-resolution mass spectrometry was performed with a JEOL SX102 spectrometer with 6 kV Xe atoms following desorption from a glycerol matrix or on an Agilent LC/MS 1100 MSD, with a Waters Atlantis C18 column (Milford, MA, USA). High resolution mass spectroscopic (HRMS) measurements were performed on a proteomics optimized Q-TOF-2 (Micromass-Waters) using external calibration with polyalanine, unless noted. Mass accuracies were observed.

General procedure for 2-substituted 4-chloro-1H-imidazo[4,5-c]quinolines (**46a**, **b** and **d**)^{1,2} To a stirred solution of the appropriate 1H-imidazo[4,5-c]quinolin-5-oxide in a mixture of toluene (0.50 mL- 4.0 mL) and DMF (0.50 mL – 1.0 mL) at 0 °C, phosphorus oxychloride (2.6 equiv) was added and the solution stirred at rt for 10 min. The reaction mixture stirred at 110 °C for 2-3 h. The reaction was monitored by mass spectrometry and continued until the starting material, *N*-oxide derivative (**55a**, **b** and **d**) disappeared. The reaction mixture was cooled to rt, neutralized with half saturated aqueous NaHCO₃ solution (10 mL) and diluted with EtOAc (25 ml). The phases were separated, and the aqueous phase was extracted with EtOAc (2 x 15 mL). The combined organic phases were dried over Na₂SO₄ and filtered. The filtrate was concentrated by rotary evaporation to obtain the crude product, which was and purified by silica column to get the 2-substituted-4-chloro-1*H*-imidazo[4,5-c]quinolines (**46a**, **b** and **d**).

General procedure for the synthesis of 2-substituted 1H-imidazo[4,5-c]quinoline derivatives $(54a, b \text{ and } d)^{1,2}$

Polyphosphoric acid, 115 % H₃PO₄ basis (1.5–2.0 g) was added to 3,4-diaminoquinoline (**53**, 1.0 equiv) and the appropriate carboxylic acid (1.2–1.5 equiv). The reaction mixture was stirred at 100 °C for 8–16 h. The mixture was cooled to ~40–45 °C and poured into a beaker with crushed ice (~30–35g). The reaction mass was slowly neutralized with con. ammonia (23%) at 0 °C until a pH of 8–9. and diluted with EtOAc (25 ml). The phases were separated, and the aqueous phase was extracted with EtOAc (3x 15 mL). The combined EtOAc layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated by rotary evaporation to obtain the crude, which was purified by silica column to get the 1*H*-imidazo[4,5-c]quinoline derivative.

General procedure for 2-substituted 1H-imidazo[4,5-c]quinoline-5-oxide (55a, b and d)^{1,2}

To a stirred solution of the appropriate 2-substituted-1*H*-imidazo[4,5-c]quinoline derivatives

(54a, b and d) in a mixture of 10% MeOH in CHCl₃, *m*-CPBA (2.5 equiv) was added and the

reaction mixture stirred for 30 min with gentle reflux. The reaction mixture was cooled to rt and quenched with half saturated NaHCO₃ (5 mL). The phases were separated, and the aqueous phase was extracted with a mixture of isopropyl alcohol and chloroform (1:2, 2 x 15 mL). The combined organic phase was dried over Na₂SO₄ and filtered. The filtrate was concentrated by rotary evaporation to obtain the crude product and purified by silica column to get the 2-substituted-1*H*-imidazo[4,5-c]quinoline-5-oxide (**55a**, **b** and **d**).

Table S1. 1H-Imidazo[4,5-c]quinolin-4-amine Derivatives Synthesized for Pharmacological Studies.

6	3,4-Cl ₂		23 ^b
7	3,4-Cl ₂	₹- ⟨ _	28 ^b
8	3,4-Cl ₂		51 ^b
18	3,4-Cl ₂		23 ^b
19	3,4-Cl ₂	ξ-<	27 ^b
20	3,4-Cl ₂		5 ^b
21	3,4-Cl ₂		16 ^b
22	3,4-Cl ₂		15 ^b
23	3,4-Cl ₂		25 ^d
	2-bicyc	loalkyl derivatives	
24	3,4-Cl ₂	₹-<>>	13°
25	3,4-Cl ₂		33°
26	3,4-Cl ₂		22°
27	3,4-Cl ₂	^t (endo)	2°

28	3,4-Cl ₂	H	13°
29	3,4-Cl ₂	H m (endo)	36 ^d
	2-cycloalkyl derivativ	ves with hydrophilic substitution	
30	3,4-Cl ₂	H	6 ^f
31	3,4-Cl ₂	H	12 ^f
32	3,4-Cl ₂	بل المراجع (±)	23 ^g
33	3,4-Cl ₂	H ↓ (±)	8 ^h
34	3,4-Cl ₂	₩ U H OH (±)	12 ^h
2-alkyl	and 2-cycloalkyl deriv	atives with modified 2-arylamino	groups
35	4-I	₹- \	61 ^d
36	4-Br	₹- \	10 ^d
37	(4-) 0		18 ⁱ
38	S Cl		10 ^j
39	4-I		11 ^d
48	4-Sn(CH ₃) ₃		10 ^k

49	4-Sn((CH ₂) ₃ CH ₃) ₃		13 ¹
----	---	--	-----------------

a. Isolated yield.

- b. Final general procedure C (viii, in Reagents and Conditions of Scheme 1) used.
- c. Final general procedure D (ix, in Reagents and Conditions of Scheme 1) used.
- d. Final general procedure E (x, in Reagents and Conditions of Scheme 1) used.
- e. 18, Et₂Zn, CH₂I₂ (xi, in Reagents and Conditions of Scheme 1).
- f. 18, *m*-CPBA, CHCl₃ (xii, in Reagents and Conditions of Scheme 1).
- g. 18, (CH₃)₂S·BH₃, THF, NaOH, H₂O₂, 0 °C (xiii, in Reagents and Conditions of Scheme 1).
- h. 33 and 34, DMP, CHCl₃ (xiv, in Reagents and Conditions of Scheme 1).
- i. 36, Pd(OAc)₂, CH₂=CHCOOCH₃, Et₃N, 140 °C (xv, in Reagents and Conditions of Scheme 1).
- j. 35, Pd(Ph₃P)₂Cl₂, C₆H₃ClS, CuI, Et₃N, 80 °C (xvi, in Reagents and Conditions of Scheme 1).
- k. **39**, Pd(Ph₃P)₂Cl₂, hexamethylditin, 70 °C.
- 1. **39**, Pd(Ph₃P)₂Cl₂, hexabutylditin, 70 °C.

Table S2. Effect of PAM derivatives (10 μ M) on dissociation of [¹²⁵I]**50** (0.3 nM) using hA₃ARs (n=3). P-value is shown with respect to control in the absence of a PAM. Statistical significance was calculated by two-tailed Student's t-test. Data are presented as mean \pm SEM. Percent radioligand remaining bound was determined 60 min after the initiation of dissociation with the competitive agonist adenosine-5'-*N*-ethylcarboxamide (**51**, 100 μ M).

Compound ID	% Remaining	SEM	P-value
13	24.6	1.8	0.760
14	71.2	2.7	0.001 ^b
15	45.2	5.1	0.056 ^b
16	25.9	4.4	0.958 ^b
17	33.3	2.4	0.271
5	36.2	3.8	0.187
6	43.4	5.2	0.075
7	54.4	3.4	0.009 ^b
8	52.2	6.1	0.030 ^b
18	54.1	3.4	0.001 ^b
19	44.5	4.1	0.046 ^b
20	37.1	4.7	0.188
21	24.6	3.1	0.786
22	24.5	4.6	0.808
23	23.9	4.5	0.735
24	45.6	3.8	0.036 ^b
25	44.5	4.0	0.046 ^b
12a	38	5	0.168
12b	51	3	0.013 ^b
26	52.1	3.1	0.011 ^b
27	46.1	4.4	0.040
28	45.7	4.9	0.048
29	42.1	5.6	0.100
30	33.2	4.3	0.350
31	39.4	3.6	0.098
32	33.1	3.7	0.328
33	33.0	3.7	0.340
34	34.9	3.0	0.210
35	57.8	4.8	0.010
36	55.8	5.2	0.015 ^b
37	49.6	7.0	0.052
38	32.5	5.5	0.450
39	65.3	4.0	0.003 ^b

^a The effect of these compounds on radioligand dissociation was reported by Fisher et al.³

^b Significant difference compared to control (Student T-test, $P \leq 0.05$).

Compound ID	% Change from Vehicle	SEM	P-value
13	-45.2	1.6	0.002 ^b
14	70.2	9.3	0.020 ^b
15	18.4	5.3	0.035 ^b
16	-4.5	2.2	0.171
17	-70.9	2.3	0.006 ^b
5	-23.3	3.0	0.028 ^b
6	1.9	4.3	0.662
7	4.3	14.2	0.722
8	0.3	0.1	0.052
18	-11.8	1.6	0.026 ^b
19	41.3	4.7	0.019 ^b
20	27.8	3.2	0.007 ^b
21	17.5	5.0	0.084
22	15.7	5.6	0.083
23	6.9	2.2	0.070
24	-5	1.8	0.135
25	-6.7	3.3	0.204
12a	-28.8	3.1	0.007^{b}
12b	18.7	3.1	0.031 ^b
26	38.3	4.6	0.012 ^b
27	41	4.9	0.007^{b}
28	-36.6	5.9	0.056
29	-20.5	2.5	0.032 ^b
30	-21.3	3.0	0.050^{b}
31	-24.1	2.8	0.040 ^b
32	-19.1	2.6	0.050 ^b
33	-35.8	2.1	0.023 ^b
34	-31.3	3.1	0.037 ^b
35	-31.1	3.5	0.04 ^b
36	-48.9	5.5	0.036 ^b
37	14.6	4.0	0.011 ^b
38	19.5	6.4	0.055
39	22.9	10.2	0.125

Table S3. Effect of PAM derivatives (10 μ M) on the equilibrium binding of [¹²⁵I]**50** (0.3 nM) at the hA₃AR (n=3). P-value is shown with respect to control in the absence of a PAM.

^a The effect of these compounds on radioligand equilibrium binding was reported by Fisher et al.³

^b Significant difference compared to control (Student T-test, $P \leq 0.05$).

ID		DMSO			0.	I µM Compou	nd			1.	0 µM Compo	und			$10\mu M$ Compound			
	EC ₅₀ (nM)	pEC ₅₀	E _{max} (%)	EC ₅₀ (nM)	pEC ₅₀	P-value	E _{max} (%)	P-value	EC ₅₀ (nM)	pEC ₅₀	P-value	E _{max} (%)	P-value	EC ₅₀ (nM)	pEC ₅₀	P-value	E _{max} (%)	P-value
13	21	7.68 ± 0.08	100 ± 3	166	6.78 ± 0.16*	0.0041	132 ± 8	0.0684	852	6.24 ± 0.16*	0.0002	$153 \pm 12^*$	0.0051	305	6.52 ± 0.11*	<mark>0.0008</mark>	131 ± 6	0.0773
14	47	7.32 ± 0.16	100 ± 6	23	7.64 ± 0.16	0.5129	171 ± 9*	0.0017	17	7.77 ± 0.16	0.2041	$216 \pm 12^{*}$	<0.0001	25	7.60 ± 0.11	0.6711	216 ± 9*	<0.0001
15	48	7.32 ± 0.14	99 ± 5	43	7.37 ± 0.16	>0.9999	118 ± 7	0.5343	52	7.28 ± 0.20	>0.9999	159 ± 13*	0.0043	47	7.33 ± 0.13	>0.9999	$185 \pm 9^{*}$	0.0004
16	18	7.74 ± 0.10	99 ± 3	23	7.65 ± 0.10	>0.9999	$120 \pm 4^{*}$	0.0377	21	7.68 ± 0.11	>0.9999	$150 \pm 5^{*}$	0.0002	156	<mark>6.94 ± 0.08*</mark>	0.0012	$174 \pm 6^{*}$	<0.0001
17	27	7.58 ± 0.06	100 ± 2	44	7.36 ± 0.23	>0.9999	117 ± 8	>0.9999	1994	6.70 ± 0.40	0.1976	111 ± 16	>0.9999	765	$6.12 \pm 0.35^{*}$	0.0226	90 ± 20	>0.9999
5	27	7.57 ± 0.08	100 ± 3	48	7.32 ± 0.10	0.2748	113 ± 4	0.2896	77	$7.12 \pm 0.08^{*}$	0.0258	109 ± 3	0.7374	352	6.45 ± 0.11*	<0.0001	$135 \pm 8^{*}$	0.003
6	13	7.90 ± 0.09	100 ± 3	24	7.61 ± 0.11	0.2176	110 ± 4	0.6257	37	$7.43 \pm 0.11^{*}$	0.0279	$142 \pm 5^{*}$	0.0012	137	$6.86 \pm 0.08^{*}$	0.0002	$201 \pm 7^*$	<0.0001
7	15	7.82 ± 0.16	100 ± 5	20	7.70 ± 0.18	>0.9999	$154 \pm 9^{*}$	0.0298	23	7.64 ± 0.14	>0.9999	$225 \pm 10^{*}$	0.0002	73	7.14 ± 0.19	0.0649	$241 \pm 18^*$	<0.0001
8	18	7.76 ± 0.09	100 ± 3	13	7.90 ± 0.10	0.7155	$120 \pm 4^{*}$	0.0176	16	7.80 ± 0.05	>0.9999	$175 \pm 3^*$	<0.0001	60	$7.22 \pm 0.08^{*}$	0.005	$218 \pm 6^{*}$	<0.0001
18	36	7.44 ± 0.09	100 ± 3	24	7.61 ± 0.15	0.952	$147 \pm 7^{*}$	0.0107	16	7.79 ± 0.11	0.1971	241 ± 9*	<0.0001	81	7.09 ± 0.09	0.2026	$287 \pm 11^*$	<0.0001
19	38	7.42 ± 0.07	100 ± 2	30	7.52 ± 0.07	0.951	107 ± 3	0.3555	266	7.59 ± 0.05	0.3631	$146 \pm 2^{*}$	<0.0001	23	7.63 ± 0.08	0.1772	$164 \pm 4^{*}$	<0.0001
20	41	7.38 ± 0.08	100 ± 3	26	7.58 ± 0.13	0.9689	$143 \pm 6^{*}$	0.0459	20	7.71 ± 0.15	0.3712	$241 \pm 12^*$	<0.0001	29	7.54 ± 0.15	>0.9999	$259 \pm 14^*$	<0.0001
21	24	7.61 ± 0.08	100 ± 3	19	7.72 ± 0.15	>0.9999	109 ± 6	>0.9999	15	7.82 ± 0.14	0.9089	$135 \pm 7^*$	0.0182	16	7.80 ± 0.16	>0.9999	$195 \pm 10^*$	<0.0001
22	24	7.62 ± 0.10	100 ± 3	35	7.45 ± 0.10	>0.9999	118 ± 4	0.1214	25	7.60 ± 0.15	>0.9999	$122 \pm 6^*$	0.0527	15	7.82 ± 0.14	0.9013	$166 \pm 8^*$	<0.0001
23	30	7.52 ± 0.19	100 ± 6	14	7.86 ± 0.09	0.3327	99 ± 3	>0.9999	13	7.87 ± 0.11	0.2902	101 ± 3	>0.9999	16	7.79 ± 0.12	0.5659	116 ± 5	0.1078
24	31	7.51 ± 0.15	100 ± 5	61	7.22 ± 0.17	0.9439	141 ± 9	0.2169	40	7.39 ± 0.21	>0.9999	187 ± 14*	0.0069	236	$6.63 \pm 0.24^{*}$	0.0368	$195 \pm 22^*$	0.004
25	18	7.74 ± 0.15	100 ± 5	39	7.41 ± 0.16	0.3392	120 ± 6	0.3196	82	$7.09 \pm 0.09^{*}$	0.0257	$170 \pm 6^{*}$	<mark>0.0008</mark>	171	6.77 ± 0.13*	0.0026	$180 \pm 12^*$	0.0003
12a	55	7.26 ± 0.09	100 ± 3	27	7.56 ± 0.12	0.2171	103 ± 4	>0.9999	47	7.33 ± 0.11	>0.9999	$154 \pm 7^{*}$	0.0022	214	<mark>6.67 ± 0.09*</mark>	<mark>0.0116</mark>	$258 \pm 12^*$	<0.0001
12b	46	7.34 ± 0.09	100 ± 3	17	7.78 ± 0.19	0.275	148 ± 10	0.0729	10	8.01 ± 0.15	0.058	$237 \pm 12^*$	0.0002	30	7.52 ± 0.19	>0.9999	248 ± 19*	<0.0001
26	16	7.78 ± 0.15	97 ± 5	25	7.60 ± 0.18	>0.9999	147 ± 9	0.0799	38	7.42 ± 0.21	0.5935	219 ± 16*	0.0005	73	7.14 ± 0.17	0.103	216 ± 17*	0.0006
27	26	7.58 ± 0.15	98 ± 5	29	7.53 ± 0.17	>0.9999	$141 \pm 9^*$	0.0138	18	7.74 ± 0.12	>0.9999	187 ± 8*	0.0001	47	7.32 ± 0.10	0.6499	$182 \pm 8^{*}$	0.0002
28	33	7.48 ± 0.14	100 ± 5	59	7.23 ± 0.26	>0.9999	143 ± 14	0.1101	135	6.87 ± 0.16	0.1601	$180 \pm 14^{*}$	0.0049	116	6.94 ± 0.18	0.2343	$154 \pm 14^*$	0.0414
29	28	7.55 ± 0.15	98 ± 5	35	7.46 ± 0.18	>0.9999	129 ± 9	0.1792	131	$6.88 \pm 0.14^{*}$	0.0341	$167 \pm 12^*$	0.0035	400	$6.40 \pm 0.10^{*}$	0.0014	$182 \pm 13^*$	0.001
30	75	7.13 ± 0.18	99 ± 7	116	6.94 ± 0.21	>0.9999	131 ± 11	0.2819	99	7.01 ± 0.20	>0.9999	136 ± 11	0.1666	151	6.82 ± 0.23	0.9736	145 ± 16	0.0727
31	29	7.53 ± 0.14	98 ± 5	16	7.79 ± 0.13	0.9184	119 ± 5	0.4999	44	7.35 ± 0.22	>0.9999	173 ± 14*	0.0019	79	7.11 ± 0.16	0.3236	$174 \pm 12^*$	0.0018
32	43	7.37 ± 0.17	100 ± 6	47	7.33 ± 0.20	>0.9999	110 ± 8	>0.9999	220	0.66 ± 0.23	0.1091	160 ± 16*	0.0265	527	6.28 ± 0.20*	<mark>0.0146</mark>	151 ± 16	0.0587
33	47	7.33 ± 0.17	99 ± 6	111	6.96 ± 0.22	0.7729	132 ± 11	0.1678	85	7.07 ± 0.31	>0.9999	118 ± 14	0.7121	592	$6.23 \pm 0.12^*$	0.0218	123 ± 8	0.4338
34	30	7.53 ± 0.15	99 ± 5	92	7.03 ± 0.18	0.2238	134 ± 10	0.1852	227	$\frac{6.64 \pm 0.14^{*}}{100}$	<mark>0.0186</mark>	$156 \pm 10^{*}$	0.0215	853	$6.07 \pm 0.20*$	0.0009	113 ± 17	>0.9999
35	59	7.23 ± 0.15	100 ± 6	60	7.22 ± 0.17	>0.9999	136 ± 8	0.1022	39	7.40 ± 0.15	>0.9999	$184 \pm 9^{*}$	0.001	115	6.94 ± 0.16	0.7023	$206 \pm 14^*$	0.0002
36	59	7.23 ± 0.15	102 ± 6	118	6.93 ± 0.24	0.9215	162 ± 16	0.0687	139	6.86 ± 0.20	0.6385	$207 \pm 17^*$	0.0037	329	6.48 ± 0.18	0.0796	$212 \pm 19^*$	0.0028
37	21	7.68 ± 0.18	100 ± 6	31	7.50 ± 0.15	>0.9999	$133 \pm 6^{*}$	0.0444	27	7.57 ± 0.19	>0.9999	$164 \pm 10^{*}$	0.0009	24	7.61 ± 0.14	>0.9999	$190 \pm 8^{*}$	<0.0001
38	39	7.41 ± 0.22	97 ± 7	61	7.21 ± 0.16	>0.9999	131 ± 8	0.0809	108	6.97 ± 0.20	0.3546	$170 \pm 12^{*}$	0.0012	40	7.40 ± 0.13	>0.9999	$203 \pm 8^*$	<0.0001
39	67	7.16 ± 0.15	98 ± 6	45	7.35 ± 0.13	0.9238	158 ± 8*	0.0022	45	7.34 ± 0.12	0.9803	$223 \pm 10^*$	<0.0001	41	7.39 ± 0.10	0.6941	$215 \pm 8^*$	<0.0001

Table S4. Effect of PAM derivatives on $[^{35}S]$ GTP γ S binding induced by Cl-IB-MECA using WT hA₃ARs (n=3). P-value is shown with respect to control in the absence of a PAM.^a

^a Statistical significance was met when P ≤ 0.05 (One-way ANOVA with Bonferroni-adjusted Ttest for multiple comparisons). Green highlight indicates a favorable change on agonist efficacy or potency, with respect to DMSO control for each compound, while yellow highlight indicates lower agonist affinity (higher EC₅₀).

	A	A C	R	R	À.	
						, ,
Compound	5	6	7	8	12a	12b
logS	-0.1472	-0.2683	-0.4178	-0.5228	-0.5111	-0.9844
logS @ pH7.4	-0.1472	-0.2683	-0.4178	-0.5228	-0.5111	-0.9844
logD	5.616	5.936	6.42	6.75	6.206	6.068
2С9 рКі	6.158	5.72	5.606	5.685	5.745	5.669
hERG pIC50	6.07	6.19	6.331	6.454	6.214	6.294
BBB log([brain]:[blood])	-0.07797	-0.06621	-0.04728	-0.03631	-0.1347	-0.187
BBB category	+	+	+	+	+	+
HIA category	+	+	+	+	+	+
P-gp category	yes	yes	yes	yes	yes	yes
2D6 affinity category	high	high	high	high	very high	very high
PPB90 category	high	high	high	high	high	high
logP	5.616	5.936	6.42	6.75	6.206	6.068
MW	383.3	397.3	411.3	425.4	423.3	463.4
HBD	2	2	2	2	2	2
HBA	4	4	4	4	4	4
TPSA	53.6	53.6	53.6	53.6	53.6	53.6
Flexibility	0.1	0.09677	0.09375	0.09091	0.08824	0.07895
Rotatable Bonds	3	3	3	3	3	3

Table S5. ADMET properties calculated using the using the StarDrop software (v. 7.2), <u>https://www.optibrium.com/stardrop-installers/</u>.

	5	2~	Ky.	3		\bigcirc
Compound	13	14	15	16	17	18
logS	0.263	-0.4833	-0.4923	-0.6356	-0.01716	-0.3941
logS @ pH7.4	0.263	-0.4833	-0.4923	-0.6356	-0.01716	-0.3941
logD	5.408	6.94	6.232	6.392	5.287	6.169
2C9 pKi	6.227	5.791	5.759	5.773	6.244	6.1
hERG plC50	5.869	6.434	6.917	6.613	5.929	6.51
BBB log([brain]:[blood])	-0.09547	0.0547	0.05113	-0.09645	-0.09293	0.07324
BBB category	+	+	+	+	+	+
HIA category	+	+	+	+	+	+
P-gp category	yes	yes	yes	yes	yes	yes
2D6 affinity category	high	high	medium	high	high	high
PPB90 category	high	high	high	high	high	high
logP	5.408	6.94	6.232	6.392	5.287	6.169
MW	371.3	427.4	535.3	479.3	369.2	423.3
HBD	2	2	2	2	2	2
HBA	4	4	4	4	4	4
TPSA	53.6	53.6	53.6	53.6	53.6	53.6
Flexibility	0.1429	0.2188	0.2368	0.1111	0.1034	0.09091
Rotatable Bonds	4	7	9	4	3	3

~

		S		Ş	\$	
			di Ç	сі,	, CUX	
Compound	19	20	21	22	23	24
logS	-0.5902	-0.6293	-0.6825	-0.7282	-0.7668	-0.448
logS @ pH7.4	-0.5902	-0.6293	-0.6825	-0.7282	-0.7668	-0.448
logD	6.951	7.075	7.243	7.393	7.528	5.069
2С9 рКі	5.618	5.534	5.627	5.653	5.67	6.121
hERG pIC50	6.564	6.666	6.768	6.867	6.961	5.888
BBB log([brain]:[blood])	-0.03183	-0.03255	-0.03231	-0.03382	-0.03692	-0.1525
BBB category	+	+	+	+	+	+
HIA category	+	+	+	+	+	+
P-gp category	yes	yes	yes	yes	yes	yes
2D6 affinity category	high	high	high	high	high	high
PPB90 category	high	high	high	high	high	high
logP	6.951	7.075	7.243	7.393	7.528	5.069
MW	439.4	453.4	467.4	481.5	495.5	395.3
HBD	2	2	2	2	2	2
HBA	4	4	4	4	4	4
TPSA	53.6	53.6	53.6	53.6	53.6	53.6
Flexibility	0.08824	0.08571	0.08333	0.08108	0.07895	0.09375
Rotatable Bonds	3	3	3	3	3	3

		af Ø				
Compound	25	26	27	28	29	30
logs	-0 6988	-0.882	-0 7376	-0 6143	-0 5777	-0 522
logS @ pH7.4	-0.6988	-0.882	-0.7376	-0.6143	-0.5777	-0.522
logD	5.593	6.074	6.789	6.535	6.303	5.861
2C9 pKi	5.727	5.636	5.682	5.703	6.209	5.698
hERG pIC50	6.225	6.458	6.423	6.375	6.468	6.121
BBB log([brain]:[blood])	-0.1496	-0.1426	-0.09721	-0.09022	0.01895	-0.2344
BBB category	+	+	+	+	+	-
HIA category	+	+	+	+	+	+
P-gp category	yes	yes	yes	yes	yes	yes
2D6 affinity category	high	high	very high	very high	very high	very high
PPB90 category	high	high	high	high	high	high
logP	5.593	6.074	6.789	6.535	6.303	5.861
MW	423.3	451.4	451.4	437.4	435.3	439.3
HBD	2	2	2	2	2	2
НВА	4	4	4	4	4	5
TPSA	53.6	53.6	53.6	53.6	53.6	66.13
Flexibility	0.08824	0.08333	0.08333	0.08571	0.08571	0.08571
Rotatable Bonds	3	3	3	3	3	3

	den en e					
		or C			\Diamond	Br
Compound	31	32	33	34	35	36
logS	-0.522	-0.7006	-0.2016	-0.2016	-0.0425	0.2806
logS @ pH7.4	-0.522	-0.7006	-0.2016	-0.2016	-0.0425	0.2806
logD	5.861	5.219	5.533	5.533	5.794	5.922
2С9 рКі	5.698	5.986	5.584	5.584	5.458	5.458
hERG pIC50	6.121	6.129	6.196	6.196	6.531	6.534
BBB log([brain]:[blood])	-0.2344	-0.3541	-0.4418	-0.4418	-0.03721	-0.02661
BBB category	-	-	-	-	+	+
HIA category	+	+	+	+	+	+
P-gp category	yes	yes	yes	yes	yes	yes
2D6 affinity category	very high	high	high	high	high	high
PPB90 category	high	high	high	high	high	high
logP	5.861	5.219	5.533	5.533	5.794	5.922
MW	439.3	439.3	441.4	441.4	468.3	421.3
HBD	2	2	3	3	2	2
HBA	5	5	5	5	4	4
TPSA	66.13	70.67	73.83	73.83	53.6	53.6
Flexibility	0.08571	0.08824	0.08824	0.08824	0.09677	0.09677
Rotatable Bonds	3	3	3	3	3	3

_

_

					af t	
Compound	37	38	39	48	49	
logS	0.3498	-1.215	-0.1055	0.2823	-0.8281	
logS @ pH7.4	0.3498	-1.215	-0.1055	0.2823	-0.8281	
logD	5.123	6.705	6.262	6.527	9.4	
2С9 рКі	5.397	5.81	5.606	5.607	5.485	
hERG pIC50	6.35	6.761	6.634	6.61	7.772	
BBB log([brain]:[blood])	-0.4501	-0.5372	0.04793	0.056	0.09369	
BBB category	-	+	+ +		+	
HIA category	+	+	+	+	+	
P-gp category	yes	yes	yes	yes	yes	
2D6 affinity category	high	high	high	high	high	
PPB90 category	high	high	high	high	high	
logP	5.123	6.705	6.262	6.527	9.4	
MW	426.5	483	484.4	430.7	556.9	
HBD	2	2	2	2	2	
HBA	6	4	4	4	4	
TPSA	79.9	53.6	53.6	53.6	53.6	
Flexibility	0.1667	0.1282	0.2258	0.2353	0.3953	
Rotatable Bonds	6	5	7	8	17	

PDSP Screening

Off-target analysis of select PAM derivatives with forty-five other receptors, transporters, and channels was determined using radioligand binding assays by Psychoactive Drug Screening Program (PDSP). We thank Dr. Bryan L. Roth (Univ. North Carolina at Chapel Hill) and National Institute of Mental Health's Psychoactive Drug Screening Program (Contract # HHSN-271-2008-00025-C) for screening data.⁴ Procedures:

https://pdsp.unc.edu/pdspweb/content/UNC-CH%20Protocol%20Book.pdf. Unless noted in the text, no significant interactions (<50% inhibition at 10 μM) for any of the nucleosides were found at the following sites (human unless noted): $5HT_{1A}$, $5HT_{1B}$, $5HT_{1D}$, $5HT_{1E}$, $5HT_{2A}$, $5HT_{2B}$, $5HT_{2C}$, $5HT_3$, $5HT_{5A}$, $5HT_6$, $5HT_7$, α_{1A} , α_{1B} , α_{1D} , α_{2A} , α_{2B} , α_{2C} , β_1 , β_2 , β_3 , BZP rat brain site, D₁, D₂, D₃, D₄, D₅, GABA_A, H₁, H₂, H₃, H₄, M₁, M₂, M₅, δ-opioid receptor (DOR), κ-opioid receptor (KOR), μ-opioid receptor (MOR), σ_1 , σ_2 , DAT, NET, SERT. K_i values in μM (Table 2), or % inhibition at 10 μM (not shown), were determined.

Dose (mg/kg, route)	0.5 (i.v.)	1 (p.o.)	3 (p.o.)	10 (p.o.)						
Species of Strain	Rat and RccHan:WIST									
N mice	3	3 3 3								
Feeding Condition	Fed	Fasting overnight, feed 4 h post-dosing								
Dose Volume (mg/kg b. wt.)		5								
Concentration (mg/mL)	0.1	0.2 0.6 2								
Vehicles	DMSO: 20% HPBCD (10:90)	DMSO: Kolliphor EL: PBS (15:15:70)								
Blood Collection Site	Jugular vein through a catheter									
Anticoagulant	Heparin (20 IU/mL)									
Time Points (h)	0.083, 0.25, 0.5, 1, 2, 4, 8, 12, 24	0.5, 0.25, 0.5, 1, 2, 4, 8, 12, 24								

Table S6. In vivo experimental PK determination using Wistar rats.

 Table S7. Caco-2 permeability results of compounds 18 and 39.

	Average Values								
Compound Name	Papp (10 ⁶ cm/sec)		Efflux	A to B %	B to A %	Classification			
	A to B	B to A	Katio	Recovery	Recovery				
18	0.00	0.00	NC	48.1	78.0	Low			
39	0.00	0.01	NC	61.7	76.7	Low			
Digoxin	0.13	9.96	74.2	82.0	84.2	Low			
Propranolol	28.4	17.6	0.62	74.4	101	High			
Atenolol	0.00	0.00	NC	87.8	86.1	Low			

 Table S8. In vivo pharmacokinetic parameters of compounds 18 and 39.

A) compound	18
-------------	----

Dose (Route)	C _{max} (ng/mL)	T _{max} (h)	AUC _{0-last} (h*ng/mL)	AUC₀ _{-∞} (h*ng/mL)	T _{1/2} (h)	MRT _{last} (h)	V _d (mL/kg)	<i>k</i> el (1/h)	F (%)	Cl (mL/h/kg)
0.5 mg/kg (i.v.)	696	0.083	1080	1120	2.38	2.64	1530	0.292	100	447
1 mg/kg (p.o.)	185	2.00	ND	ND	ND	ND	ND	ND	ND	ND
3 mg/kg (p.o.)	487	2.00	1860	1900	1.29	3.01	2930	0.539	28.7	1580
10 mg/kg (p.o.)	1780	2.00	10,200	10,300	2.60	3.98	3660	0.266	47.5	975

ND, not determined.

B) compound 39

Dose (Route)	C _{max} (ng/mL)	T _{max} (h)	AUC _{0-last} (h*ng/mL)	AUC _{0-∞} (h*ng/mL)	T _{1/2} (h)	MRT _{last} (h)	V _d (mL/kg)	<i>k</i> el (1/h)	F (%)	Cl (mL/h/kg)
0.5 mg/kg (i.v.)	530	0.083	841	881	6.91	4.09	5660	0.100	100	568
1 mg/kg (p.o.)	142	1.000	767	778	4.71	4.41	8730	0.147	44.2	1280
3 mg/kg (p.o.)	592	2.000	3350	3380	3.44	5.62	4400	0.207	64.0	886
10 mg/kg (p.o.)	1040	4.000	10,600	10,800	3.84	7.35	5110	0.180	61.5	923

NMR Spectra

The NMR Spectra below were acquired on a Bruker ADIII-400 at 298 $^{\circ}$ K in CDCl₃ plus 4 drops of MeOD.

¹H NMR of 2-ethyl-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **13.**

¹H NMR of 2-(heptan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **14**.

¹H NMR of 2-(1,1,1,7,7,7-hexafluoroheptan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **15.**

¹⁹F NMR of 2-(1,1,1,7,7,7-hexafluoroheptan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **15.**

¹H NMR of 2-(4-(trifluoromethyl)cyclohexyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **16**.

¹⁹F NMR of 2-(4-(trifluoromethyl)cyclohexyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **16**.

¹H NMR of 2-(cyclopropyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **17**.

¹H NMR of 2-(cyclohept-4-en-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **18**.

¹H NMR of 2-(cyclooctyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **19.**

¹H NMR of 2-(cyclononyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **20.**

¹H NMR of 2-(cyclodecyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **21**.

¹H NMR of 2-(cycloundecyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **22.**

•

¹H NMR of 2-(cyclododecyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **23.**

¹H NMR of 2-(bicyclo[1.1.1]heptan-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **24.**

¹H NMR of 2-(bicyclo[2.2.1]heptan-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **25.**

¹H NMR of 2-(bicyclo[3.3.1]nonan-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **26.**

¹H NMR of 2-((1R,3s,5S)-bicyclo[3.3.1]nonan-3-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **27.**

¹H NMR of 2-((1R,4r,7S)-bicyclo[5.1.0]octan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **28.**

¹H NMR of 2-((1R,2R,4R) & (1S,2S,4S)-bicyclo[2.2.2]oct-5-en-2-yl)-N-(3,4-dichlorophenyl)-1H-imidazo[4,5-c]quinolin-4-amine – Compound **29.**

¹H NMR of 2-((1R,4r,7S)-8-oxabicyclo[5.1.0]octan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **30.**

¹H NMR of 2-((1R,4s,7S)-8-oxabicyclo[5.1.0]octan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **31**.

¹H NMR of (R)- & (S)-4-(4-((3,4-dichlorophenyl)amino)-1*H*-imidazo[4,5-c]quinolin-2yl)cycloheptan-1-one – Compound **32.**

¹H NMR of (1R,4S)- & (1S,4R)-4-(4-((3,4-dichlorophenyl)amino)-1*H*-imidazo[4,5-c]quinolin-2yl)cycloheptan-1-ol – Compound **33**.

¹H NMR of (1R,4R)-, & (1S,4S)-4-(4-((3,4-dichlorophenyl)amino)-1*H*-imidazo[4,5-c]quinolin-2-yl)cycloheptan-1-ol – Compound **34.**

¹H NMR of 2-cyclohexyl-*N*-(4-iodophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **35.**

¹H NMR of 2-cyclohexyl-*N*-(4-bromophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **36.**

¹H NMR of methyl (E)-3-(4-((2-cyclohexyl-1*H*-imidazo[4,5-c]quinolin-4-yl)amino)phenyl)acrylate – Compound **37**.

¹H NMR of 2-cyclohexyl-*N*-(4-((5-chlorothiophen-2-yl)ethynyl)phenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **38**.

¹H NMR of 2-(heptan-4-yl)-*N*-(4-iodophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **39.**

¹H NMR of 5,5,5-trifluoro-2-(3,3,3-trifluoropropyl)pentanoic Acid – Compound **45c.**

¹⁹F NMR of 5,5,5-trifluoro-2-(3,3,3-trifluoropropyl)pentanoic Acid – Compound **45c.**

¹H NMR of cyclononanecarboxylic acid – Compound **451.**

¹H NMR of cyclodecanecarboxylic acid – Compound **45m.**

¹H NMR of ((1R,2R,4R)- & (1S,2S,4S)-bicyclo[2.2.2]oct-5-ene carboxylic acid – Compound

45t.

¹H NMR of 2-(heptan-4-yl)-*N*-(4-(trimethylstannyl)phenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **48**.

¹H NMR of 2-(heptan-4-yl)-*N*-(4-(tributylstannyl)phenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **49.**

The NMR spectra below were acquired on a Bruker NEO-600 with a z-gradient, triple resonant cryoprobe *at 298* $^{\circ}$ K in CDCl₃ plus 4 drops of MeOD, unless otherwise noted. They are referenced to CDCl₃ 1 H=7.26 ppm, 13 C=77.0 ppm for 275 - 298 $^{\circ}$ K; CD₃OD 1 H=3.31 ppm, 13 C=49.0 ppm for 298 K.

Aliphatic region of ¹H 3Q-COSY (mix=200ms) for compound **27**.

1D-NOE spectra of compound **29**. The 1/7 proximity shown in the purple trace clearly proves the *endo* conformation.

1D-NOE spectra of compound **30** at 288°K. The relatively equal distances of the four 2s to 1/7 (green trace) along with the 2/4 proximity (red) and shielded 3/5s are consistent with the (1R,4s,7S) isomer.

Mass Spectra

TOF MS E+ and elemental analysis of 2-propyl-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5c]quinolin-4-amine – Compound **13**

TOF MS E+ and elemental analysis of 2-(heptan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **14**

TOF MS E+ and elemental analysis of 2-(1,1,1,7,7,7-hexafluoroheptan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **15**

TOF MS E+ and elemental analysis of 2-(4-(trifluoromethyl)cyclohexyl)-*N*-(3,4dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **16**

TOF MS E+ and elemental analysis of 2-(cyclopropyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5c]quinolin-4-amine – Compound **17**

TOF MS ES+ and elemental analysis of 2-(cyclohept-4-en-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **18**

TOF MS E+ and elemental analysis of 2-(cyclooctyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **19**

TOF MS E+ and elemental analysis of 2-(cyclononyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5c]quinolin-4-amine – Compound **20**

TOF MS ES+ and elemental analysis of 2-(cyclodecyl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5c]quinolin-4-amine – Compound **21**

TOF MS ES+ and elemental analysis of 2-(cycloundecyl)-*N*-(3,4-dichlorophenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **22**

TOF MS ES+ and elemental analysis of 2-(cyclododecyl)-*N*-(3,4-dichlorophenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **23**

TOF MS ES+ and elemental analysis of 2-(bicyclo[1.1.1]heptan-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **24**

TOF MS E+ and elemental analysis of 2-(bicyclo[2.2.1]heptan-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **25**

TOF MS ES+ and elemental analysis of 2-(bicyclo[3.3.1]nonan-1-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **26**

TOF MS ES+ and elemental analysis of 2-((1R,3s,5S)-bicyclo[3.3.1]nonan-3-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **27**

TOF MS ES+ and elemental analysis of 2-((1R,4r,7S)-bicyclo[5.1.0]octan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **28**

Elemental Composition Report									Page 1		
Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3											
Monoisotopic Mass, Even Electron Ions 59 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 4-4 O: 0-20 35CI: 2-2 LBF-22JUL21-154 116 (1.979) AM2 (Ar.25000.0.00.0.00): ABS											
TOF MS ES+	(,		435	1 437 1							1.75e+006
100 416.24	21.0 423.1 425 420.0 425.0	^{.1} 429.3 430.0	432.3	440	39.1442.2 0.0 445	447.1 <u>.44</u>	8.1 ^{451.1} 453 0.0 458	0.1457.3 460.3 5.0 460.0	464.1 465.0	468.4 471.4 470.0	476.3 478.1 475.0
Minimum: Maximum:		5.0	5.0	-1.5 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula			
435.1136	435.1143	-0.7	-1.6	15.5	509.0	n/a	n/a	C24 H21 N4	35c12		

TOF MS ES+ and elemental analysis of 2-((1R,2R,4R) & (1S,2S,4S)-bicyclo[2.2.2]oct-5-en-2yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **29**

TOF MS ES+ and elemental analysis of 2-((1R,4r,7S)-8-oxabicyclo[5.1.0]octan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **30**

TOF MS ES+ and elemental analysis of 2-((1R,4s,7S)-8-oxabicyclo[5.1.0]octan-4-yl)-*N*-(3,4-dichlorophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **31**

TOF MS ES+ and elemental analysis of (R)- & (S)-4-(4-((3,4-dichlorophenyl)amino)-1*H*imidazo[4,5-c]quinolin-2-yl)cycloheptan-1-one – Compound **32**

TOF MS ES+ and elemental analysis (1R,4S)- & (1S,4R)-4-(4-((3,4-dichlorophenyl)amino)-1*H*imidazo[4,5-c]quinolin-2-yl)cycloheptan-1-ol – Compound **33**

TOF MS ES+ and elemental analysis of (1R,4R)-, & (1S,4S)-4-(4-((3,4-dichlorophenyl)amino)-1*H*-imidazo[4,5-c]quinolin-2-yl)cycloheptan-1-ol – Compound **34**

TOF MS ES+ and elemental analysis of 2-cyclohexyl-*N*-(4-iodophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **35**

TOF MS ES+ and elemental analysis of 2-cyclohexyl-*N*-(4-bromophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **36**

TOF MS ES+ and elemental analysis of methyl (E)- & (Z)-3-(4-((2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-yl)amino)phenyl)acrylate – Compound **37**

TOF MS ES+ and elemental analysis of 2-cyclohexyl-*N*-(4-((5-chlorothiophen-2-yl)ethynyl)phenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **38**

TOF MS ES+ and elemental analysis of 2-(heptan-4-yl)-*N*-(4-iodophenyl)-1*H*-imidazo[4,5-c]quinolin-4-amine – Compound **39**

TOF MS ES+ and elemental analysis of 2-(heptan-4-yl)-*N*-(4-(trimethylstannyl)phenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **48**

TOF MS ES+ and elemental analysis of 2-(heptan-4-yl)-*N*-(4-(tributylstannyl)phenyl)-1*H*imidazo[4,5-c]quinolin-4-amine – Compound **49**

$15-\text{HPL}\underline{C} \text{ Purity } 91\% \text{ (}R_t = 18.1 \text{ min)}$

16 - HPLC Purity 99% (R_t = 18.2 min)

17 - HPLC Purity 99% (R_t = 14.4 min)

18 – HPLC Purity 99% (R_t = 18.4 min)

19 - HPLC Purity 98% (R_t = 20.5 min)

20 – HPLC Purity 99% (R_t = 21.7 min)

21 – HPLC Purity 77% ($R_t = 23.8 \text{ min}$)

22 - HPLC Purity 80% (R_t = 22.7 min)

23 - HPLC Purity 95% (R_t = 21.6 min)

24 - HPLC Purity 99% (R_t = 16.1 min)

25 – HPLC Purity 96% ($R_t = 18.3 \text{ min}$)

26 – HPLC Purity 95% ($R_t = 21.0 \text{ min}$)

27 – HPLC Purity 98% (R_t = 19.4 min)

28 – HPLC Purity 95% ($R_t = 19.0 \text{ min}$)

29 – HPLC Purity 99% ($R_t = 17.9 \text{ min}$)

30 – HPLC Purity 96% (R_t = 14.1 min)

31 – HPLC Purity 99% (R_t = 14.3 min)

32 - HPLC Purity 95% (R_t = 13.2 min)

33 - HPLC Purity 95% (R_t = 12.2 min)

34 – HPLC Purity 98% (R_t = 12.4 min)

35 - HPLC Purity 96% (R_t = 16.7 min)

36 - HPLC Purity 98% (R_t = 15.7 min)

37 – HPLC Purity 98% (Rt = 13.1 min)

38 – HPLC Purity 96% (R_t = 16.3 min)

39 – HPLC Purity 97% (R_t = 18.6 min)

49 – HPLC Purity 95% (R_t = 13.9 min)

Figure S1A,B. Determination of the affinity of compounds **7** (A) and **17** (B) at the orthosteric site, using Schild analysis of shifts in the Cl-IB-MECA activation curves ([35 S]GTP γ S binding) of the chimeric human-out/mouse-in A₃AR construct (data from Fisher et al., 2022).³

A) X-intercept = 6.0976, corresponds to K_B = 799 nM

B) X-intercept = 6.853, corresponds to $K_B = 140 \text{ nM}$

Figure S2. Effects of compounds 7, 14 and 17 in equilibrium binding assays with the antagonist radioligand ¹²⁵I-ABOPX (conc. 0.4 nM, K_d 17.3±1.2 nM) and the WT hA₃AR. **Panel A** confirms specificity of ¹²⁵I-ABOPX for the hA₃AR based on the antagonist potency order of: I-ABOPX (38) > MRS1523 (89) > DPCPX (149) > SCH442416 (424) >> PSB603, with K_i values (nM, N=1) in parentheses. Propyl 6-ethyl-5-((ethylthio)carbonyl)-2-phenyl-4-propylnicotinate (MRS1523) is a selective A₃AR-selective antagonist. **Panel B** shows displacement of ¹²⁵I-ABOPX specific binding by compounds 7, 14, and 17.

Synthesis of [¹²⁵I]2-(4-(3-(4-amino-3-iodobenzyl)-2,6-dioxo-1-propyl-2,3,6,7-tetrahydro-1*H*-purin-8-yl)phenoxy)acetic acid (¹²⁵I-ABOPX) was as described in Linden et al.^{5,6} Binding assays were conducted with membranes (75 μ g/assay tube) prepared from HEK293 cells transfected with the WT hA₃AR in 10 mM Tris buffer (pH 7.4) containing 10 mM Mg²⁺ in the presence of 0.4 nM ¹²⁵I-ABOPX and 50 nM PSB603 to block binding to A_{2B}ARs expressed endogenously in HEK293 cells. The K_i values of known AR antagonist ligands were consistent with binding to the A₃AR and in agreement with reported values (DPCPX 261 nM; I-ABOPX, 25.5 nM; and XAC, 23.4 nM).⁷

Affinity measured at non-A₃ hARs: <u>% inhibition of specific binding by 14 at 10 μ M:</u> A₁ – [³H]DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 0.5 nM) 7.85±4.75% A_{2A} – [³H]ZM241385 (4-[2-[7-amino-2-(2-furyl)-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-ylamino]ethyl]phenol, 1.0 nM) 6.67±2.96% A_{2B} – [³H]DPCPX (10 nM) 0.67±3.63%

Molecular Modeling

aa1r_human	MPPSISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVA
aa3r_human	MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYFIVSLALADIA
consensus	***********************************
aa1r_human aa3r_human consensus	VGALVIPLAILINIGPQTYFHTCLMVACPVLILTQSSILALLAIAVDRYLRVKIPLRYKM VGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYLRVKLTVRYKR ************************************
aa1r_human aa3r_human consensus	VVT PRRAAVA I AGCWILS FVVGLT PMFGWNNLSAVERAWAANGSMGEPVIKCEFEKV I SMVTT HRR IWLALGLCWLVS FLVGLT PMFGWNMKLTS EYHRNVTFLS CQFVSVMRM* * * * * * * * * * * * * * * * * * *
aa1r_human	EYMVYFNFFVWVLPPLLLMVLIYLEVFYLIRKQLNKKVSASSGDPQKYYGKELKIAKSLA
aa3r_human	DYMVYFSFLTWIFIPLVVMCAIYLDIFYIIRNKLSLNLSN-SKETGAFYGREFKTAKSLF
consensus	************************************
aa1r_human	LILFLFALSWLPLHILNCITLFCPSCHKPSILTYIAIFLTHGNSAMNPIVYAFRIQKFRV
aa3r_human	LVLFLFALSWLPLSIINCIIYFNGE - VP - QLVLYMGILLSHANSMMNPIVYAYKIKKFKE
consensus	* ***********************************
aa1r_human aa3r_human consensus	TFLKIWNDHFRCQPAPPIDEDLPEERPDD TYLLILKACVVCHPSDSLDTSIEKNSE * * 301310320

Figure S3. Sequence alignment between hA₁AR and hA₃AR according to GPCRdb (sequence

identity 46%).⁸ The image was generated using the software Boxshade.

Figure S4. A) Predicted binding mode of compound 7 at the hA₃AR orthosteric binding site. **B)** Alternative pose of compound 7 at the hA₃AR orthosteric binding site (1st ranked according to Induced Fit Score).

Figure S5. Potential energy surface scan of the dihedral angle defined by N5-C4-

N(amino)-Cp(phenyl) atoms. The calculation was performed with the semiempirical quantum mechanical method GFNn-xTB.

References:

(1) Göblyös, A.; Gao, Z.-G.; Brussee, J.; Connestari, R.; Santiago, S. N.; Ye, K.; IJzerman, A. P.; Jacobson, K. A. Structure-activity relationships of new 1H-imidazo[4,5-c]quinolin-4-amine derivatives as allosteric enhancers of the A₃ adenosine receptor. *J. Med. Chem.* **2006**, *49* (11), 3354–3361. DOI: 10.1021/jm060086s.

(2) Kim, Y.; de Castro, S.; Gao, Z.-G.; IJzerman, A. P.; Jacobson, K. A. Novel 2- and 4substituted 1H-imidazo[4,5-c]quinolin-4-amine derivatives as allosteric modulators of the A₃ adenosine receptor. *J. Med. Chem.* **2009**, *52* (7), 2098–2108. DOI: 10.1021/jm801659w.

(3) Fisher, C. L.; Fallot, L. B.; Wan, T. C.; Keyes, R. F.; Suresh, R. R.; Rothwell, A. C.; Gao, Z. G.; Smith, B. C.; Jacobson, K. A.; Auchampach, J. A. Structure activity relationship of dual action purine nucleoside allosteric modulators of the A₃ adenosine receptor. *ACS Pharmacol. Transl. Sci.* 2022, *5*(8), 625–641, <u>https://doi.org/10.1021/acsptsci.2c00076</u>.

(4) Besnard, J.; Ruda, G. F.; Setola, V.; Abecassis, K.; Rodriguiz, R. M.; Huang, X.-P.; Norval,

S.; Sassano, M. F.; Shin, A. I.; Webster, L. A.; Simeons, F. R.; Stojanovski, L.; Prat, A.; Seidah, N. G.; Constam, D. B.; Bickerton, G. R.; Read, K. D.; Wetsel, W. C.; Gilbert, I. H.; Roth, B. L.; Hopkins, A. L. Automated design of ligands to polypharmacological profiles. *Nature* **2012**, *492* (7428), 215–220. DOI: 10.1038/nature11691.

(5) Linden, J.; Patel, A.; Earl, C. Q.; Craig, R. H.; Daluge, S. M. Iodine-125-labeled 8-phenylxanthine derivatives: antagonist radioligands for adenosine A₁ receptors. *J. Med. Chem.* **1988**, *31*, 745-751.

(6) Linden, J.; Thai, T.; Figler H.; Jin, X.; Robeva, A. S. Characterization of human A_{2B} adenosine receptors: radioligand binding, western blotting, and coupling to G_q in human embryonic kidney 293 cells and HMC-1 mast cells. *Mol. Pharmacol.* **1999**, *56*, 705-713.

- (7) Jin, X., Ph.D. thesis, **1995**, University of Virginia.
- (8) Kooistra, A. J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk,
- C.; Keserű, G. M.; Gloriam, D. E. GPCRdb in 2021: integrating GPCR sequence, structure and

function. Nucleic Acids Res. 2021, 49, D335–D343, DOI: 10.1093/nar/gkaa1080.