## New Phytologist Supporting Information

Article title: An important role of <sub>L</sub>-fucose biosynthesis and protein fucosylation genes in Arabidopsis immunity

Authors: Li Zhang, Bradley C. Paasch, Jin Chen, Brad Day and Sheng Yang He

Article acceptance date: 1 December 2018

The following Supporting Information is available for this article:

Fig. S1: Bacterial populations 1 hour after infiltration-inoculation with Pst DC3118.

Fig. S2: Loss of Basta resistance in the scord6 mutant.

Fig. S3: SEM and TEM images of stomatal apertures.

Fig. S4: Mutations in the *MUR1* gene affect pathogen- and SA-induced stomatal closure in Arabidopsis.

Fig. S5: ABA levels in Col-7 and the scord6 mutant.

Fig. S6: Mutations in the MUR1 gene affect Arabidopsis apoplastic defense.

Fig. S7: Bacterial effector translocation in Col-7 and the *scord6* mutant plants.

Fig. S8: FLS2 and BAK1 abundance and sensitivity to PNGase F.

Fig. S9: Simplified diagrams of *N*-glycan processing and modification of *O*-glycan and xyloglucan.

Fig. S10: Disease assays of Arabidopsis mutants of fucosyltransferases and quintuple *della* mutant.

Table S1: List of primers.

Table S2: Summary of key assay results of the Arabidopsis mutants analyzed in this study.



Fig. S1: Bacterial populations 1 hour after infiltration-inoculation with Pst DC3118.

Bacterial populations in Arabidopsis mutants were examined 1 hour after infiltration-inoculation with  $5 \times 10^5$  cfu ml<sup>-1</sup> *Pst* DC3118. Different letters above the columns indicate significant differences (P < 0.05) of bacterial populations, analyzed by one-way ANOVA with Tukey's test (n = 4, error bars, ± SEM).



Fig. S2: Loss of Basta resistance in the *scord6* mutant.

Death of the Arabidopsis *scord6* mutant plants two weeks after sprayed with Basta solution (0.12 g  $l^{-1}$ , 0.025% Silwet-77). The *scord7* mutant (Zeng *et al.* 2011) was used as a Basta-resistant control.



Fig. S3: SEM and TEM images of stomatal apertures.

Left, SEM images of Arabidopsis stomata, scale bar = 5  $\mu$ m. Right, TEM images of the cross sections of Arabidopsis stomatal guard cells, scale bar = 2  $\mu$ m. Arrows indicate the merging point of the outer cuticular ledges of two guard cells.



**Fig. S4**: Mutations in the *MUR1* gene affect pathogen- and SA-induced stomatal closure in Arabidopsis.

(a, b) Stomatal apertures two hours after leaves were inoculated with  $1 \times 10^8$  cfu ml<sup>-1</sup> *Pst* DC3118 or water (mock). Different letters above columns indicate significant differences (P < 0.05) between stomatal apertures (n > 30, error bars, ± SEM), analyzed by two-way ANOVA with Tukey's test.

(c, d) Stomatal apertures one hour after leaves have been exposed to 100  $\mu$ M SA (c), 10  $\mu$ M ABA (d) or MES buffer (mock) treatments. Different letters above columns indicate significant differences (P < 0.05) between stomatal apertures (n > 30, error bars,  $\pm$  SEM), analyzed by two-way ANOVA with Tukey's test.



Fig. S5: ABA levels in Col-7 and the *scord6* mutant.

Hormone levels of ABA in Arabidopsis plants Col-7 and the *scord6* mutant. No significant differences were detected between the hormone levels of Col-7 and the *scord6* mutant, via Student's t-test (n = 6, error bars,  $\pm$  SEM).



Fig. S6: Mutations in the MUR1 gene affect Arabidopsis apoplastic defense.

(a) Bacterial populations 1 hour (Day 0) or 3 days (Day 3) after infiltration-inoculation (into the leaf apoplast) with  $1 \times 10^5$  cfu ml<sup>-1</sup> *Pst* DC3118. Different letters above the columns indicate significant differences (P < 0.05) of bacterial populations, analyzed by two-way ANOVA with Tukey's test (n = 4, error bars, ± SEM).

(b, c) Bacterial populations (b) and disease symptoms (c) three days after infiltration-inoculation (into the leaf apoplast) with  $1 \times 10^5$  cfu ml<sup>-1</sup> *Pst* DC3118. Different letters above the columns indicate significant differences (P < 0.05) of bacterial populations between plant genotypes by one-way ANOVA with Tukey's test (n = 4, error bars, ± SEM).



Fig. S7: Bacterial effector translocation in Col-7 and the *scord6* mutant plants.

(a) Pooled bacterial effector translocation data from three experimental repeats with total n = 12 (4 biological replicates [Arabidopsis plants] per experiment). Error bars,  $\pm$  SEM. No significant

differences were detected, as analyzed by Student's t-test. The bacterial effector translocation was examined seven hours post inoculation with *Pst* DC3000 carrying the P<sub>nptII</sub>::avrPto-CyaA plasmid. Translocation of effector protein AvrPto was represented by the cAMP amount (pmol cAMP  $\mu$ g<sup>-1</sup> protein) divided by the corresponding bacterial number (cfu cm<sup>-2</sup>) in each sample.

(b-g) Three different experimental repeats of the bacterial effector translocation in Col-7 and the *scord6* mutant (b, d, f), and the corresponding bacterial populations seven hours after infiltration-inoculation (c, e, g) (n = 4; error bars,  $\pm$  SEM). \*0.01 < P < 0.05 indicates a significant difference of cAMP amounts between wild-type Col-7 and the *scord6* mutant, as analyzed by Student's t-test; ns: not significant. \*\*0.001 < P < 0.01 indicates a significant difference of bacterial populations between wild-type Col-7 and the *scord6* mutant, as analyzed by Student's t-test; ns: not significant. \*\*0.001 < P < 0.01 indicates a significant difference of bacterial populations between wild-type Col-7 and the *scord6* mutant, as analyzed by Student's t-test; ns: not significant.



Fig. S8: FLS2 and BAK1 abundance and sensitivity to PNGase F.

(a) The first two panels: Western blot of total Arabidopsis leaf proteins for FLS2 and BAK1 in wild-type, *scord6* and *mur1-1* mutant plants using  $\alpha$ -FLS2 and  $\alpha$ -BAK1 antibodies. Lower panel: Naphthol Blue Black staining of gel showing the Rubisco large subunit as a loading control.

(b) The first two panels: Western blot of total Arabidopsis leaf proteins for FLS2 and BAK1 after PNGase F. Lower panel: Naphthol Blue Black staining of gel showing the Rubisco large subunit as a loading control. Please note that FLS2 and BAK1 proteins showed a larger decrease in the MWs of FLS2 and BAK1 after PNGase F. In contrast, FLS2 and BAK1 in wild-type plants were less sensitive to PNGase F treatment, as indicated by a smaller decrease in the MWs of FLS2 and BAK1.



**Fig. S9**: Simplified diagrams of *N*-glycan processing and modification of *O*-glycan and xyloglucan.

(a) A simplified schematic diagram of *N*-glycan processing in the endoplasmic reticulum (ER) and Golgi (Strasser 2016). The OST complex catalyzes the transfer of a pre-assembled oligosaccharide from the lipid carrier dolichol pyrophosphate to a selected asparagine residue of the nascent polypeptide (Strasser 2016).

(b) A simplified schematic diagram of O-glycans attached to arabinogalactan proteins.

(c) A simplified schematic diagram of the XLFG (glucose/xylose/galactose/fucose) subunit of xyloglucan.

Arabidopsis mutants used for disease assays and stomatal assays are indicated in red with parentheses.





Bacterial populations three days after dip-inoculation with  $1 \times 10^8$  cfu ml<sup>-1</sup> *Pst* DC3118 in fucosyltransferase single mutants for *N*-glycan (a) or *O*-glycan (b), or quintuple *della* mutant (c). Different letters above the columns indicate significant differences (P < 0.05) of bacterial

populations between genotypes by one-way ANOVA with Tukey's test (n = 4, error bars,  $\pm$  SEM).

## Table S1: List of primers.

| name of primer | accession | sequence                                                | purpose      | reference<br>for primer | ABRC                             |
|----------------|-----------|---------------------------------------------------------|--------------|-------------------------|----------------------------------|
| SCORD6 FP      | AT3G51160 |                                                         | scord6       | for primer              |                                  |
| SCORD6_PP      | 115051100 | AGGTTGCTGCTTAGCATCCATGTAT                               | deletion     |                         |                                  |
| SCORDO_M       |           | Addition to the     | confirmation |                         |                                  |
| SCORD6 BPF     | AT3G51160 | GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGTCAGAGAACAACGGAT   | cloning      |                         |                                  |
| SCORD6 BPR     |           | GGGGACCACTTTGTACAAGAAAGCTGGGTCAGGTTGCTGCTTAGCATCCATGTAT | SCORD6       |                         |                                  |
| ~              |           |                                                         | gene         |                         |                                  |
| PP2AA3_qF      | AT1G13320 | GGTTACAAGACAAGGTTCACTC                                  | qPCR         | Zhang <i>et</i>         |                                  |
| PP2AA3_qR      |           | CATTCAGGACCAAACTCTTCAG                                  | -            | al. 2015                |                                  |
| CYP81F2_qF     | AT5G57220 | GCCCGAGAAGTTTATGCCTGAG                                  | qPCR         | J. Li et al.            |                                  |
| CYP81F2_qR     |           | CAACGAACCTAAAGCCAACAATACC                               | -            | 2009                    |                                  |
| FRK1_qF        | AT2G19190 | CATTAGATGCAGCGCAAGGAC                                   | qPCR         |                         |                                  |
| FRK1_qR        |           | GGTTGGCCTGTAATCACTTC                                    | _            |                         |                                  |
| mur1-1_F       | AT3G51160 | ATGGCGTCAGAGAACAACGGAT                                  | genomic      |                         | CS6243                           |
| mur1-1_R       |           | AGGTTGCTGCTTAGCATCCATGTAT                               | PCR          |                         |                                  |
| mur2-1_F       | AT2G03220 | TCGGTGAGTGACTTTAGAGTCT                                  | genomic      |                         | CS8565                           |
| mur2-1_R       |           | AATCATACTAGCTTAAGTCCCCA                                 | PCR          |                         |                                  |
| fut4_F         | AT2G15390 | CCATGTAGTTACATTCCCAACCG                                 | genomic      | Liang et                | SAIL_284_B05                     |
| fut4_R         |           | CCACGTCGATGGAGCCTTGTTT                                  | PCR          | al. 2013                |                                  |
| fut6_F         | AT1G14080 | CACATCTTTCAGATCTCCAGCG                                  | genomic      | Liang et                | SALK_099500                      |
| fut6_R         |           | CTTTCTTGTAAGCATCCGTGC                                   | PCR          | al. 2013                |                                  |
| fucTa_F        | AT3G19280 | TGCCACAACTTAGCATCTCCT                                   | genomic      | Kaulfurst-              | SALK_087481                      |
| fucTa_R        |           | TAGGACCTCGAAGATTGGAGA                                   | PCR          | Soboll et               |                                  |
|                |           |                                                         |              | al. 2011                |                                  |
| fucTb_F        | AT1G49710 | ATGAAGTATCTCGCAGCTAAC                                   | genomic      | Kaulfurst-              | SALK_063355                      |
| fucTb_R        |           | AATGTGACTACTTAGACTCGA                                   | PCR          | Soboll <i>et</i>        |                                  |
| A 10.0 E       |           |                                                         |              | <i>al.</i> 2011         | <b>A A B A A A A A A A A A A</b> |
| fut13-2_F      | AT1G/1990 |                                                         | genomic      | Anderson                | SALK_067444                      |
| fut13-2_R      | 454620240 |                                                         | PCR          | <i>et al.</i> 2012      | 0 A L IZ 072650                  |
| cgl1-3_F       | A14G38240 |                                                         | genomic      | Frank <i>et</i>         | SALK_0/3650                      |
| cgl1-3_R       | ATEC10600 |                                                         | PCK          | <i>al.</i> 2008         | CALK 050014                      |
| stt3a-2_F      | A15G19690 |                                                         | genomic      | Koiwa et                | SALK_058814                      |
| stt3a-2_R      | 451024120 |                                                         | PCR          | <i>al.</i> 2003         | GALK 022201                      |
| stt3b-1_F      | ATIG34130 |                                                         | genomic      | Koiwa et                | SALK_033391                      |
| stt3b-1_R      | 452011540 |                                                         | PCR          | <i>al.</i> 2003         | 00.000                           |
| spy-3_F        | A13G11540 |                                                         | genomic      |                         | CS6268                           |
| spy-3_K        | AT2C11540 |                                                         | PCK .        |                         | C00004                           |
| spy-5_F        | A13G11540 |                                                         | genomic      |                         | CS8094                           |
| spy-5_K        |           |                                                         |              |                         |                                  |
| LB3            |           | IAGUAIUIGAATITUATAAUUAATUTUGATACAC                      | T-DNA        |                         |                                  |

| LBb1.3 | ATTTTGCCGATTTCGGAAC | T-DNA |  |
|--------|---------------------|-------|--|
|        |                     |       |  |

| Mutant         | Eurotion of gong                                                  | Arabidopsis defense Stomatal defense |                    | Apoplastic defense |     |     |
|----------------|-------------------------------------------------------------------|--------------------------------------|--------------------|--------------------|-----|-----|
| Mutant         | Function of gene                                                  | against Pst DC3118                   | against Pst DC3118 | against Pst DC3118 | PTI | ETI |
| scord6, mur1-1 | GDP-D-mannose-4,6-dehydratase                                     | -                                    | -                  | -                  | -   | -   |
| fucTa fucTb    | $\alpha$ 1,3-fucosyltransferases for N-glycan processing in Golgi | -                                    | -                  | -                  |     |     |
| fut13          | $\alpha$ 1,4-fucosyltransferase for N-glycan processing in Golgi  | +                                    |                    |                    |     |     |
| stt3a-2        | putative subunits of OST complex in ER                            | -                                    | -                  | -                  |     |     |
| stt3b-1        | putative subunits of OST complex in ER                            | -                                    | -                  | -                  |     |     |
| cgl1-3         | GnTI in Golgi                                                     | -                                    | -                  | -                  |     |     |
| fut4 fut6      | arabinogalactan-protein specific a1,2-fucosyltransferase          | -                                    | +                  | -                  |     |     |
| spy-3, spy-5   | O-fucosyltransferase for mono-fucosylation of DELLAs              | -                                    | _*                 | -                  |     |     |
| mur2-1         | XyG specific α1,2-fucosyltransferase                              | +                                    |                    |                    |     |     |
| della          | repressors of GA signaling                                        | +                                    |                    |                    |     |     |

**Table S2**: Summary of key assay results of the Arabidopsis mutants analyzed in this study

+: Wild-type resistance -: Compromised resistance

\*: Only tested in the *spy-3* mutant

## References

Anderson CT, Wallace IS, Somerville CR. 2012. Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in *Arabidopsis* cell walls. *Proceedings of the National Academy of Sciences of the United States of America* **109**: 1329-1334

Frank J, Kaulfurst-Soboll H, Rips S, Koiwa H, von Schaewen A. 2008. Comparative analyses of *Arabidopsis complex glycan1* mutants and genetic interaction with *staurosporin and temperature sensitive3a*. *Plant Physiology* **148**: 1354-1367

Kaulfurst-Soboll H, Rips S, Koiwa H, Kajiura H, Fujiyama K, von Schaewen. 2011. Reduced immunogenicity of *Arabidopsis hgl1* mutant *N*-glycans caused by altered accessibility of xylose and core fucose epitopes. *The Journal of Biological Chemistry* **286**: 22955-22964

Koiwa H, Li F, McCully MG, Mendoza I, Koizumi N, Manabe Y, Nakagawa Y, Zhu J, Rus
A, Pardo JM, *et al.* 2003. The STT3a subunit isoform of the *Arabidopsis*oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. *The Plant Cell* 15: 2273-2284

Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, Chinchilla D, Zipfel C, Jones JD. 2009. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. *Proceedings of the National Academy of Sciences of the United States of America* 106: 15973-15978

Liang Y, Basu D, Pattathil S, Xu WL, Venetos A, Martin SL, Faik A, Hahn MG, Showalter AM. 2013. Biochemical and physiological characterization of *fut4* and *fut6* mutants defective in arabinogalactan-protein fucosylation in *Arabidopsis*. *Journal of Experimental Botany* **64**: 5537-5551

Strasser R. 2016. Plant protein glycosylation. Glycobiology 26: 926-939

Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY. 2011. A genetic screen reveals *Arabidopsis* stomatal and/or apoplastic defenses against *Pseudomonas syringae* pv. *tomato* DC3000. *PLoS Pathogens* **7**: e1002291

Zhang L, Yao J, Withers J, Xin XF, Banerjee R, Fariduddin Q, Nakamura Y, Nomura K,

Howe GA, Boland W, *et al.* 2015. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. *Proceedings of the National Academy of Sciences United States of America* 112: 14354–14359