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A Ablation study of NowcastNet

NowcastNet is a physics-conditional deep generative model, comprised of
the generative network and the evolution network. We provide an extensive
ablation study to investigate the effect and behavior of different modules
in NowcastNet, with a focus on the major designs of the evolution network
and the physics-conditioning mechanism between the generative network
and the evolution network. The ablation results in reference to the ground
truth observations and PySTEPS are shown in Supplementary Fig. 1.

A.1 Physics-conditioning mechanism

We first inspect the physics-conditioning mechanism in NowcastNet, which
adaptively controls the integration of physical knowledge from the evolu-
tion network into the generative network. Besides the default conditioning
mechanism in NowcastNet, we investigate another two natural alternatives:
weak conditioning and no conditioning.

In the weak conditioning model, we remove from NowcastNet the evo-
lution conditioning module (Fig. 1a), which enables fuller integration of the
evolution network predictions to multiple layers of the generative network;
Namely, we simply take the predictions as another input to the U-Net based
nowcast decoder. In principle, U-Net employs shortcut connections from
the bottom layers to the top layers to deliver multiscale features, making the
generative network weakly conditioned on the evolution network. As shown
in Supplementary Fig. 1, while the location of the predicted squall line by
the weak conditioning model (3rd row) is relatively consistent with the orig-
inal NowcastNet, the intensity of the squall line is not kept after two hours.
Worse still, there are undesired extra noises in the predictions that are out
of the scope of the evolution network predictions.

In the no conditioning model, we remove the whole evolution network
from NowcastNet, but keep all other training settings unchanged. As shown
in Supplementary Fig. 1, the no conditioning model (4th row) exhibits a
large tendency of dissipating the heavy precipitation and violating the cloud
dynamics, thereby generating unusable predictions after one hour. This is
a strong evidence that the physics-conditioning on the evolution network
informed by physical knowledge is important to make NowcastNet skillful
for extreme precipitation nowcasting.

A.2 Major designs of evolution network

We inspect the major designs of the evolution network, and justify that each
design is crucial to the skillful performance. As shown in Supplementary
Fig. 1, by comparing NowcastNet (2nd row) and the evolution network (5th
row), we can clearly observe that the evolution network can only produce
mesoscale nowcasts at 20 km scale. This is due to its deterministic nature,
although it is designed to be a nonlinear physical evolution scheme that is
more powerful than the linear PySTEPS. We further boost the deterministic
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Supplementary Fig. 1: Ablation study of NowcastNet on a precipitation event with squall line
in eastern USA. This case was studied comparatively in Extended Data Fig. 3. In reference to
real observations, we inspect predictions of nine models: NowcastNet (Fig. 1a), NowcastNet w/
weak conditioning, NowcastNet w/o conditioning; Evolution Network (Fig. 1b), Evolution Net-
work w/o accumulation loss, Evolution Network w/o intensity component, Evolution Network
w/o motion regularization term, Evolution Network w/o stop-gradient; PySTEPS. Precipitation
data obtained from MRMS [1] and maps produced with Cartopy and Natural Earth. 3



evolution network by the stochastic generative network, which makes the
final NowcastNet able to generate convective details at 1-2 km scale.

We first consider a weaker version of the evolution network that does not
adopt the accumulation loss. Instead, the weaker evolution network tries to
predict the ground truth motion fields and intensity residues, by using as
its objective the distance between ground truth x̂t+1 and the result of evolu-
tion on ground truth x̂t, which is not available at inference. Note that in our
final accumulation loss, we adopt the distance between ground truth x̂t+1

and predicted field x̂′′t+1, the result of evolution on previous prediction x̂′′t ,
which exactly complies with the autoregressive nature of the physical evolu-
tion process. The other training settings are exactly the same as the original
evolution network.

As shown in Supplementary Fig. 1, the weaker evolution network (6th
row) produces predictions with serious and unacceptable location bias. We
also find that the location bias has moderate similarity with the PySTEPS
predictions (10th row). In particular, the locations of the head and tail of
the squall line predicted by the weaker evolution network and PySTEPS are
fairly consistent. This is a strong evidence that PySTEPS lacks an end-to-end
error optimization framework to explicitly control the accumulated error in
the autoregressive evolution process.

In contrast, the original evolution network (5th row) yields significantly
better predictions of the motion and the shape of the squall line. The high
nowcast skill stems from its capability of integrating the physical evolution
scheme into a differentiable neural evolution operator (Fig. 1c) and empow-
ering a fully neural framework with nonlinear simulations and end-to-end
error optimization (Fig. 1b).

Second, we consider another weaker version of the evolution network
by dropping the intensity-residual component. As shown in Supplementary
Fig. 1, the motion-only evolution network (7th row) is better able to provide
plausible location predictions consistent with the ground truth. This con-
firms the evolution network, benefiting from its particular designs (Fig. 1b),
achieves essential improvements over PySTEPS.

Third, we consider another weaker version of the evolution network by
dropping the motion regularization term (8th row). This term is defined by
an assumption in the motion field estimation that all neighbor points have
similar motions, which is motivated in part by the continuity equation and
in part by the fact that heavy precipitation patterns tend to be longer-lived
and stabler in movement [2]. As shown in Supplementary Fig. 1 (8th row),
the squall line predicted by this weaker version becomes unnaturally dis-
torted after two hours. Note that the motion regularization term cannot be
used independently because the accumulation loss to control the forecast
error is the pillar objective of our physical evolution scheme.

Finally, we inspect the last weaker version of the evolution network by
eliminating the stop-gradient mechanism in the neural evolution operator
(Fig. 1c), which is originally designed to mitigate the numerical instability.
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As shown in Supplementary Fig. 1, the weaker network without stopping the
gradients (9th row) incurs serious location bias and unnatural dissipation.
This verifies the need of the stop-gradient design for the neural evolution
operator, which underlies the stable learnability of NowcastNet.

B Evaluation metrics

We first describe the four standard evaluation metrics used in this article.
Critical Success Index (CSI) [3] measures the accuracy of the binary

decision induced by the predicted field whether the rain rate exceeds a par-
ticular threshold τ . It is computed by the ratio of the hit on the rain rate
exceeding the threshold in the sum of hit, miss and false alarm on all grids
[4]. It considers the precision and the recall simultaneously, and is a com-
mon choice for evaluation in precipitation nowcasting. It is noteworthy that
during computing the CSI metric, the hit, miss and false alarm are counted
over all the test set.

CSI-Neighborhood [4] is the CSI metric calculated based on the neigh-
borhood. The neighborhood methods evaluate the forecasts within a spatial
window surrounding each grid, and can enable verification of how “close”
the forecasts are, which are particularly suited for verifying high-resolution
forecasts. CSI-Neighborhood calculates the counts of hit, miss and false
alarm after max pooling with kernel size κ and stride ⌊κ/2⌋.

Fractional Skill Score (FSS) [5] is another metric based on the neighbor-
hood, defined by a rain rate threshold τ . For every grid in the test dataset,
we compute the fraction of surrounding grids within a spatial window that
have exceeded the threshold. Then we sum the difference between the frac-
tions of predictions and observations for all grids in the dataset, referred to
as Fractional Brief Score (FBS). FSS is calculated from the normalized FBS,
relying on τ to decide whether it rains on a local grid and use the Fractions
Brier Score (FBS) to compare the forecasted and observed rain frequencies.
Compared to CSI-Neighborhood that focuses on whether the prediction
makes successful hits, FSS can further compare the ratio of grids that exceed
the threshold in the spatial windows.

Power Spectral Density (PSD) [6, 7] measures the power distribution
over each spatial frequency, comparing the precipitation variability of fore-
casts to that of the observations. We adopt the implementation of PSD from
the PySTEPS package [8]. Forecasts that have more minor differences with
observations are less preferred.

C Additional precipitation events

We study additional cases covering both extreme and ordinary precipitation
events in the USA and China, which are selected from the test set with the
help of five chief forecasters at the China Meteorological Administration to
be representative events in the periods for evaluation.
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Selected precipitation events of 2021 in the USA are shown in Extended
Data Fig. 2–6 and Supplementary Fig. 2–5, including the event with tornado
on March 25 1, the event with a massive squall line on May 4 2, the event with
convective initiation and dissipation on August 14, the remnants of Hurri-
cane Ida on September 1 3, the event with tornado outbreak on December
11 4, the event with widespread precipitation on April 11, the event with
multiple supercells on April 24 5, the event with isolated cells on June 12,
and the event with a linear storm system on July 14 6. Selected precipita-
tion events from April to June 2021 in China are shown in Extended Data
Fig. 7–8, including the hail event caused by a squall line on May 3 and the
gale-warning event along with hail and lightning on June 30.

We further demonstrate in Extended Data Fig. 9–10 the high-resolution
precipitation nowcasts over a larger spatial region of 2048 km × 2048 km,
corresponding to the USA and China precipitation events in Fig. 2–3 of the
main text, respectively.

Videos of the selected precipitation events in the main text, the Extended
Data and the Supplementary Information, and the corresponding three-
hour nowcasts of different models are given in Supplementary Movie 1–13.

Showcases of the randomly-sampled events used in the meteorologist
evaluation with the expert choices are shown in Supplementary Fig. 6–7 for
the USA events and in Supplementary Fig. 8–9 for the China events.

1https://www.weather.gov/ohx/20210325
2https://www.weather.gov/bmx/event 05042021
3https://www.weather.gov/phi/eventreview20210901
4https://www.weather.gov/pah/December-10th-11th-2021-Tornado
5https://www.weather.gov/tae/20210424 tornadoes
6https://www.weather.gov/arx/jul1421
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Supplementary Fig. 2: Case study of a moderate precipitation event starting on Apr 11th
20:50 UTC, 2021, with widespread, scattered rainfall sustained for several hours around the
eastern USA. NowcastNet can predict the scattered locations of precipitation with better cov-
erage and details. a, Geographic context for the predictions. b, A single prediction at T + 1, T + 2
and T + 3 hour lead times for different models. c, CSI-neighborhood at thresholds 1 mm/h and
2 mm/h. d, PSD at different wavelengths. Images are zoomed in 768 km × 768 km to highlight
local details. Precipitation data obtained from MRMS [1] and maps produced with Cartopy and
Natural Earth.
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Supplementary Fig. 3: Case study of an extreme precipitation event starting on Apr 24th
00:30 UTC, 2021, with multiple supercells converging to squall lines around the east of Texas.
NowcastNet is the only model providing accurate nowcasts of both location and intensity for
the evolution of the multiple supercells. a, Geographic context for the predictions. b, A single
prediction at T + 1, T + 2 and T + 3 hour lead times for different models. c, CSI-neighborhood at
thresholds 16 mm/h and 32 mm/h. d, PSD at different wavelengths. Images are zoomed in 768
km × 768 km to highlight local details. Precipitation data obtained from MRMS [1] and maps
produced with Cartopy and Natural Earth.
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Supplementary Fig. 4: Case study of a moderate precipitation event starting on Jun 12th
22:20 UTC, 2021, with isolated cells affecting Illinois, Michigan, and Indiana. NowcastNet
avoids undesired dissipation and provides more plausible predictions for the range and loca-
tion of the isolated cells. a, Geographic context for the predictions. b, A single prediction at T +
1, T + 2 and T + 3 hour lead times for different models. c, CSI-neighborhood at thresholds 16
mm/h and 32 mm/h. d, PSD at different wavelengths. Images are zoomed in 768 km × 768 km
to highlight local details. Precipitation data obtained from MRMS [1] and maps produced with
Cartopy and Natural Earth.
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Supplementary Fig. 5: Case study of an extreme precipitation event starting on July 14th
13:30 UTC, 2021, with a line of thunderstorms moving across Wisconsin causing strong
winds and heavy rainfalls. NowcastNet gives better and stabler nowcasts on the rotation and
intensity of the line echo. a, Geographic context for the predictions. b, A single prediction at T
+ 1, T + 2 and T + 3 hour lead times for different models. c, CSI-neighborhood at thresholds 16
mm/h and 32 mm/h. d, PSD at different wavelengths. Images are zoomed in 768 km × 768 km
to highlight local details. Precipitation data obtained from MRMS [1] and maps produced with
Cartopy and Natural Earth.

10



O
bs

er
va

tio
ns

1s
t

N
ow

ca
st
N
et

3t
h

Py
ST

EP
S

2n
d

DG
M
R

O
bs

er
va

tio
ns

1s
t

N
ow

ca
st
N
et

3t
h

Py
ST

PE
S

2n
d

DG
M
R

O
bs

er
va

tio
ns

1s
t

N
ow

ca
st
N
et

3t
h

Py
ST

EP
S

2n
d

DG
M
R

O
bs

er
va

tio
ns

1s
t

N
ow

ca
st
N
et

3t
h

Py
ST

EP
S

2n
d

DG
M
R

O
bs

er
va

tio
ns

1s
t

N
ow

ca
st
N
et

3t
h

Py
ST

EP
S

2n
d

DG
M
R

O
bs

er
va

tio
ns

1s
t

N
ow

ca
st
N
et

3t
h

DG
M
R

2n
d

Py
St
ep

s

Supplementary Fig. 6: Meteorologist evaluation on precipitation events randomly sampled
from the USA dataset. Each subfigure shows an event. Nowcasts by PredRNN-V2, PySTEPS,
DGMR, and NowcastNet are ranked by expert meteorologists and the top three places are listed.
Precipitation data obtained from MRMS [1] and maps produced with Cartopy and Natural
Earth.
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Supplementary Fig. 7: Meteorologist evaluation on precipitation events randomly sampled
from the USA dataset. Each subfigure shows an event. Nowcasts by PredRNN-V2, PySTEPS,
DGMR, and NowcastNet are ranked by expert meteorologists and the top three places are listed.
Precipitation data obtained from MRMS [1] and maps produced with Cartopy and Natural
Earth.
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Supplementary Fig. 8: Meteorologist evaluation on precipitation events randomly sampled
from the China dataset. Each subplot shows an event. Nowcasts by PredRNN-V2, PySTEPS,
DGMR, and NowcastNet are ranked by expert meteorologists and the top three places are listed.
Precipitation data is obtained from China dataset and maps produced with Cartopy and Natu-
ral Earth.
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Supplementary Fig. 9: Meteorologist evaluation on precipitation events randomly sampled
from the China dataset. Each subplot shows an event. Nowcasts by PredRNN-V2, PySTEPS,
DGMR, and NowcastNet are ranked by expert meteorologists and the top three places are listed.
Precipitation data is obtained from China dataset and maps produced with Cartopy and Natu-
ral Earth.
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D Additional quantitative results

We then present additional quantitative results on the uniform-sampled
test set in Supplementary Fig. 10–11, in which we include results of the evo-
lution network termed as NowcastNet-evo. In addition to the quantitative
results shown in the main text, we present additional results in the other
metrics on the importance-sampled USA test set in Supplementary Fig. 12–
14, and that on the importance-sampled China test set in Supplementary
Fig. 15–17.

We only present the results of NowcastNet with the strongest baselines,
DGMR and PySTEPS. NowcastNet is comparable to DGMR at the rain rates
below 8 mm/h but is preferable at higher rain rates. The quantitative results
verify that NowcastNet is generally useful for light-to-heavy precipitation
and particularly skillful for extreme precipitation. As the neighborhood size
in these metrics gets larger, i.e., higher focus on the physical plausibility [9],
the advantage of NowcastNet becomes more prominent.
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Supplementary Fig. 10: Verification scores for the USA events in 2021 under the uniform-
sampling protocol. a, CSI-neighborhood of different models at precipitation thresholds of 2
mm/h, 4 mm/h, and 8 mm/h. b, CSI-neighborhood of different models at precipitation thresh-
olds of 16 mm/h, 32 mm/h, and 64 mm/h. c, Radially-averaged PSD over 1,024 km × 1,024 km
predictions for all models at T +1 hour, T +2 hour, and T +3 hour.
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Supplementary Fig. 11: Verification scores for the China events in 2021 under the uniform-
sampling protocol. a, CSI-neighborhood of different models at precipitation thresholds of 2
mm/h, 4 mm/h, and 8 mm/h. b, CSI-neighborhood of different models at precipitation thresh-
olds of 16 mm/h, 32 mm/h, and 64 mm/h. c, Radially-averaged PSD over 1,024 km × 1,024 km
predictions for all models at T +1 hour, T +2 hour, and T +3 hour.
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Supplementary Fig. 12: Verification scores for the USA dataset under the importance-
sampling protocol. a, CSI of different models with precipitation thresholds 2 mm/h, 4 mm/h,
8 mm/h. b, CSI-Neighborhood of different models with precipitation thresholds 2 mm/h, 4
mm/h, 8 mm/h, and average rain rate over a neighborhood of 5 × 5 grids. c, FSS of different
models with precipitation thresholds 2 mm/h, 4 mm/h, 8 mm/h, and average rain rate over a
neighborhood of 5 × 5 grids.
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Supplementary Fig. 13: Verification scores for the USA dataset under the importance-
sampling protocol. a, CSI-Neighborhood of different models with precipitation thresholds 16
mm/h, 32 mm/h, 64 mm/h, and average rain rate over a neighborhood of 3 × 3 grids. b, CSI-
Neighborhood of different models with precipitation thresholds 16 mm/h, 32 mm/h, 64 mm/h,
and average rain rate over a neighborhood of 9 × 9 grids. c, FSS of different models with pre-
cipitation thresholds 2 mm/h, 4 mm/h, 8 mm/h, and average rain rate over a neighborhood of
5 × 5 grids.
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Supplementary Fig. 14: Verification scores for the USA dataset under the importance-
sampling protocol. FSS of different models with precipitation thresholds 16 mm/h, 32 mm/h,
64 mm/h, taking average rain rate over a neighborhood of 3 × 3 grids in a, 5 × 5 grids in b, and
9 × 9 grids in c.
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Supplementary Fig. 15: Verification scores for the China dataset under the importance-
sampling protocol. a, CSI of different models with precipitation thresholds 2 mm/h, 4 mm/h,
8 mm/h. b, CSI-Neighborhood of different models with precipitation thresholds 2 mm/h, 4
mm/h, 8 mm/h, and average rain rate over a neighborhood of 5 × 5 grids. c, FSS of different
models with precipitation thresholds 2 mm/h, 4 mm/h, 8 mm/h, and average rain rate over a
neighborhood of 5 × 5 grids.
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Supplementary Fig. 16: Verification scores for the China dataset under the importance-
sampling protocol. a, CSI-Neighborhood of different models with precipitation thresholds 16
mm/h, 32 mm/h, 64 mm/h, and average rain rate over a neighborhood of 3 × 3 grids. b, CSI-
Neighborhood of different models with precipitation thresholds 16 mm/h, 32 mm/h, 64 mm/h,
and average rain rate over a neighborhood of 9 × 9 grids. c, FSS of different models with pre-
cipitation thresholds 2 mm/h, 4 mm/h, 8 mm/h, and average rain rate over a neighborhood of
5 × 5 grids.
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Supplementary Fig. 17: Verification scores for the China dataset under the importance-
sampling protocol. FSS of different models with precipitation thresholds 16 mm/h, 32 mm/h,
64 mm/h, taking average rain rate over a neighborhood of 3 × 3 grids in a, 5 × 5 grids in b, and
9 × 9 grids in c.
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E Related work

We elaborate a more extensive review on the development of precipitation
nowcasting methods, and highlight their differences to NowcastNet.

In advection scheme-based methods, Lagrangian persistence is a basic
paradigm [10], where the current state of the motion field is first estimated
by optical flow methods and then used to advect the current state of radar
reflectivity field for future time steps. Since the spatial scale of the precipi-
tation patterns largely determines the temporal duration of its persistence
[10], multiscale methods such as S-PROG [11] with Fourier decomposition
or MAPLE [12] with wavelet decomposition are further proposed to predict
the stochastic intensity evolution in the advection process. Another line of
work considers the spectral method that solves for the motion and inten-
sity fields from the continuity equation by Fourier transform [13, 14]. STEPS
[15, 16] models both the stochastic intensity evolution and the stochas-
tic perturbation of the motion fields, which is widely deployed as a strong
precipitation nowcasting model. Many operational methods of the advec-
tion scheme are implemented in the popular open-source packages such as
PySTEPS [8] or Rainymotion [17].

The first deep architecture designed for precipitation nowcasting is Con-
volutional LSTM [18], which unifies convolutional and recurrent structures
for spatiotemporal prediction. This model was extensively improved later
from multiple aspects, such as introducing the predictive coding structure
[19], adding spatial-temporal highway [20, 21] or involving learnable feature
deformations in the prediction process [22, 23]. These methods are used
as common baselines for data-driven precipitation nowcasting [24–26]. U-
Net [27], a general multiscale backbone widely used in Artificial Intelligence
for Science (AI4Science), is modified for precipitation nowcasting [28, 29].
Another series of methods, including MetNet and MetNet-V2 [30, 31], have
further provided rainfall predictions of larger spatial range and longer lead
times but the crucial multiscale patterns useful for meteorologists are lost
significantly.

Previous methods suffer inevitably from unnatural blur and dissipation
in the predictions that lose most of convective-scale features. To mitigate
this problem, a special loss from the computer vision area is adopted in
[32] to enhance the field sharpness. Adversarial learning techniques are also
involved to tackle the problem of blurry predictions [33, 34]. On extreme
precipitation events, the stacked neural networks on different rain levels
are used in [35], which can reach the same forecasting skill of advection
scheme method S-PROG [11] on heavy precipitation in one-hour lead time.
DGMR [9], a major step forward by DeepMind, explores generative models
in precipitation nowcasting by integrating spatiotemporal consistency and
log-normal distribution of rain rate, and enables probabilistic predictions
and ensemble forecasting. Since DGMR is proved to be the state-of-the-art
model in the expert examination held by the UK Met-Office, we consider it
as a powerful competing method in this article.
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Deep learning models inspired by physical principles are another class
of related work. Physics-informed neural networks (PINN) [36] are created
based on partial differential equations (PDE). PINN leverages the gradient-
solving ability of neural networks to approximate the differential equation
by taking it as the objective function. Neural ordinary differential equation
(NODE) [37] adopts the numerical methods such as Runge-Kutta to replace
the forward propagation in neural networks. NODE is a powerful parame-
terization tool for modeling continuous processes. The idea of integrating
physical knowledge into deep learning was studied for the predictions of sea
surface temperature fields [38]. Here, the method uses a deep model to pre-
dict motion field for a single time step forward from the past observations,
and the temperature field is advected by the motion field; Such a process is
repeated autoregressively. This method relies on the autoregressive solving
process of the equation, incurring uncontrollable accumulation error. The
method has not been shown skillful for extreme precipitation nowcasting.
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