Supplementary Information

Long-read sequence analysis of MMEJ-mediated CRISPR genome editing reveals complex on-target vector insertions that may escape standard PCR-based quality control

Yuki Higashitani and Kyoji Horie

Supplementary Figure 1. Nucleotide sequence of the targeting vector pKlf2-cKO-PITCh.

Supplementary Figure 2. Consensus sequence of Clone 37 obtained using Flye-assembler.

Supplementary Figure 3. Annotation of consensus sequences obtained by de novo assembly of long-read sequencing data and confirmation of assembly fidelity by Sanger direct sequencing.

Supplementary Figure 4. The original gel images of Figure 2B.

Supplementary Figure 5. The original gel images of Figure 2C.

Supplementary Figure 6. The original gel image of Figure 5B.

Supplementary Figure 7. The original gel images of Figure 6B.

Supplementary Table 1. Sequences of the oligonucleotides used in this study.

Supplementary Figure 1. Nucleotide sequence of the targeting vector pKlf2-cKO-PITCh.

1	TCGCGCGTTT	CGGTGATGAC	GGTGAAAACC	TCTGACACAT	GCAGCTCCCG	GAGACGGTCA	CAGCTTGTCT	GTAAGCGGAT	GCCGGGAGCA	GACAAGCCCG
101	TCAGGGCGCG	TCAGCGGGTG	TTGGCGGGTG	TCGGGGCTGG	СТТААСТАТС	CGGCATCAGA	GCAGATTGTA	CTGAGAGTGC	ACCATATGCG	GTGTGAAATA
201	CCGCACAGAT	GCGTAAGGAG	AAAATACCGC	ATCAGGCGCC	ATTCGCCATT	CAGGCTGCGC	AACTGTTGGG	AAGGGCGATC	GGTGCGGGCC	TCTTCGCTAT
301	TACGCCAGCT	GGCGAAAGGG	GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	AAAACGACGG	CCAGTGAATT
401	CGAGCTCGGT	ACCTCGCGAA	TGCATCTAGA	TGCATCGTAC	GCGTACGTGT	TTGGCCAGTA	CTGGAGATGA	CAAGGTCCAG	GGTGCTGACC	GCCTATAACT
F01				gRNA	-PITCh		5′ r	nicrohomolog	4	
201	TCGTATAGCA	IoxP	GAAGTTATCA	GGGAGTTAGA	CTTCAGGCTG	TGGGACAGGA	GGTGGGTGCA	GGGACTGAGG	ACACGCGCGC	TGAAGGGATG
601	CCGTGCACCG	GGTGCAGATC	TTGAGGGCCT	AGTTGTTAGA	CTTTGGGGTG	CAGGGTAGCA	GGAGGCACCC	CCACTCACGT	CCCGCGCCCT	GTCTCCTGCA
701	GCGCTGGCCG	CGAAATGAAC	CCGAGGCGGG	CGGCACGGAT	GAGGACCTAA	ACAACGTGTT	GGACTTCATC	CTCTCCATGG	GATTGGACGG	TCTGGGCGCC
		Exon 2								
801	GAAAATCCTC	CCGAGCCCCC	GCCGCAGCCC	CCGCCGCCTG	ССТТСТАСТА	CCCGGAGCCG	GGTGCTCCGC	CGCCCTACAG	CATCCCCGCG	GCCAGCCTGG
901	GAACAGAGCT	GCTGCGCCCC	GACCTGGACC	CGCCTCAGGG	GCCGGCTCTG	CACGGCCGCT	TCCTCCTCGC	GCCTCCCGGG	CGGCTAGTGA	AGGCCGAGCC
1001	CCCCGAGGTG	GACGGCGGCG	GCTACGGCTG	CGCTCCGGGC	CTGGCCCACG	GACCGCGCGG	GCTGAAGCTC	GAGGGCGCCC	CAGGAGCGAC	AGGTGCATGC
1101	ATGCGGGGTC	CCGCCGGCCG	CCCCCCGCCG	CCCCCGGACA	CGCCGCCGCT	CAGCCCCGAC	GGCCCCCTGC	GCATCCCGGC	GTCCGGTCCC	CGCAACCCGT
1201	TCCCGCCGCC	CTTCGGTCCC	GGCCCCAGCT	TCGGCGGTCC	CGGCCCCGCG	TTGCACTACG	GGCCTCCCGC	GCCTGGCGCC	TTCGGTCTTT	TCGAGGACGC
1301	GGCGGCAGCG	GCGGCGGCGC	TGGGCTTGGC	TCCACCTGCC	ACGCGCGGTC	TCCTCACGCC	GCCCTCGTCC	CCGCTGGAGC	TGCTGGAGGC	CAAGCCCAAA
1401	CGCGGCCGCC	GCTCCTGGCC	CCGCAAGCGC	GCCGCCACAC	ATACTTGCAG	CTACACCAAC	TGCGGCAAGA	CCTACACCAA	GAGCTCGCAC	CTAAAGGCGC

 $1501 \quad \text{atctgcgtac acacacaggt gggcgcctgg cctcattccc gggatctgcg gcagggggat ggccgcgagt tcaggaacag gctaggttag atatcgcggc$

1601	CGCTCTAGAA	CTCCACCGCA	TTTAAATGCG	GTGGCGGCCG	AAGTTCCTAT	TCTCTAGAAA	GTATAGGAAC	TTCGTCGAAG	CTAGTGGATC	GATCCGAACA
				_		FRT				
1701	AACGACCCAA	CACCCGTGCG	TTTTATTCTG	TCTTTTTATT	GCCGATCCCC	TCAGAAGAAC	TCGTCAAGAA	GGCGATAGAA	GGCGATGCGC	TGCGAATCGG
		-	рА					neo	-	
1801	GAGCGGCGAT	ACCGTAAAGC	ACGAGGAAGC	GGTCAGCCCA	TTCGCCGCCA	AGCTCTTCAG	CAATATCACG	GGTAGCCAAC	GCTATGTCCT	GATAGCGGTC
1901	CGCCACACCC	AGCCGGCCAC	AGTCGATGAA	TCCAGAAAAG	CGGCCATTTT	CCACCATGAT	ATTCGGCAAG	CAGGCATCGC	CATGGGTCAC	GACGAGATCC
2001	TCGCCGTCGG	GCATGCGCGC	CTTGAGCCTG	GCGAACAGTT	CGGCTGGCGC	GAGCCCCTGA	TGCTCTTCGT	CCAGATCATC	CTGATCGACA	AGACCGGCTT
2101	CCATCCGAGT	ACGTGCTCGC	TCGATGCGAT	GTTTCGCTTG	GTGGTCGAAT	GGGCAGGTAG	CCGGATCAAG	CGTATGCAGC	CGCCGCATTG	CATCAGCCAT
2201	GATGGATACT	TTCTCGGCAG	GAGCAAGGTG	AGATGACAGG	AGATCCTGCC	CCGGCACTTC	GCCCAATAGC	AGCCAGTCCC	TTCCCGCTTC	AGTGACAACG
2301	TCGAGCACAG	CTGCGCAAGG	AACGCCCGTC	GTGGCCAGCC	ACGATAGCCG	CGCTGCCTCG	TCCTGCAGTT	CATTCAGGGC	ACCGGACAGG	TCGGTCTTGA
2401	САААААдаас	CGGGCGCCCC	TGCGCTGACA	GCCGGAACAC	GGCGGCATCA	GAGCAGCCGA	TTGTCTGTTG	TGCCCAGTCA	TAGCCGAATA	GCCTCTCCAC
2501	CCAAGCGGCC	GGAGAACCTG	CGTGCAATCC	ATCTTGTTCA	ATGGCCGATC	CCATATTGGC	TGCAGGTCGA	AAGGCCCGGA	GATGAGGAAG	AGGAGAACAG
2601	CGCGGCAGAC	GTGCGCTTTT	GAAGCGTGCA	GAATGCCGGG	CCTCCGGAGG	ACCTTCGGGC	GCCCGCCCCG	CCCCTGAGCC	CGCCCCTGAG	cccgccccg
2701	GACCCACCCC	TTCCCAGCCT	CTGAGCCCAG	AAAGCGAAGG	AGCAAAGCTG	CTATTGGCCG	CTGCCCAAA	GGCCTACCCG	CTTCCATTGC	TCAGCGGTGC
2801	TGTCCATCTG	CACGAGACTA	GTGAGACGTG	CTACTTCCAT	TTGTCACGTC	CTGCACGACG	CGAGCTGCGG	GGCGGGGGGG	AACTTCCTGA	CTAGGGGAGG
2901	AGTAGAAGGT	GGCGCGAAGG	GGCCACCAAA	GAACGGAGCC	GGTTGGCGCC	TACCGGTGGA	TGTGGAATGT	GTGCGAGGCC	AGAGGCCACT	TGTGTAGCGC
3001	CAAGTGCCCA	GCGGGGCTGC	TAAAGCGCAT	GCTCCAGACT	GCCTTGGGAA	AAGCGCCTCC	CCTACCCGGT	AGAATTGACC	TGCAGGGGCC	CTCGA GAAGT

3101	TCCTATTCTC	TAGAAAGTAT	AGGAACTTC <mark>A</mark>	TAACTTCGTA	TAGCATACAT	TATACGAAGT	TATGGCGCGC	CCAGAGGAAG	ACCCTGTCCA	TCCTCCAGAA
		FRT			loxP				3' microhom	ology
3201	GGGAAATGGA	TCCAAACACG	TACGCGTACG	ATGCATCGGA	TCCCGGGCCC	GTCGACTGCA	GAGGCCTGCA	TGCAAGCTTG	GCGTAATCAT	GGTCATAGCT
		i	gRNA-PITCh							
3301	GTTTCCTGTG	TGAAATTGTT	ATCCGCTCAC	AATTCCACAC	AACATACGAG	CCGGAAGCAT	AAAGTGTAAA	GCCTGGGGTG	CCTAATGAGT	GAGCTAACTC
3401	ACATTAATTG	CGTTGCGCTC	ACTGCCCGCT	TTCCAGTCGG	GAAACCTGTC	GTGCCAGCTG	САТТААТGAA	TCGGCCAACG	CGCGGGGAGA	GGCGGTTTGC
3501	GTATTGGGCG	CTCTTCCGCT	TCCTCGCTCA	CTGACTCGCT	GCGCTCGGTC	GTTCGGCTGC	GGCGAGCGGT	ATCAGCTCAC	TCAAAGGCGG	TAATACGGTT
3601	ATCCACAGAA	TCAGGGGATA	ACGCAGGAAA	GAACATGTGA	GCAAAAGGCC	AGCAAAAGGC	CAGGAACCGT	AAAAAGGCCG	CGTTGCTGGC	GTTTTTCCAT
3701	AGGCTCCGCC	CCCCTGACGA	GCATCACAAA	AATCGACGCT	CAAGTCAGAG	GTGGCGAAAC	CCGACAGGAC	TATAAAGATA	CCAGGCGTTT	CCCCCTGGAA
3801	GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGCG	СТТТСТСАТА	GCTCACGCTG
3901	TAGGTATCTC	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT
4001	CTTGAGTCCA	ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT
4101	TGAAGTGGTG	GCCTAACTAC	GGCTACACTA	GAAGAACAGT	ATTTGGTATC	TGCGCTCTGC	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG
4201	ATCCGGCAAA	CAAACCACCG	CTGGTAGCGG	TGGTTTTTTT	GTTTGCAAGC	AGCAGATTAC	GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC	TTTGATCTTT
4301	TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	AACTCACGTT	AAGGGATTTT	GGTCATGAGA	ТТАТСААААА	GGATCTTCAC	CTAGATCCTT	ТТАААТТААА
4401	AATGAAGTTT	ТАААТСААТС	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT
								Amp 		
4501	TCGTTCATCC	ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	CCCAGTGCTG	CAATGATACC	GCGAGACCCA
4601	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	AACCAGCCAG	CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	СААСТТТАТС	CGCCTCCATC	CAGTCTATTA
4701	ATTGTTGCCG	ggaagctaga	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	AACGTTGTTG	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG

 $4801 \quad \text{tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt}$

- $4901 \quad \text{stcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg}$
- 5001 gegagtacte aaccaagtea tectgagaat agegeategg gegaecgagt tectettee egegeteaat aegggataat aegegeeae atageagaae
- 5101 tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac tcgtgcaccc
- 5201 AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT
- 5301 дттдаатаст сатастсттс сттттсаат аттаттдаад сатттатсад ggttattgtc тсатдадсдд атасататтт даатдтаттт адааааатаа
- 5401 acamatagge sttccgcgca catttccccg amaagtgcca cctgacgtct amgamaccat tattatcatg acattmacct atmamatag gcgtatcacg
- 5501 аддссстттс дтс

Supplementary Figure 2. Consensus sequence of Clone 37 obtained using Flye-assembler.

Nanopore long sequences are prone to errors in regions where the same nucleotides are repeated. Differences between the Nanopore sequencing data and the C57BL/6J mouse genome reference sequence are indicated by boxing the nucleotides and showing the corresponding reference sequence. The regions confirmed by Sanger sequencing (Figs. 3B, 3C) are also indicated below.

ormer	
princi	Confirmed by Sanger sequencing (Region I in Figs. 3B, 3C)
	CCAGTACTGGAGATGACAAGGTCCAGGGTGCTGACCTCCCAGGGAGTTAGACTTCAG
	5' microhomology (4-bp deletion) 3-bp insertion gRNA-1 target (3' region downstream of the o
	ACGCGCGCTGAAGGGATGCCGTGCACCGGGTGCAGATCTTGAGGGCCTAGTTGTTAGA
	Exon 2
'TTGGGGTGCAGGGTAGCAGGAGGCACCCCCACTCA	ACGTCCCGCGCCCTGTCTCCTGCAGCGCTGGCCGCGAAATGAACCCGAGGCGGGCG
	Ref seq: CCCCC
GGATGAGGACCTAAACAACGTGTTGGACTTCATCC	CTCTCCATGGGATTGGACGGTCTGGGCGCCGAAAATCCTCCCGACCCCGCCGCAGCCC
CGCCGCCTGCCTTCTACTACCCGGAGCCGGGTGCT	CCGCCGCCCTACAGCATCCCCGCGGCCAGCCTGGGAACAGAGCTGCTGCGCCCCGAC
	Ref seq: CCCCCC
IGGACCCGCCTCAGGGGCCGGCTCTGCACGGCCGCT	TTCCTCCTCGCGCCTCCCGGGCGGCTAGTGAAGGCCGAGCCCCCGAGGTGGACGGCGG
GCTACGGCTGCGCTCCGGGCCTGGCCCACGGACC	GCGCGGGCTGAAGCTCGAGGGCGCCCCAGGAGCGACAGGTGCATGCA
GGCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC	GCGCGGGCTGAAGCTCGAGGGCGCCCCAGGAGCGACAGGTGCATGCA
GGCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC Ref seq: CCCCCC Ref seq: CCCCC :CGGCCGCCCCGGCCGCCCGGACACGCCGCCGCCCC	CCCCGGGCTGAAGCTCGAGGGCGCCCCAGGAGCGACAGGTGCATGCA
GGCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC Ref seq: CCCCCC Ref seq: CCCCC :CGGCCGCCCCGCCCGGACACGCCGCCGCTC	CCCCCGGCTGAAGCTCGAGGGCGCCCCAGGAGCGACAGGTGCATGCA
GCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC Ref seq: CCCCCC Ref seq: CCCCC CGGCCGCCCCCGCCCCGGACACGCCGCCGCCC CTTCGGTCCCGGCCCCAGCTTCGGCGGTCCCGGCC	CCCCCCGCTGCACTCCGCCCCCCCCCCCGCGCCCCCGCACCCCGCACCCCGCCCCCC
GGCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC Ref seq: CCCCCC Ref seq: CCCCC CCGGCCGCCCCGCCCGGACACGCCGCCGCCC CCTTCGGTCCCGGCCCCAGCTTCGGCGGTCCCGGCC	CCGCGGGTTGCACTACGGGCCTCCCGCGCCTGGCGCCTCCGGTCTCCGAGGGCCCCGACGGCCCCCGCGCGCCCGGCGCCCCGGCGCCCGGCGCCTCCGGCGCCTTCGGGGCCTTCGAGGACGCGG
GCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC Ref seq: CCCCC Ref seq: CCCCC :CGGCCGCCCCGGCCCGGGACACGCCGCCGCTC :CTTCGGTCCCGGCCCCAGCTTCGGCGGTCCCGGCC :GCAGCGGCGGCGGCGCGCGCGGGCTGGGCTTGGCTCCACCTGC	CCCCCCGCGCGCCCCCCCCCCCCCCCCCCCCCCCCCCC
GCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC	CCACGCGCGCGCTCCTCACGCCGCCCCGCGCGCCCCGCGAGCCGCGGGGCCCCGGGGCCCCGGGGGCCCCCGGGGGCCCC
GCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC Ref seq: CCCCCC Ref seq: CCCCC CCGGCCGCCCGGCCGCGGGACACGCCGCCGCCC CCTTCGGTCCCGGCCCCAGCTTCGGCGGCCCCGGCC GGCAGCGGCGGCGGCGCGCCCAGCTTGGCTCCACCTGC	CCCCCCCACACATACTTGCAGCTCCCCCCCCCCCCCCCC
GGCTACGGCTGCGCTCCGGGCCTGGCCCACGGACCC Ref seq: CCCCC Ref seq: CCCCC CCGGCCGCCCGGCCGGGACACGCCGCCGCCC CCTTCGGTCCCGGCCCCGGCCGGGACACGCCGCGCC 3GCAGCGGCGGCGGCGCGCCCAGCTTGGCTCCACCTGC	CCCCCCGACGCCCCCTGCGCCCCCGCGCCCCGCGCCCCGCGACCCGTTCCCGCCG CCCCCCGACGGCCCCCTGCGCATCCCGGCGCCTCCGGTCTTTTCGAGGACGCCGG CCCCGCGTTGCACTACGGGCCTCCCGCGCCTGGCGCCTTCGGTCTTTTCGAGGACGCGGG CCCCCCGCGGTCTCCTCACGCCGCCCTCGTCCCCGCTGGAGCTGCTGGAGGCCAAGCCCG CCCCCCCGCGCGTCTCCTCACGCCGCCCTCGTCCCCGCTGGAGCTGCTGGAGGCCAAGCCCG CCCCCCCGCGCGTCTCCTCACGCCGCCCTCGTCCCCGCTGGAGCTGCTGGAGGCCAAGCCCG CCCCCCCGCGCGTCTCCTCACGCCGCCCTCGTCCCCGCTGGAGCTGCTGGAGGCCAAGCCCG CCCCCCCGCGCGTCTCCTCACGCCGCCCTCGTCCCCGCTGGAGCTGCTGGAGGCCAAGCCCG CCCCCCGCGCGCCTCCCCCGCCCCG

	Exon 2
ACTTGCAGCTACACCAACTGCGGCAAGACCTACACCAAGAGCTCGC	ACCTAAAGGCGCATCTGCGTACACACACAGGTGGGCGCCTGGCCTCA:
ef seq: CCC Ref seq: GGGGG	
TCCGGGATCTGCGGCAGGGGATGGCCGCGAGTTCAGGAACAGGCTA	GGTTAGATATCGCGGCCGCTCTAGAACTCCACCGCATTTAAATGCGG
GGCGGCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGTCGA	AGCTAGTGGATCGATCCGAACAAACGACCCAACACCCGTGCGTTTTA
FRT	PGKneopA
TCTGTCTTTTTTTTGCCGATCCCTCAGAAGAACTCGTCAAGAAGGC	GATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGC/
CGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATC	ACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCC
GCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATA	TTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTC
GGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCC	CCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCC/
TCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAA	TGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGC
CATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGA	TCCTGCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTC/
GTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCA	GCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCAGGGCACCG
Ref seq: AAAAA	
ACAGGTCGGTCTTGACAAAAGAACCGGGCGCCCCTGCGCTGACAGC	CGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTC/
TAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCA	ATCCATCTTGTTCAATGGCCGATCCCATATTGGCTGCAGGTCGAAAG

	Ref seq: CCCCC	Ref seq: CCCC	
CGCCCCTGAGCCCGCCCCTC	GAGCCCGCCCCGGACCC	accetteccageetetgageecagaaa	GCGAAGGAGCAAAGCTGCTATTGGCCGCTGC
CCCAAAGGCCTACCCGCTTC	CCATTGCTCAGCGGTGC	TGTCCATCTGCACGAGACTAGTGAGACC	JTGCTACTTCCATTTGTCACGTCCTGCACGA
Ref seq: G	GGGGGG		
CGCGAGCTGCGGGGCGGGGG	AACTTCCTGACTAGGG	GAGGAGTAGAAGGTGGCGCGAAGGGGCC	CACCAAAGAACGGAGCCGGTTGGCGCCTACC
GGTGGATGTGGAATGTGTG	CGAGGCCAGAGGCCACT	TGTGTAGCGCCAAGTGCCCAGCGGGGC	rgctaaagcgcatgctccagactgccttggg
Ref seq: CCCC			<
AAAAGCGCCTCCCTACCCG	GTAGAATTGACCTGCAG	GGGCCCTCGAGAAGTTCCTATTCTCTAG	GAAAGTATAGGAACTTC <mark>ATAACTTCGTATAG</mark>
	PGKneopA	FI	RT
	Confirmed by S	anger sequencing (Region III in Figs. 3	3B, 3C)
CATACATTATACGAAGTTAT	GGCGCGCCCAGAGGAA	GACCCTGTCCATCCTCCAGAAGGGAAA	FGGATACTGTCCCCAGAGTCTATGACACTGC
loxP		3' microhomology	
Ref seq: GGGGG	Ref seq:	GGG	
CAAGGGGTGTGGCAGTTTAA	ATGGGTTGGCTCCGAGG	ACTCAGGTCTCAAGAATTCGGGACATAA	ATTAAGAAGCTGTGGAGGGCTGG
			primer

Supplementary Figure 3. Annotation of consensus sequences obtained by de novo assembly of long-read sequencing data and confirmation of assembly fidelity by Sanger direct sequencing.

Clone 6

Region I gRNA-PITCh target site Genomic sequence (1-bp deletion) Sanger ggtaccaggctacagggtgcaggagccagtactggagatgacaaggtccagggtgctgaccgcatcggatgcgatgcgatgcgatgcgatcccgggcccgtcgactgcag sequencing 5'mH (2-bp deletion) Plasmid backbone 2-bp insertion Region II Plasmid backbone gRNA-PITCh target site Vector GATGCATCGTACGCGTACG-TGTTTG gccagtactggagatgacaaggtccagggtgctgaccgcctataacttcgtatagcatacattatacgaagttat Sanger gatccatcgtacgcgtacgtgttgttgcccagtactggagatgacaaggtccagggtgctgaccgcctataacttcgtatagcatacattatacgaagttatcaggag sequencing 5'mH loxP Insertion: 1 bp Region III Targeting vector + Sanger TCATAACTTCGTATAGCATACATTATACGAAGTTATGGCGCCCCGAGAGGAAGACCCTGTCCATCCTCCAGAAGGGAAATGGATACTGTCCCCAGAGTCTATGACACT sequencing loxP 3′mH Genomic sequence

Clone 31

Region I

Supplementary Figure 4. The original gel images of Figure 2B.

I P, positive control (not shown in Fig. 2B)

Supplementary Figure 5. The original gel images of Figure 2C.

Supplementary Figure 6. The original gel image of Figure 5B.

Supplementary Figure 7. The original gel images of Figure 6B.

I

П

Construction of the Cas9/gRNA vector

pX330-PITCh	
gPITCH-F2	CACCGCATCGTACGCGTACGTGTT
gPITCH-R2	aaacAACACGTACGCGTACGATGC
pX330-gRNA-1	
gKlf2-4-F	CaccgTGAAGTCTAACTCCCTGAGG
gKlf2-4-R	aaacCCTCAGGGAGTTAGACTTCAc
pX330-gRNA-2	
gKlf2-7-F	CaccgAGGAACAGGCTAGGTTACAG
gKlf2-7-R	aaacCTGTAACCTAGCCTGTTCCTc
Construction of the targ	geting vector
Klf2-5HR-F1	ACAAAAGCTGGAGCTCCACGTAGCCAAAGGGGGCCTTGAACCTAATG
Klf2-5HR-R1	CGTATAATGTATGCTATACGAAGTTATAGGCGGTCAGCACCCTGGACCTT
Klf2-5HR-F2	CGTATAGCATACATTATACGAAGTTATCAGGGAGTTAGACTTCAGGCTGT
Klf2-5HR-R2	GTGGAGTTCTAGAGCGGCCGCGATATCTAACCTAGCCTGTTCCTGAACTC
Detection of upstream re	ecombination (primer I, Fig. 2, 6)
Klf2-5mH-scr1	GCTCAGCGAGCCTATCTTGCCGTCCTTT
Klf2-loxP-F1	CCAAAGTCTAACAACTAGGCCCTCAAG
Detection of the full-le	ength insertion sequence (primer II, Fig. 2, 6)
Klf2-5mH-scr1	GCTCAGCGAGCCTATCTTGCCGTCCTTT
Klf2-3mH-scr2	CCAGCCCTCCACAGCTTCTTAATTATGTC
Detection of downstream	recombination (primer III, Fig. 2)
PGK-R1	CGGGGCTGCTAAAGCGCATGCTCCAGACTG
Klf2-3mH-scr2	CCAGCCCTCCACAGCTTCTTAATTATGTC
Detection of SNPs (Fig.	5)
Klf2-SNP-5mH-F1	CAAGGTAGCTTAAACAAAGATTTCACAGAG
Klf2-SNP-3mH-R1	TGCATCAGAGAGGAATGACATTGAGC