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Peer Review File



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Ginty and colleagues presented a 3D Atlas of skins using multiplexed imaging. The authors 

processed 10 specimens with 26 sequential sections each, and obtained 3D data with 3D 

reconstruction and single-cell segmentation. From these data, the authors suggested an inverse 

correlation between DDB2+ cells and age of donors, as well as a positive correlation between T-

help/T-killer with age. As great potentials of this study, some serious faults prohibit readers to 

understand and validate these results. The specific comments are as follows. 

 

Major comments: 

 

(1). The manuscript was put together poorly with various missing components. The figure legends 

are either simply embedded (Figure 3&5), or completely omitted (Figure 1,2&4, all sup. figures). 

Without these key information, how could reviewers comprehend the results/figures provided? 

 

(2). Methods are not fully described, or missing key information. For example, while authors 

mentioned the segmentation were done with "unsupervised GMM", the ref 5 cited in Methods 

doesn't mention any relevant information. Also, the number of GMM components for each markers 

isn't well-defined, is that always two (positive or negative)? 

 

(3). The codes/scripts the authors provided are not well-annotated. Different methods (Cell 

segmentation, classification, 3D reconstruction) are all referred to a single repository, while no 

further documentation in there to indicate codes/scripts used by different methods. 

 

(4). Though the 3D atlas here could have huge potentials, the shallow sectioning (~130 um) only 

provides limited view of the whole spacemen. Furthermore, all spacemen are relative small (14x12 

mm^2 ~ 47x21 mm^2), the issue with sampling effect might not be neglected. Finally, lacks of 

3D or spatial analysis here makes the use of 3D data obsolete. The main conclusion of this study 

could be derived without 3D or even spatial information, (e.g. flow cytometry of aggregated 

protein measurements). 

 

(5). Following the point (4), the potential overlapped between adjacent sections wasn't addressed 

in this manuscript. How does the segmentation or cell classification avoid counting these 

overlapped cells. How do these methods fuse information from adjacent or nearby sections. It's 

also unclear that if the segmentation and cell classification was done with 3D or 2D data. 

 

Minor comments 

(1). Some figures are incomplete or cut-off (Figure 4A & Figure S4) 

(2). Where is the information of 12 cell types used? 

(3). The skin-companion website (ref 18) isn't accessible unless the login/credential provided. 

(4). In line 442: "The 18-marker panel provided coverage for 9 cell types: epithelial, fibroblast, 

immune cells (macrophage, T helper, T killer, T reg), nerve, myoepithelial, and endothelial cells." 

Why not 12? 

(5). It would be interesting to see the breakdown DDB2+/Ki67+ in each cell types (Figure 4/S4). 

 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript by Ghose, Ju, et al., outlines a workflow for 3D reconstruction and spatial analysis 

of serial tissue sections labelled using multiplex immunohistochemistry. The study examines cell 

phenotyping markers in skin biopsy samples to demonstrate this workflow. Multiplex labelling is a 

powerful tool for investigating tissue structure and changes in disease, and the workflow proposed 

here is a useful addition to the field and will be of interest to a general readership. The interactive 

visualisations are particularly engaging and allow for exploration of this high-content spatial data. 



I have several considerations that I believe the authors should address. 

 

1. Multiplex labelling relies heavily on appropriate controls to provide confidence in the results. The 

authors state that “All antibodies used in this study were subjected to a standardized 

characterization process using a tissue microarray (TMA) and appropriate controls to evaluate the 

specificity and sensitivity of the primary antibody and its dye-conjugated derivative, including the 

cyclic testing of the dye inactivation treatment compared to single staining”. The reference 

provided does not outline the TMA validation process. The authors should provide additional 

description/data/images of their antibody characterisation and controls. 

 

2. It is not clear from the results or methods sections how the microCT images can be used to 

assist the 3D volume reconstruction. Please expand on this. 

 

3. Please provide more detail on the process for illumination correction and autofluorescence 

subtraction. 

 

4. Did autofluorescence vary between sections of a biopsy or between biopsy samples? how does 

this affect the mask for registration? In some tissues, autofluorescence is very high and can 

colocalise with true label signal, meaning subtraction in post-image processing can delete true 

signal. Autofluorescence quenching reagents are often used to mitigate this issue during the 

labelling process, however removing autofluorescence in this way would affect the 3D registration 

method shown in this manuscript. Therefore, it appears that using an autofluorescence mask for 

registration could come at the price of sacrificing true labelling signal in tissues with higher 

autofluorescence. This is a limitation of the method that should be discussed in the context of 

applying the workflow to other tissues. 

 

5. This study examines different regions of the skin from different individuals. The authors state in 

the discussion that anatomical location “significantly influences the thickness of the keratin layer, 

epidermis and dermis, as well as the distribution and density of adnexal structures such as hair 

follicles, sebaceous, apocrine and sweat glands” and that the data was normalised to total volume, 

epidermis volume and endothelial cell count to account for these differences. However, these 

inherent structural differences could affect the response to sun exposure and therefore the results 

presented in this study. An ideal study examining the difference between samples from mild or 

moderate sun exposure in young and old individuals would have compared similar biopsy sites. 

While the primary purpose of this manuscript is obviously to demonstrate the application of the 

workflow, these limitations in the study design should be acknowledged to aid the readers 

interpretation of the data. 

 

6. The discussion should include more acknowledgement of the limitations of a serial section 

reconstruction approach, including issues with tissue deformation, mounting of paraffin sections 

onto the slide and tissue destruction or loss of a section during cyclic labelling processes. How are 

these issues managed in the workflow? 

 

Figures 

 

1. Figure 5 – more description is needed in the caption and the text in the images is very small. 

The interactive visualisations aid the interpretation of this figure immensely and the link should 

perhaps be included in the caption. 

 

2. Supplementary figures S3, S6 and S7 need more descriptive captions to explain the panels. 

 

3. Supplementary figure S4 is hard to read due to low resolution of the image. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors of the study present MATRICS-A a novel workflow for the reconstruction of 3D tissue 

from 2D multiplexing layers and calculation of distances from cells to structures of interest. They 



applied this framework to a dataset of skin sections with samples from various ages and sun 

damage levels. 

 

General comment 

The main concern of this reviewer is the very limited spatial analyses that were performed 

potentially missing out on a lot of interesting connections in their data. Most of the results they 

highlight (cytometric differences) could have been achieved with regular single-cell dissociation-

based technologies. The results do not follow the need of generating spatial 3D maps of human 

tissues (as mentioned in the introduction). The authors of this manuscript presented a very valid 

and useful framework to reconstruct 3D tissues but this is not sufficiently exploited in the 

downstream analyses. The manuscript would gain significant impact if this need would be backed 

up by their results. 

 

Major comments: 

Abstract. 

The results highlighted in the abstract can be obtained with single-cell dissociation techniques (eg, 

scrnaseq, cytof). It is not clear to this reviewer how these results are connected to the need of 

having 3D spatial data. The authors highlight the ability of the framework to calculate cell 

distances but then the results are limited to cytometric comparisons. The abstract would read 

more attractive if the results would highlight the advantage of including 3D spatial data. 

 

Minor: 

Abstract 

Line 58: Please denote the number of samples. 

 

Introduction 

Lines 121-133: Figure 1 legend is integrated into the text which reads confusing. 

 

Results 

Lines 150-152: Please add the rationale behind the selection of cell-type/marker subset from the 

whole table is missing. Are these the more abundant cell types or is there any other reason to 

select specifically those? 

Lines 159: The authors claim that it would have been cumbersome and time-consuming to design 

this study with only deep learning models. However, there are already pre-trained models that 

with little fine tunning provide reasonably good results (see for example StarDist3D: 

https://openaccess.thecvf.com/content_WACV_2020/html/Weigert_Star-

convex_Polyhedra_for_3D_Object_Detection_and_Segmentation_in_Microscopy_WACV_2020_pap

er.html). There are also frameworks to prioritise the images that perform poorly and require better 

annotations 

(https://onlinelibrary.wiley.com/doi/10.1002/cjp2.229?utm_content=buffer3a40d&utm_medium=s

ocial&utm_source=linkedin.com&utm_campaign=buffer). This should be at least introduced in the 

discussion. 

Lines 188-191: The authors claim that their registration approach improves accuracy in a number 

of scenarios. The claim should be supported by results or literature. 
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Detailed Response to the Editor and Reviewers: 
 
Editor Summary:  
While the referees find your work of some interest, they raise concerns about the strength of the novel 
conclusions that can be drawn at this stage. 
 
We appreciate that the issues raised regarding missing information and clarity in the presentation of the 
workflow could potentially be addressed in a revision. However, we feel that the comments from both 
reviewer 1 and 3 that the conclusions from the skin-sections could have been drawn by using more 
conventional methods prevent us from pursuing the paper further. As you can see the reviewers also raise 
lack of certain controls and validation. 
 
We feel that these reservations are sufficiently important as to preclude publication of this study in 
Communications Biology.  
 
Author Response:  
Thank you for the opportunity to submit a substantially revised paper. The paper now provides quantitative 
evidence for the value of 3D data over 2D data. Specifically:  
- We demonstrate that the average distance between immune cells and endothelial cells is roughly half 

in 3D vs 2D (~56 µm vs 108 µm). 
- We quantified 10-70% more T cells within 30 µm of a T helper cell in 3D vs 2D. These differences are 

an important consideration for samples with low immune cell density, as analysis of spatial 
relationships and cell-cell interactions in 2D would be more challenging to accurately quantify.  

- The novel application of immune cell cluster density plots (inspired by 3D geospatial and population 
density plots) clearly illustrates the variations in immune cell density within and across samples.  

- Distance of DNA damage and proliferation markers to the skin surface (shorter distance is a measure 
of cancer risk) did not differ by age or sun exposure. These markers were largely localized the stratum 
basale (the lower layer of the epidermis) and in three cases were found deeper in the dermis and 
associated with hair follicle regions (illustrated by new spatial distance plots). A shorter distance to the 
skin surface would indicate higher risk of skin cancer.  

- Our integrated cell segmentation and 3D reconstruction workflow is unique in that it merges cells that 
partially appear in adjacent sections, which is critical for accurate spatial cell analysis in 3D.  

- MATRICS-A software provides an end-to-end solution for segmentation and classification and is 
available open access, now with updated readme instructions and test data for evaluation.  

- Our updated companion website provides complete details of the data and visualization tools 
Companion Website for “Human Digital Twin: 3D Atlas Reconstruction of Skin and Spatial Mapping of 
Immune Cell Density, Vascular Distance and Effects of Sun Exposure and Aging”. 

- We now provide details on the antibody validation process and address all other issues raised by the 
reviewers (please see below).  
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Reviewer #1 (Remarks to the Author): 
Ginty and colleagues presented a 3D Atlas of skins using multiplexed imaging. The authors processed 10 
specimens with 26 sequential sections each and obtained 3D data with 3D reconstruction and single-cell 
segmentation. From these data, the authors suggested an inverse correlation between DDB2+ cells and 
age of donors, as well as a positive correlation between T-help/T-killer with age. As great potentials of this 
study, some serious faults prohibit readers to understand and validate these results. The specific 
comments are as follows.  
 
- Author response: We appreciate your thoughtful review and insightful comments. We have made a 

concerted effort to address all your concerns.  
 
Major comments: 
 
1. The manuscript was put together poorly with various missing components. The figure legends are 

either simply embedded (Figure 3&5), or completely omitted (Figure 1,2&4, all sup. figures). Without 
these key information, how could reviewers comprehend the results/figures provided? 
 

- Response: We apologize for these omissions. The substantially revised paper now describes the key 
results (not embedded) in text and legends for all main figures, supplementary figures, and tables.  
 

2. Methods are not fully described or missing key information.  
 

- Response: We added details to the Methods section as follows:  
o Antibody validation: Details and links to protocols in protocols.io are now provided for the 

antibody validation process in the Methods (lines 530-560). We have also included two 
images for each antibody from a reference multi-organ tissue array (MTU391, Pantomics), 
which has been consistently used to characterize all antibodies (>500) over the last decade 
and a corresponding example image from skin using the same region of interest for 
comparison (Supp. Fig. S11 A-R).  

o Multiplexed staining and imaging: Additional details and links to the multiplexed staining 
protocols in protocols.io are now provided in the Methods (lines 562-575).  

o Illumination Correction: We now provide a description of the illumination correction 
procedure (also requested by Reviewer 3) in the Methods (lines 577-594). Two citations 
were provided for autofluorescence subtraction (previously described in supporting 
information of Gerdes MJ et al. Highly multiplexed single-cell analysis of formalin-fixed, 
paraffin-embedded cancer tissue. Proc Natl Acad Sci. 2013 Jul 16;110(29):11982-7. doi: 
10.1073/pnas.1300136110 and in Woolfe F, Gerdes M, Bello M, Tao X, Can A. 
Autofluorescence removal by non-negative matrix factorization. IEEE Trans Image Process. 
2011 Apr;20(4):1085-93. doi: 10.1109/TIP.2010.2079810).  

o Image Normalization:  A description of image normalization prior to deep learning-based 
nuclei segmentation and biomarker probability estimation using GMM is now included in 
the Methods (lines 596-604). 

o Annotations for quantifying cell classification accuracy: Now separated out into a 
separate section in Methods (lines 644-648).  
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o 3D reconstruction and merging overlapping cells: the overall description in the Results 
(lines 236-241) and Methods (lines 672-682) has been refined to ensure clarity and 
completeness and details on the method for merging overlapping cells is provided in each 
section.   

o Visualization of immune cell clusters in 3D: a new method has been applied that allows 
visualization of immune cell cluster density in 3D (Methods, lines 754-773). 

 
3. For example, while authors mentioned the segmentation were done with "unsupervised GMM", the 

ref 5 cited in Methods doesn't mention any relevant information. Also, the number of GMM 
components for each markers isn't well-defined, is that always two (positive or negative)?  

 
- Response: The correct citation for GMM approach has now been added to line 199 (Reynolds, D. 

Gaussian Mixture Models. in Encyclopedia of Biometrics (Springer, 2009). Details of GMM component 
definition are now provided in Methods (line 621-625). Specifically, GMM with two clusters was used 
to obtain a probabilistic segmentation of the cell-type and functional markers and background.  Pixels 
with high signal for cell type and functional markers were automatically assigned high probability 
values in one cluster (positive class) and pixels with low signal intensity were assigned high probability 
values in the second cluster (background – negative class). 

 
4. The codes/scripts the authors provided are not well-annotated. Different methods (Cell 

segmentation, classification, 3D reconstruction) are all referred to a single repository, while no 
further documentation in there to indicate codes/scripts used by different methods.  

 
- Response: We have substantially improved software documentation of MATRICS-A. All code can be 

found at https://github.com/hubmapconsortium/MATRICS-A, the docker container/environment to 
run the code can obtained by using docker pull hubmap/gehc:skin and test data for skin region 7 can 
be found at https://zenodo.org/record/7565670#.Y9EoSS-B2-p. There is a corresponding ReadMe file 
that provides context and instructions for the repository’s contents at: 
https://github.com/hubmapconsortium/MATRICS-A/blob/main/README.md. Directions are now 
clearly described in the Methods section under Cell Segmentation and Classification (lines 634-640) 
and 3D Reconstruction (lines 682-688).  

 
 

5. Though the 3D atlas here could have huge potentials, the shallow sectioning (~130 um) only provides 
limited view of the whole specimen. Furthermore, all specimens are relatively small (14x12 mm^2 ~ 
47x21 mm^2), the issue with sampling effect might not be neglected. Finally, lacks of 3D or spatial 
analysis here makes the use of 3D data obsolete. The main conclusion of this study could be derived 
without 3D or even spatial information, (e.g. flow cytometry of aggregated protein measurements).  
 

- Response: Thank you for raising these concerns. While we focused on 26 serial sections, the MATRICS-
A image registration pipeline is not limited to a sectioning thickness or quantity of sections. We can 
also theoretically use the same pipeline for cell segmentation and 3D reconstruction for an expanded 
number of sections (technically there is no limit, other than cost and time).  
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- Regarding the value of 3D over 2D analysis: Given your expert comments, we run additional analyses 
and implemented novel data visualizations which clearly show the value of using 3D over 2D.  This type 
of analysis could not be done with flow cytometry since it would not provide spatial distribution of cells 
within the tissue and in relation to neighboring cells. Specifically:  

o We demonstrate that the average distance between immune cells and endothelial cells is 
roughly half in 3D vs 2D (~56 µm vs 108 µm). 

o We quantified 10-70% more T cells within 30 µm of a T helper cell in 3D vs 2D. These 
differences are an important consideration for samples with low immune cell density, as 
analysis of spatial relationships and cell-cell interactions in 2D would be more challenging 
to accurately quantify.  

o The novel application of immune cell cluster density plots (inspired by 3D geospatial and 
population density plots) clearly illustrates the variations in immune cell density within 
and across samples.  

o Distance of DNA damage and proliferation markers to the skin surface (shorter distance is 
measure of cancer risk) did not differ by age or sun exposure. These markers were largely 
localized the stratum basale (the lower layer of the epidermis) and in three cases were 
found deeper in the dermis and associated with hair follicle regions (illustrated by new 
spatial distance plots. A shorter distance to the skin surface would indicate higher risk of 
skin cancer.  

- Specific edits are as follows:  
o Lines 291-303: T cell density is lower in 2D vs 3D volumes: We then compared immune cell 

density in 2D vs 3D as 1) the average number of T cells within 30 µm of a T helper cell (Figure 
4A) and 2) the maximum number of T cells within 30 µm of a T helper cell (Figure 4B). There 
was wide variation in both measurements across all samples due to heterogeneous cell density 
in each section/sample.  For example, regions 1 and 2 had similar maximum number of 
immune cells (n=3) within 30 µm of a T helper cell in 2D and 3D, region 7 had a maximum of 
11 cells in 3D, and just 3 cells in 2D.  Overall, we quantified 10-70% more T cells within 30 µm 
of a T helper cell in 3D vs 2D.  This difference is important for samples with low immune cell 
density, where analysis of spatial relationships and cell-cell interactions in 2D would be more 
challenging to accurately quantify. The immune cell cluster density plots in Figs. 4C-E illustrate 
three contrasting examples of skin regions with low (region 1), medium-high (region 9) and 
high (region 12) immune cell cluster density in 3D, respectively. The low and high examples 
may be attributed to the health/therapy status of the donors who were noted as having 
rheumatoid arthritis (region 1) and systemic lupus erythematosus (region 12).  

o Lines 310-319: Shorter distances between immune cells and endothelial cells in 3D vs 2D. 
There were significant differences between 2D and 3D in the average distance of the nearest 
endothelial cell to immune cells (macrophages, T helper, T killer and T regs), with distances in 
3D typically much shorter than 2D (~56 µm vs 108 µm on average, (p<0.0001) (Fig. 5A).  
Distances (in 3D) between each immune cell type and endothelial cells are also shown as violin 
plots and grouped by age and sun exposure for each donor/region in Fig. 5B. There was a trend 
for higher counts of T killer cells within 100 µm of endothelial cells in younger donors (corr=-
0.73, adjusted p-value=0.08; see Supp. Fig S7iii). The implications of this are unclear without 
further validation in a larger group of subjects but may reflect age-related differences in 
adaptive immune response. An example of a region with higher total immune cell counts 
(including T killer) within 100 µm of endothelial cells is shown in Fig. 5C.    
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o Lines 321-342: No differences in spatial location of sun damage/proliferation cell markers 
age or sun exposure. We quantified distance of p53, Ki67 and DDB2 positive keratinocytes to 
the skin surface using two different epidermis masks: 1) using AE1 cytokeratin cocktail, which 
was more specific for the lower epidermis/stratum basal layer and hair follicular units; and 2) 
CK26 cocktail, which stained the entire epidermis, as well as hair follicular units (example 
images comparing the staining characteristics are shown in Supp. Fig. S11B). Due to non-
uniformity of the skin surface, the spatial cell distance analysis was conducted using a hybrid 
of 3D and 2D data, whereby the distances of the 3D reconstructed cells to the skin surface were 
calculated using the nearest 2D tissue section. We found that most Ki67 and p53 positive 
keratinocytes were largely localized to the AE1+/stratum basale region (where regenerating 
keratinocyte stem cells are localized48). There were no significant differences in distance of p53, 
DDB2 and Ki67 positive keratinocytes to the skin surface when analyzed by sun exposure or 
aging. Notably, there were three cases (regions 1, 2 and 9) that had a very wide spatial 
distribution of p53, Ki67 positive cells (up to 1600 μm from the skin surface (Supp. Fig. S8A-C). 
In each case, this was due a hair follicular unit extending deeper in the dermis with a high 
number of p53 and Ki67 positive cells. The number of p53 positive cells has been shown to 
extend deeper into the hair follicles and glands in older patients49 (these samples were from 
donors aged 52-72 years, however we did not have matched younger patients for comparison). 
In all other cases, the average distance of p53 and Ki67 cells from the skin surface was 155 µm 
and 143 µm, respectively.  Total Ki67 and p53 positive cell count was not significantly 
correlated with age or sun exposure (Supp. Fig. S9 

 
6. The potential overlapped between adjacent sections wasn't addressed in this manuscript. How does 

the segmentation or cell classification avoid counting these overlapped cells.  
 

- Response: Excellent point. The revised paper now presents a details in Methods (lines 671-682): Cells 
overlapping in 3D in adjacent sections are automatically connected and considered as a single entity 
in 3D using ITK’s 3D connected filter38. ITK is an open source software widely used for both 2D and 3D 
medical image analysis. ITK’s 3D connected filter is used to merge binary labels in 3D based on overlap 
of the labels in 3D (adjacent sections post 3D reconstruction). While the Watershed algorithm is often 
used for merging labels in 3D, it requires multiple parameters (diffusion, gradient, thresholding) to be 
tuned manually for a dataset that may not generalize in a large dataset like ours. This would result in 
merging of un-related cells (due to diffusion parameter) or cell dropping (due to gradient threshold 
parameter). Instead, a connected component filter has been used to merge segmented cells that are 
locally connected in 2D to create a single unit for each cell. Here, we extend that framework to 3D. No 
manual tuning of the parameters is required for this connected component filter approach, and ITK’s 
3D connected filters are routinely used in medical image analysis. 

- Also summarized in Results - Line 237-241 - We use ITK’s 3D connected component image filter to 
merge overlapping cells and classify cells in 3D39,40.  Connected component image filter has historically 
been used in merging segmentations in 3D41–43 and for refining cell segmentation in 2D44. To the best 
of our knowledge, this is the first time a 3D connected component has been used to fuse overlapping 
cells in 3D in serial histological sections. 

 
7. How do these methods fuse information from adjacent or nearby sections.  
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- Response: Thank you for asking this critical question. As explained in #6 above, we use a 3D connected 

component filter to fuse overlapping cells in 3D. Cells are first segmented and classified into different 
cell types 2D. The 2D segmented cells are then reconstructed in 3D using the transformation map 
generated in the registration framework. Cells overlapping in 3D in adjacent sections are automatically 
connected and considered as a single entity in 3D using ITK’s 3D connected filter (as described above 
and updated in Methods (lines 671-682).  
 

8. It's also unclear that if the segmentation and cell classification was done with 3D or 2D data.  
 
- Response: Thank you for your feedback. We have now added details to further clarify which steps were 

done in 2D versus 3D. We first segmented and classified cells in 2D and compare the segmentation to 
manual annotations to quantify sensitivity and specificity and for QC. We then proceeded to 3D 
reconstruction of the 2D segmented cells using the 3D registration framework and further refined cell 
segmentation in 3D using 3D connected component filter (ITK). Please refer to Line 194-196 for 
clarification: Our method provides an integrated workflow for 2D segmentation and classification of 
cell types from the multiplexed images, followed by automated 3D reconstruction.  

 
Minor comments 
1. Some figures are incomplete or cut-off (Figure 4A & Figure S4)  
 
- Response: All figures have been checked for quality and updated and detailed legends have been 

included throughout. Figure 4A (now Figure 6A) has been expanded to accommodate the full range 
of data. The average distance of p53 and Ki67 positive cells was 155 µm and 143 µm, from the skin 
surface, however there was a wider distance for 3 donors who also had positive cells in hair follicles, 
which were located up to 1600 µm from the skin surface, in the dermis regions. A link to further 
interactive visualization is available at https://hubmapconsortium.github.io/vccf-visualization-
release/html/epidermis_entire/violin_damage_epidermis.html 

- Figure S4 was intended to be a limited snapshot of the ASCT+B skin report as the full report would 
require multiple letter size pages. A link to the skin report is now provided so that readers can go 
directly there to review the entire report:  ASCT+B Skin Report.  

 
2. Where is the information of 12 cell types used? 

 
- Response: We have now included a table (Supp. Table S2) which provides a detailed breakdown of 

markers and cell types.  After consultation with a dermpathologist expert and literature, we increased 
the number of cell types to 14 because the pan cytokeratin cocktails that we used (CK26 (KRT1, KRT5, 
KRT6, KRT8) and AE1 (KRT10, KRT14, KRT15, KRT16 and KRT19) have broader cell coverage. However, 
additional markers will be added in future work to increase specificity (e.g., keratin 10 for granular 
keratinocytes). Additional details have now been provided in the results: Construction of a Skin 
Anatomical Structure and Cell Type + Biomarker (ASCT+B) Table, line 176-184) and Methods 
(Antibody validation, lines 530-560) and a new table has been added that more clearly shows the 
alignment between the biomarkers and cell types that were included in this study (Supplementary 
Table S2).  
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3. The skin-companion website (ref 18) isn't accessible unless the login/credential provided. 

 
- Response: Unfortunately, this reference was for the google doc version which was password protected. 

We have now updated the link to the published/public facing version: Companion Website for “Human 
Digital Twin: 3D Atlas Reconstruction of Skin and Spatial Mapping of Immune Cell Density, Vascular 
Distance and Effects of Sun Exposure and Aging” 
 

4. In line 442: "The 18-marker panel provided coverage for 9 cell types: epithelial, fibroblast, immune 
cells (macrophage, T helper, T killer, T reg), nerve, myoepithelial, and endothelial cells." Why not 12? 
 

- Response: This has now been corrected. As explained above, after consultation with a Dermpathologist 
expert and literature, we increased the number of cell types to 14 because the pan cytokeratin cocktails 
that we used (CK26 (KRT1, KRT5, KRT6, KRT8) and AE1 (KRT10, KRT14, KRT15, KRT16 and KRT19) have 
broader cell coverage. However, additional markers will be added in future work to increase specificity 
(e.g., keratin 10 for granular keratinocytes). Additional details have now been provided in the results: 
Construction of a Skin Anatomical Structure and Cell Type + Biomarker (ASCT+B) Table, line 176-184) 
and Methods (Antibody validation, lines 530-560) and a new table has been added that more clearly 
shows the alignment between the biomarkers and cell types that were included in this study 
(Supplementary Table S2). 

 
5. It would be interesting to see the breakdown DDB2+/Ki67+ in each cell types (Figure 4/S4).  

 
- Response: Thank you very much for the suggestion. We agree that this would be very interesting, and 

we plan to incorporate into our follow-up analysis with a larger number of samples.  
 
Reviewer #2 (Remarks to the Author): 
 
The manuscript by Ghose, Ju, et al., outlines a workflow for 3D reconstruction and spatial analysis of serial 
tissue sections labelled using multiplex immunohistochemistry. The study examines cell phenotyping 
markers in skin biopsy samples to demonstrate this workflow. Multiplex labelling is a powerful tool for 
investigating tissue structure and changes in disease, and the workflow proposed here is a useful addition 
to the field and will be of interest to a general readership. The interactive visualisations are particularly 
engaging and allow for exploration of this high-content spatial data. I have several considerations that I 
believe the authors should address. 
 
1. Multiplex labelling relies heavily on appropriate controls to provide confidence in the results. The 

authors state that “All antibodies used in this study were subjected to a standardized characterization 
process using a tissue microarray (TMA) and appropriate controls to evaluate the specificity and 
sensitivity of the primary antibody and its dye-conjugated derivative, including the cyclic testing of the 
dye inactivation treatment compared to single staining”. The reference provided does not outline the 
TMA validation process. The authors should provide additional description/data/images of their 
antibody characterisation and controls. 
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- Response:    

o Antibody validation: Thank you for the helpful feedback. Details and links to protocols in 
protocols.io now provided for the antibody validation process in the Methods (lines 530-
560). We have also included two images for each antibody from a reference multi-organ 
tissue array (MTU391, Pantomics), which has been consistently to characterize all 
antibodies (>500) over the last decade and a corresponding example image from skin using 
the same region of interest for comparison (Supp. Fig. S11 A-R). 
 

2. It is not clear from the results or methods sections how the microCT images can be used to assist the 
3D volume reconstruction. Please expand on this. 

 
- Response: Thank you for highlighting this gap. In the absence of an external 3D reference, 2D to 3D 

reconstruction suffers from alignment problem often referred to as “banana effect” (where there is a 
straightening of curved structures during registration).  Hence, we obtain 3D CT prior to sectioning 
and use that as an external reference for our 3D reconstruction method. We now describe in the 
Introduction and discuss in more detail in the Discussion:  

- Introduction (Lines 124-132): In general, reconstruction of 3D volumes from 2D serial sections is a 
complex procedure and can suffer from the “banana effect” (where curved structures are incorrectly 
straightened during image registration) in absence of external reference structures20,21.  Further, the 
3D reconstruction process tends to be computationally slow and requires significant manual 
intervention to ensure robust alignment, which is essential for accurate 3D spatial cell analysis. To 
address these challenges, we have developed an automated, reproducible workflow (Multiplexed 
Image Three-D Reconstruction and Integrated Cell Spatial - Analysis - MATRICS-A) for 3D reconstruction 
of highly multiplexed tissue sections. Compared to previous 3D reconstruction methods14–17, our 
approach is calibrated using micro CT images of the formalin fixed block, thus improving 3D 
reconstruction accuracy (and reducing the “banana effect”). 

-  Discussion (lines 398-407): As described earlier, one limitation of 3D reconstruction of tissue sections 
has been the introduction of the “banana effect” which erroneously straightens curved anatomical 
structures during registration. Micro CT imaging of the tissue block prior to sectioning, provides a 
reference volume to which the 3D reconstructed volume of the skin tissue and the cells are registered. 
A similar approach has also been successfully applied for whole human brains using MRI, blockface 
photography (to bridge the gap between MRI and histology) and thick sequential histological brain 
sections (25 µm thick)17.   

 
3. Please provide more detail on the process for illumination correction and autofluorescence 

subtraction. 
o Response: Illumination Correction: We now provide a description of the illumination correction 

procedure in the Methods (lines 577-594). Two citations were provided for autofluorescence 
subtraction (provided in supporting information of Gerdes MJ et al. Highly multiplexed single-cell 
analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Natl Acad Sci. 2013 Jul 
16;110(29):11982-7. doi: 10.1073/pnas.1300136110 and in Woolfe F, Gerdes M, Bello M, Tao X, Can 
A. Autofluorescence removal by non-negative matrix factorization. IEEE Trans Image Process. 2011 
Apr;20(4):1085-93. doi: 10.1109/TIP.2010.2079810.  
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4. Did autofluorescence vary between sections of a biopsy or between biopsy samples? how does this 
affect the mask for registration? In some tissues, autofluorescence is very high and can co-localize 
with true label signal, meaning subtraction in post-image processing can delete true signal. 
Autofluorescence quenching reagents are often used to mitigate this issue during the labelling 
process, however removing autofluorescence in this way would affect the 3D registration method 
shown in this manuscript. Therefore, it appears that using an autofluorescence mask for registration 
could come at the price of sacrificing true labelling signal in tissues with higher autofluorescence. 
This is a limitation of the method that should be discussed in the context of applying the workflow to 
other tissues. 

 
- Response:  Thank you for raising this excellent point. We use Otsu thresholding to segregate 

foreground and background AF signal. Otsu thresholding uses intra class variance computed from 
image histogram to set the thresholds for the background and the foreground. Hence while the AF 
signal distribution may change from one serial section to another, the threshold is set based on intra 
class variance and is automatically adjusted from one serial section to another to maximize the 
separation of the background and the foreground. Additional details and clarification have now been 
added to Methods (lines 650-667). 

- To address the valid point about quenching methods for AF and colocalization of AF with label signal, 
none of our samples underwent quenching to reduce signal and all AF images used for reconstruction 
were unstained (i.e., the image is taken prior to any marker staining), hence AF-based registration is 
independent of biomarker signal or signal variations associated with staining. This has now been 
clarified in the results section (lines 229-231). The use of quenching is highlighted in the discussion as 
a consideration for study design in the Discussion (lines 388-392).  

 
5. This study examines different regions of the skin from different individuals. The authors state in the 

discussion that anatomical location “significantly influences the thickness of the keratin layer, 
epidermis and dermis, as well as the distribution and density of adnexal structures such as hair 
follicles, sebaceous, apocrine and sweat glands” and that the data was normalised to total volume, 
epidermis volume and endothelial cell count to account for these differences. However, these inherent 
structural differences could affect the response to sun exposure and therefore the results presented 
in this study. An ideal study examining the difference between samples from mild or moderate sun 
exposure in young and old individuals would have compared similar biopsy sites. While the primary 
purpose of this manuscript is obviously to demonstrate the application of the workflow, these 
limitations in the study design should be acknowledged to aid the readers interpretation of the data. 

 
- Response: We agree with the reviewer and have more clearly highlighted this limitation in the 

Discussion (lines 425-431): One important consideration when interpreting volumetric immune cell 
counts is anatomical location, which significantly influences the thickness of keratin layer, epidermis 
and dermis, as well as the distribution and density of adnexal structures such as hair follicles, which 
are significantly exposed to the sun when compared to sites such as trunk, medial aspect of extremities 
(inner thigh, arm, etc.) and plantar foot (sole), leading to marked differences in the amount of 
cumulative UV exposure and skin damage. Partially addressing this, our samples were collected from 
across the anatomy, including arms, legs, abdomen, and scalp and normalized for volume and 
endothelial cell count to account for sample-to-sample differences. However, an ideal study design 
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would be to prospectively collect at least two distinct anatomical samples from the same donor and 
expand racial diversity, which is planned as part of future efforts on HuBMAP.  

 
6. The discussion should include more acknowledgement of the limitations of a serial section 

reconstruction approach, including issues with tissue deformation, mounting of paraffin sections onto 
the slide and tissue destruction or loss of a section during cyclic labelling processes. How are these 
issues managed in the workflow? 

 
- Response:  We appreciate the feedback and have included the following guidance and 

recommendations on experimental design considerations. Discussion lines 373-396: There are several 
experimental design factors to consider when planning 3D reconstruction of serial sections using 
multiplexed immunofluorescence images. For greatest efficiency (cost/time), we embedded 12 
samples in a single paraffin block, which also allowed consistent staining and imaging across all 
samples. Although there is some trade off in terms of reduced spatial cell heterogeneity, in this 
instance, this was offset by having a diverse range of samples from a wide age range and sun exposure 
effects and anatomical location. The blocks were cut into 100 x 5 µm sections and 26 of the highest 
quality sections were down selected based on correct placement on the slide and no visual 
imperfections such as tears or missing tissue. This is important for multiplexed imaging processes 
where the coverslip is removed between each staining round and may result in damage to the tissue 
(in our experience, if tissue loss occurs, it typically takes place in the first 1-3 rounds of staining, and 
especially if samples have small tears due to fragile nature or sectioning). Use of Superfrost™ slides is 
an important mitigation against tissue loss. More recent commercial options for multiplexing include 
the use of a flow cell or coverslip-free format, hence tissue loss may be less of a concern for future 
work. Serial sections were all stained in a single batch with well characterized antibodies, providing 
high quality, consistent images. The AF images that were used for 3D reconstruction were all taken 
prior to biomarker staining, providing a “clean” AF image with no colocalization of stained biomarker 
signal. Quenching methods are sometimes used to reduce signal in high AF tissues (e.g. Sudan black B 
treatment has been reported to reduce AF signal by 60-95% in pancreatic tissue52), however we did 
not use quenching (background is imaged separately and subtracted from true biomarker signal) and 
further evaluation is needed to determine if quenching would negatively affect this AF-based 
registration workflow. Although there is inherent variation in AF signal from section to section or from 
sample to sample, we address this using the Otsu thresholding approach, which uses intra class 
variance to set the AF threshold for each sample/slide. The AF threshold is automatically adjusted from 
one serial section to another to maximize the separation of the background and the foreground.  

 
- To further mitigate against section to section variability, we also address the benefits of using micro 

CT in providing an external reference for 3D reconstruction: Discussion lines 404-413: Posterior 
registration/alignment of the 3D reconstructed volumes to micro CT images is valuable when there is 
deformation and/or wear and tear in the tissue samples during the cyclic staining process. The co-
registration maps microfeatures (e.g., cell types) to macro imaging features, and compared to 
landmark-constrained 3D histological imaging53, minimal manual intervention is required for accurate 
registration and reconstruction of the 3D volume. Within our workflow, a single slide from the entire 
volume is identified manually based on tissue quality as the reference image; the rest of the process 
for registration and 3D reconstruction is completely automatic. Compared to image similarity-based 
alignment14,40, automatic block correspondences is used for initial affine alignment.  Use of block 
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correspondences improves registration speed compared to image similarity-based alignment 
methods38,40 and also accounts for local deformations that may happen during the staining and image 
acquisition process.   

 
7. Figure 5 – more description is needed in the caption and the text in the images is very small. The 

interactive visualisations aid the interpretation of this figure immensely and the link should perhaps 
be included in the caption. 

 
- Response: additional descriptions have been provided for all figures, including the links to all the 

interactive visualizations.  
 
8. Supplementary figures S3, S6 and S7 need more descriptive captions to explain the panels. 

 
o Response: Additional information has been provided to the captions of these figures (now Supp Figs 

S4 (previously S3) and S5A and B (previously S6 and S7).  
 

9.  Supplementary figure S4 is hard to read due to low resolution of the image. 
 

o Response: This figure is now Supp. Fig S3 and has been replaced with a higher resolution image and 
link to the complete ASCT+B reporter for skin - ASCT+B Skin Report 

 

Reviewer #3 (Remarks to the Author): 
 
The authors of the study present MATRICS-A a novel workflow for the reconstruction of 3D tissue from 
2D multiplexing layers and calculation of distances from cells to structures of interest. They applied this 
framework to a dataset of skin sections with samples from various ages and sun damage levels.  
 
General comment 
 

1. The main concern of this reviewer is the very limited spatial analyses that were performed potentially 
missing out on a lot of interesting connections in their data. Most of the results they highlight 
(cytometric differences) could have been achieved with regular single-cell dissociation-based 
technologies. The results do not follow the need of generating spatial 3D maps of human tissues (as 
mentioned in the introduction). The authors of this manuscript presented a very valid and useful 
framework to reconstruct 3D tissues but this is not sufficiently exploited in the downstream analyses. 
The manuscript would gain significant impact if this need would be backed up by their results. 

 
- Response: We appreciate this expert feedback. We conducted additional analysis to highlight 

important differences between 2D and 3D and developed an additional novel cluster density plot to 
highlight cell density in 3D. This type of analysis could not be done with flow cytometry since that 
technology platform would not provide spatial distribution of cells within the tissue. The key new 
findings include the following:    

o We demonstrate that the average distance between immune cells and endothelial cells is 
roughly half in 3D vs 2D (~56 µm vs 108 µm). 
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o We quantified 10-70% more T cells within 30 µm of a T helper cell in 3D vs 2D. These 
differences are an important consideration for samples with low immune cell density, as 
analysis of spatial relationships and cell-cell interactions in 2D would be more challenging 
to accurately quantify.  

o The novel application of immune cell cluster density plots (inspired by 3D geospatial and 
population density plots) clearly illustrates the variations in immune cell density within 
and across samples.  

o Distance of DNA damage and proliferation markers to the skin surface (shorter distance is 
measure of cancer risk) did not differ by age or sun exposure. These markers were largely 
localized the stratum basale (the lower layer of the epidermis) and in three cases were 
found deeper in the dermis and associated with hair follicle regions (illustrated by new 
spatial distance plots (Supp Fig. 8A-C). A shorter distance to the skin surface would 
indicate higher risk of skin cancer.  

- Specific line edits are as follows:  
o Lines 291-303: T cell density is lower in 2D vs 3D volumes: We then compared immune 

cell density in 2D vs 3D as 1) the average number of T cells within 30 µm of a T helper cell 
(Figure 4A) and 2) the maximum number of T cells within 30 µm of a T helper cell (Figure 
4B). There was wide variation in both measurements across all samples due to 
heterogeneous cell density in each section/sample.  For example, regions 1 and 2 had 
similar maximum number of immune cells (n=3) within 30 µm of a T helper cell in 2D and 
3D, region 7 had a maximum of 11 cells in 3D, and just 3 cells in 2D.  Overall, we quantified 
10-70% more T cells within 30 µm of a T helper cell in 3D vs 2D.  This difference is important 
for samples with low immune cell density, where analysis of spatial relationships and cell-
cell interactions in 2D would be more challenging to accurately quantify. The immune cell 
cluster density plots in Figs. 4C-E illustrate three contrasting examples of skin regions with 
low (region 1), medium-high (region 9) and high (region 12) immune cell cluster density in 
3D, respectively. The low and high examples may be attributed to the health/therapy 
status of the donors who were noted as having rheumatoid arthritis (region 1) and 
systemic lupus erythematosus (region 12).  

o Lines 310-319: Shorter distances between immune cells and endothelial cells in 3D vs 2D. 
There were significant differences between 2D and 3D in the average distance of the 
nearest endothelial cell to immune cells (macrophages, T helper, T killer and T regs), with 
distances in 3D typically much shorter than 2D (~56 µm vs 108 µm on average, (p<0.0001) 
(Fig. 5A).  Distances (in 3D) between each immune cell type and endothelial cells are also 
shown as violin plots and grouped by age and sun exposure for each donor/region in Fig. 
5B. There was a trend for higher counts of T killer cells within 100 µm of endothelial cells 
in younger donors (corr=-0.73, adjusted p-value=0.08; see Supp. Fig S7iii). The 
implications of this are unclear without further validation in a larger group of subjects but 
may reflect age-related differences in adaptive immune response. An example of a region 
with higher total immune cell counts (including T killer) within 100 µm of endothelial cells 
is shown in Fig. 5C.    

o Lines 321-342: No differences in spatial location of sun damage/proliferation cell 
markers age or sun exposure. We quantified distance of p53, Ki67 and DDB2 positive 
keratinocytes to the skin surface using two different epidermis masks: 1) using AE1 
cytokeratin cocktail, which was more specific for the lower epidermis/stratum basal layer 
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and hair follicular units; and 2) CK26 cocktail, which stained the entire epidermis, as well 
as hair follicular units (example images comparing the staining characteristics are shown 
in Supp. Fig. S11B). Due to non-uniformity of the skin surface, the spatial cell distance 
analysis was conducted using a hybrid of 3D and 2D data, whereby the distances of the 3D 
reconstructed cells to the skin surface were calculated using the nearest 2D tissue section. 
We found that most Ki67 and p53 positive keratinocytes were largely localized to the 
AE1+/stratum basale region (where regenerating keratinocyte stem cells are localized48). 
There were no significant differences in distance of p53, DDB2 and Ki67 positive 
keratinocytes to the skin surface when analyzed by sun exposure or aging. Notably, there 
were three cases (regions 1, 2 and 9) that had a very wide spatial distribution of p53, Ki67 
positive cells (up to 1600 μm from the skin surface (Supp. Fig. S8A-C). In each case, this 
was due a hair follicular unit extending deeper in the dermis with a high number of p53 
and Ki67 positive cells. The number of p53 positive cells has been shown to extend deeper 
into the hair follicles and glands in older patients49 (these samples were from donors aged 
52-72 years, however we did not have matched younger patients for comparison). In all 
other cases, the average distance of p53 and Ki67 cells from the skin surface was 155 µm 
and 143 µm, respectively.  Total Ki67 and p53 positive cell count was not significantly 
correlated with age or sun exposure (Supp. Fig. S9 

 
Major comments: 
Abstract.  
1. The results highlighted in the abstract can be obtained with single-cell dissociation techniques (eg, 

scrnaseq, cytof). It is not clear to this reviewer how these results are connected to the need of having 
3D spatial data. The authors highlight the ability of the framework to calculate cell distances but then 
the results are limited to cytometric comparisons. The abstract would read more attractive if the 
results would highlight the advantage of including 3D spatial data. 

 
- Response: We now have updated the abstract to highlight our updated spatial analysis and differences 

in 2D and 3D.  
 
Minor: 
Abstract 
2. Line 58: Please denote the number of samples. 
 
- Response: this has now been updated to state 26 serial sections (now line 60).  
 
3. Introduction 

Lines 121-133: Figure 1 legend is integrated into the text which reads confusing. 
 

- Response: This text has now been removed.  
 
Results 
4. Lines 150-152: Please add the rationale behind the selection of cell-type/marker subset from the 

whole table is missing. Are these the more abundant cell types or is there any other reason to select 
specifically those? 
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- Response: the rationale for marker selection has been updated and was based on both providing 

coverage for the major cell types and biomarkers that have been documented in the skin ASCT+B 
tables. It was also directed by the types of analysis we sought to undertake:  

o Lines 169-177: Here we focus on a subset of the skin ASCT+B table comprising of 14 cell 
types and/or anatomical structures spanning the epidermis (stratum granulosum, 
stratum spinosum and stratum basale) keratinocytes and dermis (glandular structures, 
fibroblasts, macrophages, T helper cells, T killer cells, T regs, nerve fibers and endothelial 
cells), as well as markers of DNA damage (p53), DNA repair (DDB2) and cell proliferation 
(Ki67) (summarized in Supp. Table S2). The rationale for choosing these biomarkers was 
to quantify (1) immune cell density in 3D vs 2D; (2) demonstrate 3D spatial relationships 
between immune cells and nearest endothelial cells; (3) measure the spatial cellular 
effects of aging and sun exposure on epidermis cells.  Antibody information for each 
target protein is shown in Supp. Table S3. 

 
6. Lines 159: The authors claim that it would have been cumbersome and time-consuming to design 

this study with only deep learning models. However, there are already pre-trained models that 
with little fine tuning provide reasonably good results (see for example StarDist3D: 
https://openaccess.thecvf.com/content_WACV_2020/html/Weigert_Star-
convex_Polyhedra_for_3D_Object_Detection_and_Segmentation_in_Microscopy_WACV_2020_
paper.html). There are also frameworks to prioritise the images that perform poorly and require 
better annotations 
(https://onlinelibrary.wiley.com/doi/10.1002/cjp2.229?utm_content=buffer3a40d&utm_mediu
m=social&utm_source=linkedin.com&utm_campaign=buffer). This should be at least introduced 
in the discussion. 

 
o Response: This is an excellent point and we have now provided more rationale for why 

existing pre-trained models were not used in the current study (see highlighted text 
below). Results (lines 194-215): Our method provides an integrated workflow for 2D 
segmentation and classification of cell types from the multiplexed images, followed by 
automated 3D reconstruction (see Methods and Supp. Figs. 5A and B). Cell type 
classification is not usually integrated into segmentation workflows, and manual 
thresholding/gating of biomarker signal or clustering of segmented cells is often used, 
which is manual and prone to errors. We developed a hybrid supervised and unsupervised 
segmentation/classification model where a supervised DL model was first used for 2D 
DAPI/nuclei segmentation, followed by unsupervised Gaussian mixture models (GMM)30 
for probabilistic segmentation/classification of individual cell-type (i.e., epithelial, 
immune) and DNA damage/repair and proliferation markers (i.e., p53, DDB2, Ki67). GMM 
is an excellent tool for simultaneous image normalization and detecting relative changes 
in biomarker intensity, allowing robust classification in each section. Combining DL and 
GMM provides a generalizable solution for cell segmentation and classification that works 
for a large datasets of whole slide images. While there are several open source options 
available for cell segmentation (e.g., CellSeg31, Cell Profiler32 or StarDist3D33), these 
would have been relatively time consuming to implement here given the large amount 
of data for 26 serial sections (approximately 15 GB and ~40 stitched FOV per sample 
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(0.832 mm x 0.702 mm/FOV). Typically, thousands of manually annotated cells are 
required to develop a DL-based segmentation model, and manual annotation introduces 
inter- and intra-rater variability. For example, development of the CellSeg model 
required 29,000+ manually segmented nuclei to build a DAPI-based nuclei segmentation 
model31.  Our hybrid approach is faster and more generalizable for handling larger tissue 
images, and it does not rely on manual tuning of image thresholding values, image 
normalization and morphological operations (median filtering, difference of Gaussian) 
and watershed algorithm parameters (such as gradient thresholding and diffusion 
values). 

 
 

7. Lines 188-191: The authors claim that their registration approach improves accuracy in a number 
of scenarios. The claim should be supported by results or literature. 

 
o Response: Additional references have been included to support this point.  Discussion 

(lines 410-413): Compared to image similarity-based alignment14,40, automatic block 
correspondences is used for initial affine alignment.  Use of block correspondences 
improves registration speed compared to image similarity-based alignment methods38,40 
and also accounts for local deformations that may happen during the staining and image 
acquisition process.   

 
 

 
 
 
 

 
 
 
 



REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

In this revised manuscript entitled "<i>Human Digital Twin: 3D Atlas Reconstruction of Skin and 

Spatial Mapping of Immune Cell Density, Vascular Distance and Effects of Sun Exposure and 

Aging</i>", Ginty and colleagues presented a 3D view of skin tissue with single-cell resolution 

using multiplexed imaging (MxIF). I'm pleased see the revised manuscript addressed most of my 

previous concerns. The authors included detailed descriptions of methods for 3D reconstruction, 

registration and segmentation. Furthermore, the new results on 3D spatial analysis is quite 

interesting. As far as I'm aware of, this analysis hasn't been done in tissue samples. Excited to see 

the revised version and looking forward to more coming from this group. 

 

Though it might be not within the scope of the current study, but it would be good if the authors 

can comment or discuss about the theoretical limit(s) of 2D versus 3D spatial analysis. 

Furthermore, since the registration errors would affect the results presented in the 3D analysis, 

the authors should at least comments or discuss the potential caveats as well as the future 

directions/solutions of the issue. 

 

Minor comments 

(1). In line 221: the section size 1cm x 5um --> 1cm^2 x 5um? 

(2). In Line 270: the url isn't correct and should be hubmapconsortium.github.io/vccf-

visualization-2022/ 

 

 

Reviewer #2 (Remarks to the Author): 

 

Thank you for addressing all my comments with detailed responses. 

 

The addition of data comparing spatial analysis of immune and endothelial cells in 2D vs 3D 

strengthens the manuscript substantially. However, more discussion of this concept would be 

valuable. Specifically, discussing the value that 3D analysis offers the field of human tissue 

biology. Do you think 2D analysis underestimates the proximity of cell types in other tissues? How 

will 3D analysis change/improve/contribute to human tissue studies in the future? 

The discussion has missed the opportunity to explain why the field of human tissue biology should 

invest time and effort into conducting 3D spatial analysis. 


	Title: 3D reconstruction of skin and spatial mapping of immune cell density, vascular distance and effects of sun exposure and aging.


