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Supplementary A. Transfer Learning for Mild Cognitive Impairment (MCI) Conversion Pre-
diction
Due to the high correlation between Alzheimer’s disease (AD) diagnosis and MCI conversion prediction, the
more challenging MCI conversion prediction task was aided by knowledge learned from subjects with AD
and normal control (NC). To confirm the effect of transfer learning, we compared two types of models for the
MCI conversion prediction task: those trained from scratch and those trained through a transfer learning
strategy using parameter initialization with the AD diagnostic model. For each experimental setting (from
scratch vs. transfer learning), we trained models based on the BarinBagNet (w/o position-based gating
branch) and PG-BrainBagNet (w/ position-based gating branch). The result is described in Table S.1. We
observed that all models obtained through transfer learning had better classification performance in terms
of area under the receiver operating characteristic (AUROC) than models trained from scratch.

Table S.1. Effectiveness of transfer learning in MCI conversion prediction tasks (progressive MCI vs. stable
MCI) by comparing the five-fold classification accuracy (AUROC).

Model Learning from scratch Transfer learning

ACC (AUROC) ACC (AUROC)

BrainBagNet
Patch 9 0.635 (0.708) 0.643 (0.716)
Patch 17 0.628 (0.702) 0.655 (0.716)
Patch 25 0.635 (0.691) 0.675 (0.727)

(w/o position-based gating branch) Patch 41 0.644 (0.704) 0.691 (0.751)
Patch 57 0.643 (0.731) 0.683 (0.749)

PG-BrainBagNet
Patch 9 0.690 (0.761) 0.715 (0.773)
Patch 17 0.682 (0.748) 0.697 (0.763)
Patch 25 0.671 (0.739) 0.691 (0.753)

(w/ position-based gating branch) Patch 41 0.682 (0.737) 0.695 (0.755)
Patch 57 0.690 (0.735) 0.681 (0.755)
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Supplementary B. Jointly Learning Discriminative Brain Regions
Previous studies used predetermine brain regions to extract patches before learning patch-level feature rep-
resentation. This problem could have been effectively mitigated by our proposed framework, jointly learning
for discriminative brain-region localization and brain disease prediction in an end-to-end manner. In Fig.
S.1, the changes of the localization results by learning epoch have been shown. The red color indicates a
high response from the gate network. We could observe the different visualization results by patch size used
in the diagnostic model. It implicates the optimal localization result is dependent on the diagnostic model.

Figure S.1. Changes in the output of the proposed position-based gating branch according to the patch size
used in model training and the number of training epochs. The red color indicates a high response from
the gate network.
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Supplementary C. Visualization of Patch-level Class Evidence
Our proposed method performed image-level decision-making by aggregating patch-level class evidence. The
patch-level class evidence produced by samples that yielded true positives and false positives predicted with
high confidence is demonstrated in Fig. S.2.

(a) AD vs. NC.

(b) pMCI vs. sMCI.

Figure S.2. Illustration of gating result and patch-level class evidence for samples correctly predicted with
high confidence. Each column indicates one sample labeled as NC, sMCI, pMCI, and AD, where the
number next to the # denotes the corresponding image ID of an input MRI scan. In addition, the blue and
red color indicate high class evidence for the negative (i.e., NC and sMCI) and positive (i.e., AD and
pMCI) class in the patches centered on that region, respectively.
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