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A novel preclinical secondary pharmacology resource

illuminates target-adverse drug reaction associations of

marketed drugs



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors report SPD (Secondary Pharmacology Database) comprising ca 150k AC50 values for 
200 drugs, and perform subsequent statistical analyses for target-SIDER and target-FAERS 
associations. Several (many) novel (in-)activities of compounds on targets, and new target-ADR 

associations are reported and discussed. 

An excellent resource for the community and this referee would certainly recommend publication 

A few pointers to what the authors might want to address/discuss in more details: 

- l65: "Here, we report overall low concordance between results from the SPD (obtained using a 

limited number of assay protocols for each target) vs. results from ChEMBL and DrugCentral 
(obtained using a wide variety of such protocols)." 

Yes, but this is plausible, but not yet causal. Might some readout types etc. be 'better' (translatable, 
say functional vs binding assays, etc., as well reproducible) than others? Probably the authors gained 

quite a lot of insight over the years, so this could be discussed in more depth (I have seen section 
Defining assay groups in methods and associated Dataset S1, but this could be more prominent, 

since of interest to the reader, also in the results section - 'so which type of assay should we now run 
in practice?') 

- Text in Figure 2 B is difficult to read 

- l140: "Drugs with higher overall promiscuity, defined as the percentage of assay groups with AC50 ≤ 
10 μM, contributed a significant portion of known and novel physiological off-target activities (Fig. 2B)" 

I don't think the figure supports this (global) statement directly, since it only plots data for drugs with 
high overall promiscuity. It's plausible, but numbers should be provided that support this precise 

statement 

- l 146-162 please make sure statements in the text (e.g. about clinical use) are fully supported by 
references 

- l170: "Evaluation of literature-reported target – adverse drug reaction relationships" 

How were frequency, severity, reporting biases etc taken into account? This gets discussed to an 
extent later, but in the experience of the referee this (ADR data) is the most difficult type of chemical 
and biological data to deal with due to so many reasons, this should be appreciated also in the text 

appropriately 

- Figure 3: in this context a precision/recall analysis could be useful, often there is a significant trade-
off between target-ADR associations here 

- l327-331 please make sure statements are fully supported by references 

- l472-479 - I think the limitations of FAERS and SIDER could be discussed in more detail (various 
biases, such as reporting etc.; also how frequency, severity etc. are dealt with, this is really tricky with 

adverse event data). E.g. l. 663, is the choice of LLR>=5 having an impact on the subsequent results? 
Could/probably should be discussed more in discussion. Many choices (statistics, which subsets of 
data not to use due to small size etc.) are subjective, but e.g. binarization choices can have a real 

impact on results, hence ideally investigate sensitivity to key parameters, but pleae at least add 
discussion to respective section 



That being said, a very valuable addition to the field, both w.r.t. data made available and the analyses 
performed, and this referee would recommend publication of the work ideally after the above 

comments have been addressed 

Reviewer #2 (Remarks to the Author): 

The authors construct, analyze, and release an impactful new resource for adverse drug reaction 
(ADR) prediction, the Secondary Pharmacology Database (SPD). Despite longstanding efforts, the 

off-target binding activities of drugs and drug candidates are incomplete, even for protein targets with 
known ADR associations. The SPD’s ~150,000 new drug-target data points contribute years of 

otherwise unreported observations to a field whose public datasets too frequently suffer from data 
sparsity, narrow scopes, or inconsistent assay formats. Several notable results arise from the 
analysis, from the comparative novelty of SPD’s negative results (95% vs. other pharmacology 

databases) to the meaningful disagreement with 64% of putative ADR-target links reported in the 
literature. The authors acknowledge the unexpected observation that unadjusted drug-target AC50s 

were no less effective in logistic regression models predicting ADRs from off-target binding than 
margin-based features (which may achieve higher precision, however). In short, the SPD and the 
author’s analyses comparing it to drug-target and, subsequently, the target-ADR associations derived 

from public databases such as ChEMBL, FAERS, and SIDER are intriguing, and the release of SPD 
itself will likely prove a boon to the ADR field and as an actionable resource for subsequent 

researchers. 

MINOR POINTS 

1. Line 344: Selection of informative targets via multivariate logistic regression with lasso penalization. 

Per the discussion on disentangling potentially equally-informative targets, e.g., DRD3 vs. DRD2 for 
motor dysfunction, the model may break ties in feature selection stochastically during multivariate 

analysis, depending on the implementation. If so, random-seeded repeats of model training would 
show an asymptotically equal selection of interchangeable targets across the repeats. Could 
comparing feature selection across repeated model training distinguish groups of interchangeable vs. 

stably-selected targets? 

2. The citalopram-HRH2-GERD/GI logic seems flipped unless I’m misreading. E.g., depression & 
tricyclic antidepressant use lead to increased GERD; HRH2 inhibition combats GERD; therefore, 
citalopram’s newly observed HRH2 inhibition would combat or at least no longer increase GERD. Or 

could this be clarified concerning the mixed reports of GERD with citalopram use? 

3. Fig 2B: The y-axis is difficult to read. 

4. Line 181: Can the authors confirm this is not the Kruskal-Wallis test (a non-parametric alternative to 

the one way ANOVA)? There are multiple spellings online if we are thinking of the same test. 

5. Line 184: How is the ROC calculated? I imagine it is on the predictions from the univariate logistic 
regression models introduced later in the text. Or was this ROC calculated over some other range of 

scoring thresholds instead?



Response to reviewer comments for 
 

A novel preclinical secondary pharmacology resource illuminates target-
adverse drug reaction associations of marketed drugs 
 

We have answered each critique of the Reviewers, wherever possible, simply 

by adopting their suggestions. We are grateful for the attention they clearly lavished on the 

manuscript. Both have strengthened the manuscript 

 

Reviewer questions in bold 
Our responses in red 

Additions to the text in red italics 

 

Reviewer #1: 

 

- l65: "Here, we report overall low concordance between results from the SPD (obtained using a 

limited number of assay protocols for each target) vs. results from ChEMBL and DrugCentral 

(obtained using a wide variety of such protocols)." 

 

Yes, but this is plausible, but not yet causal. Might some readout types etc. be 'better' 
(translatable, say functional vs binding assays, etc., as well reproducible) than others? 
Probably the authors gained quite a lot of insight over the years, so this could be discussed 
in more depth (I have seen section Defining assay groups in methods and associated 
Dataset S1, but this could be more prominent, since of interest to the reader, also in the 
results section - 'so which type of assay should we now run in practice? 
We acknowledge that this is a fair point and we recognized how difficult it is to investigate 

systematic differences in ChEMBL vs our internal assays, owing to very limited annotation of the 

ChEMBL assays using terminology from Bioassay Ontology (BAO).  For instance, of ~13,000 

ChEMBL assays that align with the ~100 assay groups in our database, only 4 have annotation in 

the assay_class_map and 187 have detailed assay conditions in the assay_parameters table of 

the ChEMBL schema.  We therefore limited our investigation to the role of annotation of the SPD 

assays (Table S3), and limited ChEMBL assay attributes as noted below: 
 

In results, on page 5, bottom paragraph, we added: 



 

To systematically investigate factors contributing to activity differences, we matched SPD vs. 21 

596 individual ChEMBL activity results, and annotated each activity pair using assay and target 

attributes (methods).  When modelling differences in log AC50 values, SPD attributes denoting 

agonist assays (“Mode”), kinase assays (“Protein Class”), and protein functional assays (“Event”, 

e.g. calcium flux assays as opposed to binding assays) tended to increase differences, as did 

ChEMBL attributes “protein format” (a Bioassay Ontology assay type typically denoting assays 

using radioligand displacement in brain homogenates) or ChEMBL standard type of “EC50” 

(typically associated with functional assays).  SPD attributes denoting binding assays (Mode = 

“Binding” or “inhibition”) were associated with smaller activity differences. As noted above, activity 

differences tended to be larger when the reported activity was higher in ChEMBL. Notably, 

comparing assays across species (e.g. human vs. mouse protein) was not associated with larger 

activity differences. Taken together, these represent “received wisdom” in comparing assays 

across sources: assays measuring functional events downstream of targets are more variable than 

those measuring binding events at targets.  These trends are likely to be confounded by 

association of measurement approaches and target families difficult to distinguish in our database 

(e.g. kinase/enzyme assays are cell-free assays and GPCRs or ion channels are cell-based 

assays).  

   

In methods, on page 27 bottom paragraph, we added: 

 

To model assay and target characteristics that may affect concordance between SPD and 

literature-reported activity results, we assembled a dataset matching SPD activity results with each 

individual ChEMBL activity reported for a given drug and target pair (i.e., not averaging results for 

a given drug and target across publications).  Only pairs where the activity qualifier was “=” in both 

sources were retained.  SPD assay results were annotated with assay characteristics reported in 

Supplementary Data 3, and ChEMBL results with the ChEMBL assay type (e.g. “B” for binding or 

“F” for functional), assay format using the Bioassay Ontology terminology, and standard_type 

variables from the ChEMBL “activity” database table.  Results were excluded when they were 

represented by fewer than 500 pairs in the dataset of ca 22 000 SPD vs. ChEMBL result pairs: 

ABCB11 (SPD Event = “incorporation assay”), SCN5A and CACNA1C (SPD Readout = 

“electroanalytical readout”), ACHE (SPD Readout = “absorbance readout”), SPD Protein Class  = 

“Protease”, ChEMBL bao_format of “organism”, “mitochondrion”, “microsome”, “cell-free” (blood 

assays), ChEMBL standard_type not one of Ki, Kd, IC50, EC50, ChEMBL assay_type of “T” or “A”.   



Several annotations were merged: SPD Mode of “Binding” and “inhibition”,ChEMBL bao_format = 

“subcellular format” (mostly brain synaptosomes) with “tissue-based format”.  The final dataset 

consisted of 21 596 matched SPD vs. individual ChEMBL activity result involving the same drug 

substance and target (including ortholog matches across species).  Activities were converted to 

pAC50 values (negative log10 of AC50 in molar units), and the absolute difference calculated.   

The activity difference was modelled using continuous variables of SPD pAC50, ChEMBL pAC50, 

a binary variable same_species (1=”yes”, 0=”no”), and multi-level categorical variables SPD 

Protein Class (e.g. “GPCR”), SPD-Event (e.g. ”protein binding assay”), SPD Format (e.g. “in vitro 

assay with cellular components “), SPD Mode (e.g. “Binding”), SPD Readout (e.g. “radioactivity”), 

ChEMBL assay_type (e.g. = “B” for binding assays), ChEMBL bao_format (e.g. “assay format”), 

ChEMBL standard_type (e.g. “IC50”).  All categorical variables were converted to binary dummy 

variables with the R library “fastDummies”.  A penalized lasso regression model was fit using the R 

library “glmnet” to identify variables that were associated with activity differences.  Variables 

discussed in the text were present in models up to and including the “1se” model (model with 

fewest variables within 1 standard error of the best model) and had absolute coefficient greater or 

equal to 0.1.  The modelled dataset is provided in Supplementary Data 10. 

 

- Text in Figure 2 B is difficult to read 
 

The figure has been remade, per next point and reviewer 2 

 

- l140: "Drugs with higher overall promiscuity, defined as the percentage of assay groups 
with AC50 ≤ 10 µM, contributed a significant portion of known and novel physiological off-
target activities (Fig. 2B)" 
I don't think the figure supports this (global) statement directly, since it only plots data for 
drugs with high overall promiscuity. It's plausible, but numbers should be provided that 
support this precise statement 
 

We changed the format of the figures 2 and 3 to address this point and included all 894 drugs 

having 30 or more assay results (i.e., sufficient assay data to estimate promiscuity) and free Cmax 

available.   We believe that the new version is clearer.  We added a supplementary figure to make 

the point another way, and provided the following sentence in results: 

 



On page 7, 2nd paragraph:  For instance, the promiscuous antidepressant nefazodone (31/88 

assays with AC50 results < 10 µM, or 35%) has 4 on-target and 23 off-target physiological 

activities; 5 off-target activities were not reported in the sources we considered. There are outliers 

from the overall trend: sunitinib has 51% target promiscuity, yet only a single physiological activity 

(on-target), owing to its very low free Cmax of 6.3 nM; the antibiotic cefepime has no AC50 results 

< 10 µM, yet 6 off-target activities above this threshold may be physiologically relevant owing to its 

high free Cmax of 260 µM (Supplementary Fig. 1). 

 

- l 146-162 please make sure statements in the text (e.g., about clinical use) are fully 
supported by references 

 

We inserted the required references 18, 23 and 24 accordingly starting on page 7, bottom 

paragraph: (the CNR1 antagonist rimonabant is used in the 

management of obesity18) … Depression22 and the use of tricyclic antidepressants have been 

reported to increase the incidence of gastro-esophageal reflux disease (GERD), but not SSRI 

antidepressants23 (of which citalopram is the most prescribed24).  

 

- l170: "Evaluation of literature-reported target ØC adverse drug reaction relationships" 

How were frequency, severity, reporting biases etc taken into account? This gets discussed 
to an extent later, but in the experience of the referee this (ADR data) is the most difficult 
type of chemical and biological data to deal with due to so many reasons, this should be 
appreciated also in the text appropriately 

 

We agree with the reviewer that both SIDER and FAERS have significant limitations, but they are 

used in our work and many others in the field because there are no publicly available resources of 

human curated ADRs from all drug labels, including severity and frequency.   We elaborated on 

these points in discussion starting on page 20, 1st paragraph: 

 

Methods used in this work to annotate drugs with ADRs have limitations.  Expert annotation of 

structured product labels is limited to small drug sets64, and revealed limitations of natural 

language processing (SIDER) or post-marketing spontaneous reports as approximations.  Severity 

and frequency are not generally available in SIDER, and hence not reflected in the associations 

described herein.  Inferring ADRs from FAERS has several pitfalls, including reporting biases and 

confounding by drug indication12.  Various statistical approaches have been proposed to extract 



trends from FAERS data65–67, and consensus on the most effective approach remains elusive.  Our 

work leveraged the Likelihood Ratio Test68 as implemented in DrugCentral; other approaches may 

yield different results. 

 

- Figure 3: in this context a precision/recall analysis could be useful, often there is a 
significant trade-off between target-ADR associations here 
 
We agree that precision (also known as positive predictive value or PPV) is an important quantity 

to convey when using predictions about adverse drug reactions (or other toxicities), especially 

when the prevalence of positives in the application domain is low.  This is common in toxicity 

prediction for clinical candidates, where overtly toxic compounds have been eliminated earlier in 

the drug discovery process.  What complicates the analysis is that prevalence of positives in the 

training set (e.g. the percent of drugs associated with long QT syndrome among all drugs, 

including drugs first marketed decades ago) may not be the same as the application domain 

(clinical candidates for newly pursued targets).  Further, the prevalence in the application domain 

is often unknown (e.g. prevalence of long QT in recent drug candidates … is it the recent industry 

average, or a higher / lower rate for a new modality like targeted protein degradation?).  It’s 

therefore necessary to show users a range of PPV values at different possible prevalence values).  

Predictors with very high sensitivity and specificity (and hence ROC AUC) can have low PPV 

owing to low prevalence. 

 

In Figure 3, we focused on assessing whether target-ADR relationships are statistically significant 

using permissive criteria of p-value < 0.001 from a KW test, and a minimal threshold ROC AUC ≥ 

0.6.   The reviewer’s question refers to choices made to operate at different points along a ROC 

AUC curve, i.e. increasing the score cutoff used to delineate positive vs negative predictions, and 

therefore increasing specificity at the expense of sensitivity.  We therefore added results using a 

partial ROC AUC over the 90-100% specificity interval, and show high correlation with both the 

(log) KW p-value and ROC AUC (Supplementary Notes). 

 

On page 8, 1st paragraph (results), we added “Similar results were obtained using alternate 

FAERS risk or assay score thresholds (Supplementary Notes)”. 

 

In Supplementary Notes, we added the section “Investigation of assay activity thresholds for 

defining assay positives vs. negatives”: 



 

Observing a statistically significant relationship for a given target and ADR does not provide 

guidance on its use for assessing compounds.  For example, the relationship between hERG 

(KCNH2) and “Prolongation of QT interval” (MedDRA 10014387) has KW-p-value 1.6e-13 and 

ROC AUC 0.68 (assessed using SIDER; Supplementary Data 6).   Our preferred approach is to 

report the odds of observing the ADR in clinical use given the measured level of activity; there is 

no benefit in declaring compounds as being “active” or “inactive” in the hERG assay by 

thresholding on the free margin or AC50.  When thresholding is applied, there is a trade-off 

between sensitivity (identifying all the QT prolonging drugs) and specificity (falsely labelling a safe 

drug as QT prolonging).  The threshold may change during drug discovery, with a preference for 

avoiding false positives in later stages.  As such, the partial ROC AUC assessed at high specificity 

may be preferred over the full AUC.   To investigate the impact of this threshold, we calculated the 

partial ROC AUC over the 90-100% specificity interval, and compared to the full (standard) ROC 

AUC and KW p-value over the full dataset of assay vs ADR pairs (Supplementary Fig. 6; dataset 

produced by the calc_AE_vs_assay_score.ipynb notebook).  The high correlation observed 

indicates that results using this partial AUC would be broadly comparable to those using the 

standard AUC.  We favor the standard AUC because of its familiarity and simple interpretation: the 

ROC AUC conveys the probability that a randomly selected drug positive for an ADR is ranked 

above a randomly selected negative drug.  A ROC AUC of 0.5 indicates a random result.  Partial 

AUCs are smaller because they measure a fraction of the full specificity interval, and there is no 

single standard cutoff like 0.5 that corresponds to random accuracy. 

 

We also implemented area under the precision-recall curve (AUPRC; from scikit learn 

sklearn.metrics.average_precision_score), a metric we have not used prior to this work.  AUPRC 

was not correlated with ROC AUC or (log) KW-p-value.  Absence of correlation with a standard 

statistical test is counter intuitive.  However, AUCPR vs the prevalence of positive drugs had R2 > 

0.96 across 3 activity measures (AC50, free margin, total margin) and 2 sources (SIDER, FAERS). 

We suggest that AUCPR has lower utility in the context of this work (association of targets and 

ADRs), and reflects well-known challenges in applying predictive models in low prevalence 

environments. 
 

- l327-331 please make sure statements are fully supported by references 

 



Thanks to the Referee for pointing out this overlooked matter. Now we have provided the relevant 

references 29 and 30 for our statements starting on page 13, 2nd paragraph: “Amongst these, the 

glucocorticoid receptor …”. 

 

- l472-479 - I think the limitations of FAERS and SIDER could be discussed in more detail 
(various biases, such as reporting etc.; also how frequency, severity etc. are dealt with, this 
is really tricky with adverse event data). E.g. l. 663, is the choice of LLR>=5 having an 
impact on the subsequent results? Could/probably should be discussed more in 
discussion. Many choices (statistics, which subsets of data not to use due to small size 
etc.) are subjective, but e.g. binarization choices can have a real impact on results, hence 
ideally investigate sensitivity to key parameters, but pleae at least add discussion to 
respective section 
 

We refer to discussion of FAERS / SIDER limitations above.  To address the point about LRT 

threshold (changed from less accurate acronym LLR in the original submission), we repeated 

analyses of the literature-reported target-ADR pairs using a LRT cutoff of 2.   

 

On page 29, 1st paragraph (methods), we added: “Results obtained using a LRT threshold of 2 are 

broadly similar (Supplementary Notes)” 

 

In Supplementary Notes, we added a section subtitled “Investigation of FAERS likelihood ratio test 

(LRT) threshold” 

 

Drug vs. ADR risk from FAERS are annotated with a LRT statistic in DrugCentral.  Increasing the 

LRT threshold for distinguishing drugs annotated as positive (above the LRT) for a given ADR may 

focus on the smaller set of drugs with higher incidence of the ADR, at the expense of reducing the 

count of drugs annotated as positive and hence power to detect a significant relationship.  The 

selection of a threshold is arbitrary, values such as 2, 5 or 10 may be selected.  Throughout this 

work, LRT threshold of 5 was used. 

To investigate the impact of using a different threshold, the statistical significance of the literature-

reported target-ADR relationships from Supplementary Data 6 was evaluated separately using 

SIDER, FAERS LRT threshold of 2 and 5.  Criteria for significance were the same as Fig. 3, 

namely KW p-value ≤ 0.001 and ROC AUC ≥ 0.6.  Because we required at least 10 ADR positives 

with assay results when evaluating each target-ADR relationship, and SIDER vs. FAERS or LRT 2 



vs. 5 affects this count, 539 target-ADR pairs with assessed significance on the 3 methods were 

retained for analysis (Supplementary Data 14).  The 3 methods were compared via 2 x 2 

contingency tables and c2 tests (Supplementary Table 1).  Of 114 target-ADR pairs significant at 

LRT threshold of 5, 86 were also significant at LRT threshold of 2.  While all 3 pairs of approaches 

are highly concordant by the c2 statistic, results are more similar when comparing the FAERS LRT 

thresholds than FAERS vs. SIDER.  As such, different LRT thresholds result in broadly similar 

conclusions. 

 

Reviewer #2 (Remarks to the Author): 

 

1. Line 344: Selection of informative targets via multivariate logistic regression with lasso 
penalization. Per the discussion on disentangling potentially equally-informative targets, 
e.g., DRD3 vs. DRD2 for motor dysfunction, the model may break ties in feature selection 
stochastically during multivariate analysis, depending on the implementation. If so, 
random-seeded repeats of model training would show an asymptotically equal selection of 
interchangeable targets across the repeats. Could comparing feature selection across 
repeated model training distinguish groups of interchangeable vs. stably-selected targets? 

 

In the “build_AE_vs_assay_model” notebook, we run 50 trials for each experiment with different 

train-test set splitting.  We investigated the stability of selected targets as described below.   

 

On page 12, 2nd paragraph (results), we added:  

The selection of assays retained in the sparse models was stable across random resampling of the 

data (Supplementary Notes) 

 

In supplementary notes, we added a section “Investigation of stability of variable selection in 

multivariate modelling of adverse drug reactions”: 

 

Lasso-penalized logistic regression modelling was used to select non-redundant variables (assay 

and activity measure) explaining outcomes for each source (SIDER or FAERS) and MedDRA 

code: 115 ADR models from FAERS and 259 from SIDER.  For each model, the optimal value of 

the shrinkage L1 penalty (parameter “C” in scikit-learn LogisticRegression) was selected by 

performing 50 trials of leave 20% out cross validation and identifying the most penalized model 

(smallest “C”) within 1 standard error of the maximal ROC AUC.  A single final model was 



subsequently created at the optimal parameter using the full dataset, and variables having 

coefficient £ -0.08 in this single model were labelled as non-redundant in explaining the ADR 

(Supplementary Data 7 column “parameters in sparse model”).  It should be noted that 

Supplementary Data 7 summarizes inclusion of assays using any of the three activity measures: 

free margin, total margin or unadjusted AC50.  Variables as used in the model are a combination 

of assay and activity measure, e.g. KCNH2 AC50 and KCHN2 free margin are separate variables, 

only one of which might be selected as non-redundant owing to their correlation. 

To investigate whether the variables selected as non-redundant would change with variation in the 

dataset, we compared the coefficient in the single final model to the frequency of that variable’s 

inclusion across the 50 repeats (i.e. selecting variables on the training sets only, inside the cross 

validation loop).   For FAERS, 72% of non-redundant predictors were reselected in 40 or more of 

the 50 repeats, and 81% for SIDER; 2-4% were re-selected fewer than 25 repeats (Supplementary 

Table 2).  Further, of 221 variables re-selected in fewer than 40 repeats, 63 (29%) involved assays 

that were re-selected using a different activity measure, e.g. retaining the use of KCNH2 assay, but 

using free margin instead of total margin (Supplementary Data 15).  This indicates that the assays 

selected as non-redundant predictors of ADR risk, as tabulated in Supplementary Data 6 and 

elsewhere, are not sensitive to variation in the derivation data.   

 

2. The citalopram-HRH2-GERD/GI logic seems flipped unless I”Æm misreading. E.g., 
depression & tricyclic antidepressant use lead to increased GERD; HRH2 inhibition 
combats GERD; therefore, citalopram”Æs newly observed HRH2 inhibition would combat or 
at least no longer increase GERD. Or could this be clarified concerning the mixed reports of 
GERD with citalopram use? 

 

We removed the statement about effects of SSRIs on GERD being mixed, as it seems to confuse 

the example.  The purpose was to clarify that effect is not universally observed as positive, 

however upon review the negative evidence we cited was from case reports and a small study.  

The examples here and elsewhere are necessarily speculative – we're pointing out that the novel 

activities might explain known clinical trends 

 

We clarified as follows on page 8, 1st paragraph, with some added references:  

 

Depression and the use of tricyclic antidepressants increase the incidence of gastro-esophageal 

reflux disease (GERD), but not SSRI antidepressants22 (of which citalopram is the most 



prescribed23).  Clinical studies suggest direct effects (rather than altered pain perception) on 

esophageal function25. 
 
Fig 2B: The y-axis is difficult to read. 
 

We rectified this matter, please see response to the same question in the answer to Referee 1.  

 

4. Line 181: Can the authors confirm this is not the Kruskal-Wallis test (a non-parametric 
alternative to the one way ANOVA)? There are multiple spellings online if we are thinking of 
the same test. 
 

We corrected “Wallace” to “Wallis”.  It was a typo.  We used the non-parametric Kruskal-Wallis 

throughout. 

 

5. Line 184: How is the ROC calculated? I imagine it is on the predictions from the 
univariate logistic regression models introduced later in the text. Or was this ROC 
calculated over some other range of scoring thresholds instead? 

 

On page 32, 2nd paragraph (methods), we clarified that ROC AUC values in Supplementary Data 6 

and 7 are calculated as follows: 

 

ROC AUC values were calculated with the sklearn.metrics.roc_auc_score function using each of 

the 3 activity measures as predicted values, and the ADR class (positive = 2, negative = 1) as 

actual values. 

 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

All point addressed - a good paper, thanks for this valuable contribution to the field 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my questions, including performing a stability analysis on their 
multivariate modeling feature selection. I recommend publication.



!"#$%&#"'(%')"*+",")'-%.."&(#'/%)'

'

A novel preclinical secondary pharmacology resource illuminates target-
adverse drug reaction associations of marketed drugs 

!"*+",")'01"#(+%&#'+&'2%34'

!"# #$%&'(%$% )( #$* 

!""#$#%&'($%($)*($*+$(#&(,*"(#$-.#/'

'

Reviewer comments – first revision 

!"*+",")'567'

'

Q33'$%+&(';44)"##"4'H';'?%%4'$;$")9'(:;&V#'/%)'(:+#'*;31;23"'-%&()+21(+%&'(%'(:"'/+"34

!"*+",")'5L7'

P3$ ,"23'#% 3,6$ ,**#$%%$* 87 W"$%2)'(%> )(-0"*)(1 &$#4'#8)(1 , %2,H)0)27 ,(,07%)% '( 23$)# 

8"02)6,#),2$ 8'*$0)(1 4$,2"#$ %$0$-2)'(B R #$-'88$(* &"H0)-,2)'(B 

+$ 23,(. H'23 #$6)$/$#% 4'# 23$)# -'88$(2% ,(* ,(,07%)%> /3)-3 3,6$ 3$0&$* "% )8&#'6$ 23$ 

8,("%-#)&2B 


