## Mitochondria-derived peptide SHLP2 regulates energy homeostasis through the

#### activation of hypothalamic neurons

Seul Ki Kim<sup>1,2</sup>, Le Trung Tran<sup>1,2</sup>, Cherl NamKoong<sup>3</sup>, Hyung Jin Choi<sup>3,4</sup>, Hye Jin Chun<sup>5</sup>,

Yong-ho Lee<sup>5</sup>, MyungHyun Cheon<sup>6</sup>, ChiHye Chung<sup>6</sup>, Junmo Hwang<sup>7</sup>, Hyun-Ho Lim<sup>7</sup>, Dong Min Shin<sup>1,2</sup>, Yun-Hee Choi<sup>1</sup>, and Ki Woo Kim<sup>1,2</sup>\*

<sup>1</sup>Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea

<sup>2</sup>Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea

<sup>3</sup>Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea

<sup>4</sup>Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea

<sup>5</sup>Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea

<sup>6</sup>Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea

<sup>7</sup>Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41068, Korea

\*Correspondence and reprints, materials should be addressed to:

Ki Woo Kim (<u>kiwoo-kim@yuhs.ac</u>)

SUPPLEMENTARY INFORMATION Supplementary Figure 1-6 Supplementary Tables 1-3



### Supplementary Fig. 1: Validation of SHLP2 antibody.

**a**, Detection of SHLP2 after overexpression of SHLP2-eGFP construction in HEK 293 cells. Western blots were performed using anti-SHLP2, anti-GFP or anti-tubulin antibodies. **b**, Detection of SHLP2 and biotinylated SHLP2 peptides using anti-SHLP2 and anti-biotin antibodies. **c**, Peptide competition assays using SHLP2 peptides. Anti-SHLP2 antibody was incubated in the presence of increasing amounts (1, 5, 15, 25  $\mu$ g) of each peptide indicated. **d**, Detection of SHLP1 to 6 using anti-SHLP2 antibody. **e**, Dot-blot image (left) and relative blot densitometry (right) detecting plasma SHLP2 levels in WT, *ob/ob* and *db/db* male mice (*n* = 5 each group). Data shown are representative of three independent experiments with similar results (**a-d**). *n* indicates the number of biologically independent mice examined. Data were presented as mean ± SEM. Two-tailed Student's t-tests were used. Source data are provided as a Source Data file.



Supplementary Fig. 2: Temporal changes in food intake and body weight, as well as the results of the ITT and GTT, in normal chow-fed mice after an IP injection of SHLP2

**a**, Cumulative food intake (left) of male mice fed with NC after IP injection of saline or 2, 3mg/kg SHLP2 (n = 9 saline, n = 5 each SHLP2 group). **b-c**, Cumulative food intake (**b**) and body weight change (**c**) of male mice fed with NC after IP injection of saline or SHLP2 or scrambled peptide following an overnight fasting (n = 6 saline, n = 6 SHLP2, n = 5 scrambled peptide). **d-e**, Cumulative food intake (**d**) and body weight change (% of initial) (**e**) were monitored after daily IP injection of either saline or SHLP2 in male mice (n = 3 saline, n = 5 SHLP2). **f**, Body weight (% of initial) of male mice fed with NC after daily IP injection of saline or SHLP2 for 3 weeks (n = 5 each group). **g-h**, GTT (**g**) and ITT (**h**) were performed in NC-fed male mice after 3 weeks of IP administration of saline or SHLP2 (n = 5 each group). n indicates the number of biologically independent mice examined. Data were presented as mean  $\pm$  SEM. Two-tailed Student's t-tests were used. Source data are provided as a Source Data file.



Supplementary Fig. 3: c-Fos activation in different brain regions in response to SHLP2.

**a-c**, c-Fos immunoactivity after SHLP2 administration (IP) in the hippocampus (**a**), cortex (Cx. **b**), periaqueductal gray (PAG, **c**) and dorsal raphe nucleus (DRN, **c**) (n = 4 each group). CA, cornu amonis. DG, dentate gyrus. Aq, aqueduct. n indicates the number of biologically independent mice examined. Scale bars, 100µm. Source data are provided as a Source Data file.



#### Supplementary Fig. 4: Long-term SHLP2 treatment ameliorates HFD-induced obesity.

**a**, Schematic for experimental configuration. A guide cannula was implanted to the 3V to deliver saline or SHLP2 (left). Water intake (right) following an acute ICV administration of angiotensin II (n = 4 each group). **b-c**, Cumulative food intake (**b**) and body weight (% of initial) (**c**) of male mice fed with NC after ICV injection of saline or 0.5, 1, 3µg SHLP2 (n = 10 each group). **d-e**, Cumulative food intake (**d**) and body weight (% of initial) (**e**) of HFD-fed male mice following a single ICV injection of saline or SHLP2 (n = 4 saline, n = 5 SHLP2). **f**, The *Pomc*, *Agrp* and *Npy* expression in the hypothalamus of male mice fed HFD after one hour of ICV injection of Saline or SHLP2 (n = 4 saline, n = 5 SHLP2). **g-h**, GTT (**g**) and ITT (**h**) were performed in HFD-fed male mice after 4 hours of ICV administration of saline or SHLP2 (n = 4 each group). n indicates the number of biologically independent mice examined. Data were presented as mean  $\pm$  SEM. Two-tailed Student's t-tests were used. and two-way ANOVA with Bonferroni post-hoc tests were used in figure (**e**). Source data are provided as a Source Data file.



#### Supplementary Fig. 5: Effect of SHLP2 on POMC and AgRP neurons.

a, Percentage of c-Fos activation in AgRP neurons after an ICV administration of SHLP2 (n = 3). Scale bars, 20µm. b, Diagram showing the location and responses of recorded POMC neurons across the mediobasal hypothalamus. **c-d**, Representative trace (**c**) of AgRP neurons and effects on resting membrane potential (RMP) (d) of a subset of AgRP neurons. e, Schematic strategy for recombinant transgenes to generate hM4Di<sup>POMC-Cre</sup> male mice. **f**, Fluorescent and DIC figures of targeted POMC neurons expressing the Cre-dependent modified form of the hM4Di receptor in fusion with the fluorescence protein mCitrine. The arrows indicate the targeted cell (n = 6 from 2 animals). g-i, Representative inhibition of POMC neuron (g) by CNO application. CNO induced hyperpolarization of POMC neurons expressing hM4Di, showing through decreases in the resting membrane potentials (**h**) and firing rates (**i**) (n = 6)from 2 animals). j-k, Cumulative food intake (j) and  $\Delta$ body weight (%) (k) in hM4Di<sup>POMC-Cre</sup> male mice after ICV SHLP2 administration with CNO injection (n = 10 each hM4Di<sup>F/F</sup> group, n = 5 each hM4Di<sup>POMC-Cre</sup> group). Scale bars, 5µm. *n* indicates the number of biologically independent mice examined. Data were presented as mean  $\pm$  SEM. Two-tailed Student's t-tests were used. Wilcoxon matched-pairs signed rank test were used in electrophysiological result. CAG, CMV immediate enhancer/β-actin promoter; hM4Di, Gi-coupled hM4D DREADD; pta, porcine Teschovirus cleavage site; mCitrine; citrine fluorescence. Source data are provided as a Source Data file.



## Supplementary Fig. 6: SHLP2 interacts specifically with CXCR7, but not CXCR4.

**a**, The  $\beta$ -Arrestin2 recruitment to CXCR7 by SHLP 1 to 6 (n = 4 each group). Note that the only SHLP2 exhibited specific activity. **b**, The DNA constructs used to for the NanoLuc complementation-based  $\beta$ -Arrestin2 recruitment to the chemokine receptor CXCR4. **c**, Representative result of  $\beta$ -Arrestin2 recruitment assay to CXCR4 (n = 3 saline, n = 3 CXCL12, n = 4 SHLP2). Note that there is no notable activity by SHLP2 **d**, Representative immunofluorescent staining of CXCR7 upon the application of SHLP2. **e**, The percentage of internalized receptors CXCR7 at different time points after the treatment of SHLP2 (n = 3 each group). **f**, Representative immunofluorescent staining of CXCR4 upon the application of SHLP2. **g**, The percentage of internalized receptors CXCR4 at different time points after the treatment of SHLP2. **g**, The percentage of internalized receptors CXCR4 at different time points after the treatment of SHLP2. **g**, The percentage of internalized receptors CXCR4 at different time points after the treatment of SHLP2. **g**, The percentage of internalized receptors CXCR4 at different time points after the treatment of SHLP2. **g**, The percentage of internalized receptors CXCR4 at different time points after the treatment of SHLP2 (n = 3 each group). Scale bars,  $10\mu$ m. **h**, Representative images of CXCR7 expression in POMC neurons (n = 3 each group). Scale bars,  $50\mu$ m. n indicates the number of biologically independent experimental groups examined. Data were presented as mean  $\pm$  SD. ns: no significance by two-way ANOVA followed by Sidak multiple comparison tests (**e and g**). Source data are provided as a Source Data file.

# Supplementary Table 1. The clinical characteristics of the sutdy subjects

|                          | Healthy (n= 7) | Obese (n= 6) | Diabetic (n= 7) |
|--------------------------|----------------|--------------|-----------------|
| Age (year)               | 55.1±14.9      | 41.3±23.7    | 42.3±18.7       |
| BMI (kg/m <sup>2</sup> ) | 22.6±5.1       | 31.9±2.9     | 31.4±2.3        |
| TG (mg/dL)               | 85.4±101.8     | 192.2±164.8  | 174.4±190.6     |
| Cholesterol (mg/dL)      | 195.3±43.7     | 217.2±32.2   | 202.3±28.7      |
| AST (U/L)                | 24.9±9.1       | 36.8±21.2    | 34.4±18.6       |
| ALT (IU/L)               | 22.7±19.3      | 60.6±42.4    | 62.0±39         |
| Gamma-GT (U/L)           | 14.7±11.3      | 46.8±45.2    | 57.9±61.1       |

BMI, Body mass index; TG, Triglyceride; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; Gamma-GT, Gamma-glutamyl transferase

# Supplementary Table 2. Primer sequences used for RT-PCR analyses

| Gene     | Forward primer (5'-3')    | Reverse primer (5'-3')     |
|----------|---------------------------|----------------------------|
| Ucp1     | GGCAACAAGAGCTGACAGTA      | GGCCCTTGTAAACAACAAAA       |
| Cox2     | ATAACCGAGTCGTTCTGCCAAT    | TTTCAGAGCATTGGCCATAGAA     |
| Rps18    | TGTGTTAGGGGACTGGTGGACA    | CATCACCCACTTACCCCCAAAA     |
| Pomc     | CAGGTCCTGGAGTCCGAC        | CATGAAGCCACCGTAACG         |
| Npy      | CTACTCCGCTCTGCGACACT      | AGTGTCTCAGGGCTGGATCTC      |
| Agrp     | CGGCCACGAACCTCTGTAG       | CTCATCCCCTGCCTTTGC         |
| Cart     | AGAAGAAGTACGGCCAAGTC      | GGACAGTCACACAGCTTCC        |
| Pgc1a    | AACCACACCCACAGGATCAGA     | TCTTCGCTTTATTGCTCCATGA     |
| Dio2     | TTCTCCAACTGCCTCTTCCTG     | CCCATCAGCGGTCTTCTCC        |
| Ppary    | CAAGAATACCAAAGTGCGATCAA   | GAGCTGGGTCTTTTCAGAATAATAAG |
| Srebp-1c | GGAGCCATGGATTGCACATT      | GGCCCGGGAAGTCACTGT         |
| Fasn     | GGTGTGGTGGGTTTGGTGAATTGT  | TCACGAGGTCATGCTTTAGCACCT   |
| Hprt     | CTCATGGACTGATTATGGACAGGAC | GCAGGTCAGCAAAGAACTTATAGCC  |
| Scd1     | AGTGCAGCAGGACCATGAGAATGA  | TCCCTCCGGAAATGAACGAGAGAA   |
| Acaca    | AGGAAGATGGTGTCCCGCTCTG    | GGGGAGATGTGCTGGGTCAT       |
| Fabp4    | AAGAGAAAACGAGATGGTGACAA   | CTTGTGGAAGTCACGCCTTT       |
| Prdm16   | CGTCCACACGGAAGAGCGTGA     | TGGAGGTTGCTGGGGTCCGT       |
| Nrf1     | CGATGGGATTCCAGTCTCTGT     | TGAGCATCTCTGGGATAAATGC     |

# Supplementary Table 3. Sequences of peptides

| Peptide name                         | Sequence                               |  |
|--------------------------------------|----------------------------------------|--|
| Small humanin-like peptide 1 (SHLP1) | MCHWAGGASNTGDARGDVFGKQAG               |  |
| Small humanin-like peptide 2 (SHLP2) | MGVKFFTLSTRFFPSVQRAVPLWTNS             |  |
| Small humanin-like peptide 3 (SHLP3) | MLGYNFSSFPCGTISIAPGFNFYRLYFIWVNGLAKVVW |  |
| Small humanin-like peptide 4 (SHLP4) | MLEVMFLVNRRGKICRVPFTFFNLSL             |  |
| Small humanin-like peptide 5 (SHLP5) | MYCSEVGFCSEVAPTEIFNAGLVV               |  |
| Small humanin-like peptide 6 (SHLP6) | MLDQDIPMVQPLLKVRLFND                   |  |
| Scrambled peptide                    | MKSFRVTVRPASLTSGVFTNLQFPWF             |  |