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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

1- A diagram including general information about generated GEMs would help readers quickly 

receive basic information. This should cover the number of gaps and orphan reactions, number of 

gene-associated reactions, number of exchange reactions, number of total reactions, number of 

metabolites, number of genes, number of reactions in core Reactome, and number of reactions in 

accessory Reactome for each GEM. 

2- Template based GEM reconstruction requires a gold standard template, though authors provided 

phenotypic growth analysis there are no results on quantitative validation of generated models 

(such as comparing experimental and predicted growth rates, substrate consumption, and product 

formation rates or comparing metabolic flux analysis with flux balance analysis), which is a crucial 

step in producing a gold standard model. Given that experimental data for this organism are publicly 

available (PMID: 12734751) It is highly recommended to include supporting results for quantitative 

validation of resulted GEMs. 

3- The author stated that duplicated reactions were removed from final pan-GEM during pan-GEM 

reconstruction. considering that, duplicated reactions could result from, 1) allelic variation among 

selected models. 2)different Isozymes among selected models. In the second case, before removing 

a reaction, locus tag of the corresponding Isozyme has to be included in the GPR of the remaining 

reaction. Otherwise, information for such genes will be missed from all the generated models. In this 

regard, the main question would be whether author has removed all duplicated reactions or 

isozymes were kept and transformed to a new GPR rule of remaining representative reactions? 

4- Reliability of GEM-driven results is highly dependent on the quality of GEMs. Given that, it is 

highly recommended to include the MEMOTE report (https://memote.io/) on generated models. 

5- For model validation using phenotypic microarray (biology), growth rate cut-off has not been 

considered (Supplementary Table S2) 

6- For having a reliable invivo simulation, publicly available transcriptome on the target organism 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61974) could be integrated into GEMs to 

 



generate context-specific models. In this case, it has been proven that during IPA, Aspergillus 

fumigatus would face hypoxia condition, given that, changes in O2 uptake rate could play an 

important role in metabolism shift in this organism during pathogenesis. Regarding that, have 

authors simulated aerobic/anaerobic/microaerophilic conditions during IPA. If not, what is the logic 

behind it? 

7- It has been shown that lysF deficiency would result in Lysine auxotrophy in Aspergillus fumigatus, 

and subsequently stops pathogenicity (PMID: 15052376). This might indicate that Lysine availability 

during IPA becomes a bottleneck in virulence factor synthesis for Aspergillus fumigatus. Could GEMs 

predict any significant metabolic changes comparing wild type and lysF mutant? 

8- Growth rates shown in fig.4-b are in an unrealistic range compared to the maximum experimental 

growth rate reported in the literature, it’s also in contrast to the growth rate prediction reported in 

(Supplementary Table S2). How do authors explain this inconsistency? Is it because of unconstraint 

exchange reactions during MAMBO analysis? If so, why did exchange reactions remain unbound 

during this analysis? 

9- Providing a supplementary table containing all the constraints required for in silico simulation 

(exchange reactions bounds), and a file containing scripts that have been used for GEMs generation 

and analysis, would help the reproducibility of results. 

10- The criteria for defining the core and accessory genes (e.g. cut-off threshold, method, etc.) are 

not well defined. 

11- It would be more informative to discuss the results of the ‘unique’ metabolites and genes found 

in the study. 

 

 

Reviewer #2 (Remarks to the Author): 

 

This paper aims to investigate the growth dependencies of the important human fungal pathogen 

Aspergillus fumigatus on the lung microbiome. This paper contains a wealth of information, but I do 

have some concerns about fundamental experimental techniques carried out, mainly for the 

phenotyping via omnilog. This is (at least, to my knowledge) the first time this has been used on Af I 

believe? If so, this is extremely novel and should be more of a focus! However, it is not clear whether 

biological duplicates/triplicates were performed (although I didn't have access to the supplementary 

information) - replicates are needed to confirm the findings. If they weren't performed, these need 

to be redone to include replicates. If they were, please include these data. The methods for the 

omnilog need clarifying: refrained two of the strains because of incompatibility issue for pm04 and 

two incubation temperature for the phenotype 25 for 7 days and then move it to 37 for 3 days are 

issues I believe that could impact the results (more below on this). Why was additional dye added to 

the suspension with the existing dye in the plates? As the omnilog reader system is sensitive to the 

dye that would cause too much noise in the curves, skewing the results. Also, how was the omnilog 

 



optimised for Aspergillus? The omnilog protocol is optimised for yeast, so were there additional 

optimisation? 

 

Further comments on the omnilog methods include: 

 

Line 149 onwards: 'we manually resolved any incompatibility between our growth data' - needs 

more information. 

Line 531/532: 'we refrained from resolving sulfur growth accuracy' - why? Earlier lines state is would 

have caused a notable performance drop - that is concerning. Is this an issue with the platform or 

the mutants, or another issue? Not resolving raises concerns on the findings. 

Line 549: why grown at 25 degrees? and then transfered to higher temperature (37 degrees) for 3 

days? This could be responsible for growth changes seen 

Line 550: why was uracil added? 

 

The bioinformatics analysis seems comprehensive, but I do question why only 252 of the 300 

genomes in Barber et al. were mapped to Af293 for identification of metabolically relevant genes - 

what is the rationale for this reduced number? Surely additional information would yield a 'gold 

standard' set of genes? 

 

How reliable are GEMs compared to experimental metabolomics? 

 

Overall, whilst this contains a lot of information that would be relevant to the mycology community, 

I found the paper hard to follow and read, being confusing in a number of places. For instance, the 

Results are hard to follow, and the sections seem to jump with no flow. I appreciate that word limits 

are placed on these manuscripts, but I would suggest a hard edit to enable an easier read to 

enhance these data presented. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Mirhakkak et al. 

A pan-genome resembling genome-scale metabolic model platform of 262 Aspergillis fumigatus 

strains reveals growth dependencies on the lung microbiome. 

 



 

Metabolic models are a prevalent topic of research. Within this theoretical frame the authors 

applied methods that are state of the art (lines 445 – 545). According to the reviewer’s gut feeling 

the field still looks like a fancy Glass Bead Game. 

Please find below my comments on methods, Figures and Tables that need substantial 

improvements. In other words, I will not comment on the theoretical framework but will confine 

myself to the bread-and-butter methodology. 

 

Lines 551-552, lines 682-686. Demonstrate the purity of your spore solution. 

 

Line 554. Provide the source of the phenotypic microarrays. 

 

Lines 565-606. 

a. The clinical literature differentiates between 

- Airway colonization with A. fumigatus, 

- ABPA 

- aspergillome 

- Invasive aspergillosis. 

Please provide the individual patient’s diagnosis in a Table in the supplement and link with the 

respective sputum sample. 

b. The authors collected spontaneously expectorated sputa. This mode of sampling is prone to 

contamination by the oropharyngeal flora. The leading symptom of ABPA is bronchial obstruction. 

Hence, the mode of drainage of sputum may be shaped by the obstruction of the conducting 

airways, which may impair comparability of sample pairs collected prior and during A. fumigatus 

detection. Authors should provide the patient’s spirometry data at the days of collection. 

c. How did you define A. fumigatus colonization (line 572)? 

d. Sensitivity, specificity, validity and reliability of airway metagenome data critically depend on 

sample collection and processing (see e.g. Gut Pathogen 2016;8:24; BMC Biol 2014;12:87; Mol Ecol 

Resourc 2019;19:982-96). Please describe the 

– mode of sampling, 

- the latent period between sampling and freezing, 

- the standard cleaning procedure of the laboratory environment, 

 



- number and handling of negative controls during DNA extraction and library preparation. 

 

Lines 615-617. Why did you use Kranken2? KrakenUniq is a more accurate metagenome binning tool 

surpassing Kraken and Kranken2. Back up your k-mer approach by an index classifier such as 

Centrifuge or MetaPhlAn3. 

 

Lines 617-618. Low abundance species are meanwhile known to be crucial for the metabolic 

competence of an airway metagenome. Please process your datasets with a tool that removes false 

negative and false positive assignments. 

 

Lines 615-618. Unfortunately, reference eukaryotic genomes are often contaminated, making it hard 

to detect and quantify eukaryotic microbes in shotgun metagenomic data. You may use a tool like 

EukDetect, which is specifically built to deal with these problems. In the context of Aspergillus, one 

need to know whether patients’ samples contained other fungi like Scedosporium that are 

suspected to be clinically more relevant for the ABPA phenotype than A. fumigatus. 

 

Line 631. How did you define infection with A. fumigatus? 

 

Line 629. The rationale for the thresholds of prevalence and abundance filters should be given. If the 

dataset is appropriately curated, less prevalent and less abundant taxa can be included. 

 

Figure 3A. Burkholderia spp. and particularly Sphingomonas spp. are rare members of the CF airway 

community. Demonstrate that Af positive patients at the Heidelberg CF clinic are more frequently 

harboring these proteobacteria than patients seen at any other CF clinic in the world. 

 

Figure 3B shows numerous taxa that have not been detected in previous 16S rRNA or metagenome 

studies of CF airway specimens. Verify these species by another pipeline (Centrifuge, MetaPhlAn3) 

and by a tool that flags false positive and false negative taxonomic assignments. In other words, the 

datasets need to be curated. The reviewer assumes that the figure shows about 17, 14, 7 and 9 false 

positive assignments in modules 1, 2, 3, 4, respectively. 

 

Figure 4. Authors should discuss why the first two dimensions in the PCA just explains 13-14% of the 

variance. 

 

 



Table S1. ATP demand. Provide error estimates and restrict numbers to physically plausible digits. 

 

Table S2. Quantify the term ‘optimal’ for growth prediction and explain your terminology in more 

depth in the Read me section. 

 

Table S3. Metadata of the A. fumigatus strains should be given (date of collection, habitat, 

geographic origin, collector (name or institution)). I did not find this standard information in the 

authors’ ref. 6 (Barber et al., 2021) cited throughout the table. 

 

Table S4. Description. Provide reference for reaction ID, spell out abbreviation (FVA). Provide error 

estimates for the ratio mean(clinical)/mean(environmental). Five or six digits do not make sense. 

 

Table S5 lists the presence of 600 taxa the majority of which never seen before in any CF patient’s 

airways. The dataset must be rigorously curated and checked for false positive assignments and 

contaminations from other sources (lab, environment, other samples). 

 

Table S6. Were P values corrected for multiple testing? 

 



Reviewer #1 (Remarks to the Author): 
 
1- A diagram including general information about generated GEMs would help readers quickly 
receive basic information. This should cover the number of gaps and orphan reactions, number 
of gene-associated reactions, number of exchange reactions, number of total reactions, number 
of metabolites, number of genes, number of reactions in core Reactome, and number of reac-
tions in accessory Reactome for each GEM. 
 
Response:  
We agree that a diagram indeed improves entry into the complexity of our endeavor of strain GEM 
generation and downstream multi-data driven analyses. Accordingly, we extended the given in-
formation in Supplementary Table S3, sheet “afu_strain_metadata” for all our strain-GEMs as well 
as the base pan-GEM. This includes the number of all and unique genes, reactions and metabo-
lites as well as differentiating reactions further into e.g. core, accessory, orphan, gene-related, 
exchange, demand or exchange reactions. Additionally, we represented the requested infor-
mation as a new Fig. 1b. We moved all original subfigures from originally Fig. 1b-f to the updated 
Fig. 1c-g accordingly. 
Moreover, an overview over all strain-GEMs was added as new Fig. 2a. To keep figures concise 
and topic oriented we split our originally submitted Fig. 2 into two new Figures: Fig. 2, now repre-
senting strain-GEM information and a new Fig. 3 representing details of our analysis of clinical 
and environmental strain-GEMs.  
The originally submitted Fig. 3 and 4 became Fig. 4 and 5 accordingly.  
The figure caption for the new Fig. 1b reads: 
  
“b Counts of pan-GEM components for included genes, reactions and metabolites.” 
 
  
2- Template based GEM reconstruction requires a gold standard template, though authors pro-
vided phenotypic growth analysis there are no results on quantitative validation of generated 
models (such as comparing experimental and predicted growth rates, substrate consumption, 
and product formation rates or comparing metabolic flux analysis with flux balance analysis), 
which is a crucial step in producing a gold standard model. Given that experimental data for this 
organism are publicly available (PMID: 12734751) It is highly recommended to include support-
ing results for quantitative validation of resulted GEMs. 
 
Response:  
Thank you for the suggestion. Since the experimental growth rate data measured as colony radius 
in millimeters in the indicated paper cannot be directly converted into growth units commonly used 
in GEMs (i.e. mmol/grDW/hr) we opted for a more suitable/translatable publicly available data set 
(Barker et al. 2012) to compare the reported growth rates with the GEM predicted growth rate 
values. In brief, Barker et al. (2012) performed a batch fermentation culture of the fungus in 
normoxic and hypoxic conditions. We converted the experimental gr/grDw/hr unit to 
mmol/grDW/hr for the glucose consumption. The batch fermentation was done in an oxygen-con-
trolled fermenter without indication of the actual oxygen consumption by the fungus in the article 
and its extended information. Given the glucose uptake rate in normoxic condition (0.25 
mmol/grDW/hr opposed to 0.206 mmol/grDW/hr for hypoxic condition), we fitted our O2 dependent 
growth curve of our pan-GEM (i.e. tracking achievable growth rate by simulating increasing values 
of O2 influx) to the experimental data by calibrating the flux through the non-growth associated 
maintenance reaction to 0.1 mmol/grDW/hr (see Fig. R1.2 below). We hypothesized that the 
normoxic oxygen uptake rate must relate to a value within the section of our simulated growth 
curve, where growth rate cannot be increased anymore and thus does not depend on further 

 



increases of oxygen uptake (0.2+ mmol/gDW/hr, Fig. R1.2). In contrast, under hypoxic conditions 
(i.e. 1% O2 available compared to normoxic conditions, cf. Barker et al., 2012) the oxygen uptake 
is a growth limiting factor. Indeed, after calibrating the maintenance reaction and oxygen uptake 
given the available glucose sources, we found that the oxygen uptake rates 14 and 0.14 
mmol/gDW/hr for normoxic and hypoxic conditions could convincingly resemble the experimen-
tally measured growth rates. The FBA-derived growth rates were 0.01 for hypoxic (compared to 
experimental growth of 0.011 h-1) and 0.013 mmol/grDW/hr for normoxic conditions (experimental 
growth = 0.013 h-1). Of note, the calculated maximum oxygen uptake rate of 14 mmol/grDW/hr 
was well beyond the plateau of necessary oxygen for the maximum feasible growth rate. This 
indicated that in our simulations A. fumigatus appeared to require only a fraction of the available 
oxygen to convert the available glucose in this setup (cf. Fig. R1.2 below for O2 dependent growth 
simulations). We added the calibrated maximum O2 uptake rate to our pan-GEM and conse-
quently to our strain-GEMs. O2 uptake in our downstream analyses were in concordance with the 
determined maximum uptake rate. After calibration of O2 uptake values, we investigated whether 
we can recapitulate reported secretion levels for acetate, ethanol and lactate under different O2 
conditions (Barker et al. 2012). The secretion of acetate and lactate increased under low levels 
of O2, which we also saw with our pan-GEM simulations (from 0.009 to 0.02 for acetate and 0.006 
to 0.008 mmol/grDW/hr for lactate, cf. Supplementary Table S2, new sheet ‘Quantitative predic-
tion’). These low secretion values reflected well the experimental data, which also showed low 
production of these metabolites (0.004/0.015 for acetate, 0.003/0 for ethanol, 0/0.002 
mmol/grDW/hr for lactate secretion under normoxic/hypoxic conditions). Of note, steady state as-
sumption-based genome-scale metabolic modeling always shows a theoretical maximum yield 
given growth and media conditions which in reality might not be reached due to e.g. transient 
regulatory effects that cannot be captured by metabolic model simulations. This may explain, why 
under normoxic conditions for lactate and under hypoxic conditions for ethanol our model allowed 
low theoretical secretion rates, whereas experiments did not show any yield. We also cannot rule 
out a detection limit in the experimental device given the low observed lactate traces. In light of 
these simulations our pan-GEM is able to recapture experimentally observed growth under differ-
ent O2 conditions, thus adding an orthogonal calibration to our initially used phenotypic microarray 
data. We are grateful for this remark by the reviewer and added recaptured experimentally deter-
mined growth rates by simulations as new Fig. 1h and an additional sheet to include the secretion 
rate simulations to Supplementary Table S2 to our main manuscript. We added a brief description 
to our text to include these additional calibrating efforts in the results and methods: 
 
Results: “Finally, we tested how well our pan-GEM predicted oxygen-dependent growth20. After 
calibrating our model to normoxic growth conditions (0.013 mmol/grams dry weight [grDW]/hr, 
Fig. 1h), we were able to accurately capture hypoxic growth (predicted 0.010 compared to meas-
ured 0.011 mmol/grDW/hr). The same model also predicted the magnitude of experimentally de-
rived secretion rates for acetate (for predicted and measured values, respectively, 0.009 vs. 0.004 
for normoxic conditions; 0.020 vs. 0.015 for hypoxic conditions, all mmol/grDW/hr). Measured 
ethanol and lactate levels were also very low (0.003 mmol/grDW/hr or lower), while the predicted 
theoretical yield by our simulations was 0.008 mmol/grDW/hr or lower (Supplementary Table S2, 
Methods). In summary, our refined pan-GEM was able to recapture experimentally assessed ox-
ygen-dependent growth data and predicted secretion rates of assessed metabolites that were 
comparable to the publicly available growth data.” 
 
Methods: “Next, we calibrated our pan-GEM to reflect experimental growth and byproduct 
secretion rates in glucose-limited environments in hypoxic and normoxic conditions. We re-
trieved published glucose, acetate, ethanol, lactate, and cell dry weight concentration values 
from Barker et al.20 and converted these values to plausible units (e.g., mmol/grDW/hr for 
metabolites and 1/hr for growth) for subsequent GEM analysis (Fig. 1). We constrained our 

 



pan-GEM for the experimental glucose consumption rates (i.e., fixed glucose uptake of 0.250 
mmol/grDW/hr for normoxic and 0.206 mmol/grDW/hr for hypoxic conditions) and calibrated 
flux through the nongrowth-associated maintenance reaction with different O2 uptake rates 
resembling hypoxic to normoxic conditions. The data fitted best when setting the flux through 
the nongrowth-associated maintenance reaction of the pan-GEM to 0.1 mmol/grDW/hr (Sup-
plementary Table S9 and S10).”  
 
Fig. 1h caption: “h Experimental values compared to simulated growth rate values under normoxic 
and hypoxic conditions (Supplementary Table S2 has experimental and simulated secretion val-
ues).” 

 
Figure R1.2: Growth rate simulations of A. fumigatus pan-GEM for different O2 uptake rates and 

available glucose as described in Barker et al. (2012). 
 
 
3- The author stated that duplicated reactions were removed from final pan-GEM during pan-
GEM reconstruction. considering that, duplicated reactions could result from, 1) allelic variation 
among selected models. 2) different Isozymes among selected models. In the second case, 
before removing a reaction, locus tag of the corresponding Isozyme has to be included in the 
GPR of the remaining reaction. Otherwise, information for such genes will be missed from all 
the generated models. In this regard, the main question would be whether author has removed 
all duplicated reactions or isozymes were kept and transformed to a new GPR rule of remaining 
representative reactions? 
 
Response:  
We apologize for our imprecise description of this important aspect. In fact, the group of duplicated 
gene-associated reactions in all cases was initially assigned to the same set of genes. Hence, 
duplicated reactions and metabolites were identical and appeared while we aimed at generating 
a most comprehensive pan-GEM due to usage of different IDs for the same metabolite and reac-
tion in different available draft reconstructions. For instance, the following duplicated reactions 
initially occurred in the draft reconstruction: 
 
RXN9501MetaCyc: C00019 + Cluster6767 <=> C00021 + Cluster4007 (grRule: AFUA_5G02640) 
r1078ANIDULANS: C00019 + C20445 <=> C00021 + C03944 (grRule: AFUA_5G02640) 
 
The duplicated metabolites are Cluster6767 | C20445 and Cluster4007 | C03944. The names of 
the duplicated metabolites are alphabetically different and as follows: 

 



 
Cluster6767 -> dihydrosterigmatocystin [cytosol] 
C20445 -> dihydrosterigmatocystin [cytosol] 
Cluster4007 -> dihydro-O-methylsterigmatocystin [cytosol] 
C03944 -> dihydro-O-methylsterigmatocystin [cytosol] 
 
RXN9501MetaCyc was removed from the draft GEM and r1078ANIDULANS was kept accord-
ingly. After the curation of the pan-GEM, the reaction IDs were changed in order to have a unified 
nomenclature for the network reactions in our final pan-GEM. Accordingly, ‘r1078ANIDULANS’ 
was converted to ‘R45’ which can be found in the pan-GEM reactions (Supplementary Table S9 
[formerly S7]). 
Therefore, removing the duplicated reactions and metabolites did not result in loosing gene infor-
mation from the pan-GEM and accordingly for reconstruction of the strain GEMs. We adapted our 
text to improve our description: 
 
“Filtering duplicate reactions was necessary because our initial merge of metabolic information 
included reactions and converted metabolites from different sources. Only when reactions or me-
tabolites had different naming conventions did we reduce to a single naming scheme. When dif-
ferent isozymes encoded the same metabolic reaction, we included all alternative genes as OR 
relationships (instead of AND) in the genes-to-protein rule of the affected metabolic reaction and 
removed the duplicate reaction.” 
 
 
4- Reliability of GEM-driven results is highly dependent on the quality of GEMs. Given that, it is 
highly recommended to include the MEMOTE report (https://memote.io/) on generated models. 
 
Response:  
Indeed another very important note, thank you. We acknowledge this comment from the reviewer 
that resulted in additional manual curation and subsequent quality improvement of our 
reconstruction. We benchmarked the performance of our submitted pan-GEM of A. fumigatus by 
the MEMOTE pipeline. Before any curation efforts, the reported MEMOTE score of our initial pan-
GEM was 30%. To improve the MEMOTE score and thus the quality of our pan-GEM, we 
substantially curated our pan-GEM originally and additionally during the revision. Importantly, 
during our revision our efforts did not require to change the pan-GEM’s stoichiometric matrix, 
which was important as otherwise downstream analyses might have been affected. After our 
curation efforts, the overall MEMOTE score increased to 78%. MEMOTE’s consistency score 
reported 72% for our reconstruction. The html file of the summarized MEMOTE test results is 
available in our github repository1. In addition, we compared the MEMOTE report of our GEM with 
the consensus Yeast v8.6.2 GEM (Lu et al. 2019), one of the very few highly curated fungal GEMs 
with updates over more than a decade. The summarized MEMOTE score is reported by the 
consensus Yeast team at github2. Interestingly, with 70% the MEMOTE score for Yeast v8.6.2 
was lower compared to our curated GEM as was the reported consistency score of 55%. This 
exemplifies in part the difficulty and challenges in fulfilling all MEMOTE conventions for fungal 
GEMs compared to e.g. bacterial GEMs where data availability and standardisation is much more 
progressed.  
Nevertheless, given our additional efforts we could improve the MEMOTE score of our pan-GEM 
to a convincing and ready-to-use level. Of note, our curation steps including standardized naming 
nomenclature and ensuring network consistency diluted to all subsequently generated strain-
                                                 
1 https://github.com/mohammadmirhakkak/A_fumigatus_GEM/blob/main/memote_report.html 
2 https://sysbiochalmers.github.io/yeast-GEM/release_report.html 

 



GEMs, which thus benefit from the considerable high score of our pan-GEM. We added a note to 
applying MEMOTE to our methods section accordingly: 
 
“Last, we checked compatibility of our model with metabolic modeling standards by running 
MEMOTE tests62. The overall MEMOTE score we achieved was 78%, with a 72% consistency 
score, which is in the range reported for the most-curated yeast GEM (https://sysbio-
chalmers.github.io/yeast-GEM/release_report.html).  Simulation scripts for all analyses are at 
github: https://github.com/mohammadmirhakkak/A_fumigatus_GEM/, which also holds the 
MEMOTE report (github folder: blob/main/memote_report.html).” 
 
 
5- For model validation using phenotypic microarray (biology), growth rate cut-off has not been 
considered (Supplementary Table S2) 
 
Response:  
We considered 0.001 mmol/grDW/hr as a minimum growth rate for considering growth vs. no 
growth. Since we aimed to capture also very low, but non-zero growth rates, we set this value 
below the hypoxic growth rate in glucose-limited media as reported by Barker et al. (2012), which 
we used for quantitative prediction (cf. point 2 of this reviewer above). We stated the considered 
cut-off related to the “Prediction” in the “description” sheet of the Supplementary Table S2 and 
added a further note to the Methods section of our manuscript:  
“We considered 0.001 mmol/grDW/hr as an absolute minimum for growth rate to account for re-
ported low-oxygen growth conditions, e.g., in glucose-limited media20.” 
 
 
6- For having a reliable in vivo simulation, publicly available transcriptome on the target organ-
ism (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61974) could be integrated into 
GEMs to generate context-specific models. In this case, it has been proven that during IPA, As-
pergillus fumigatus would face hypoxia condition, given that, changes in O2 uptake rate could 
play an important role in metabolism shift in this organism during pathogenesis. Regarding that, 
have authors simulated aerobic/anaerobic/microaerophilic conditions during IPA. If not, what is 
the logic behind it? 
 
Response:  
We acknowledge that indeed O2 availability might be important for metabolism in pathogenesis. 
However, it has been shown that at least gene expression data may not necessarily reflect met-
abolic activity (cf. e.g. Glanemann et al. 2002 for disparity in the model organism C. glutamicum) 
challenging the reliability of the addition of transcriptomic data. Moreover, integrating tran-
scriptomic data towards data-driven context-specific models has been debated before and 
showed among others, very diverse outcomes for different algorithmic approaches. In fact, pre-
dictions obtained by simple flux balance analysis using growth maximization and parsimony cri-
teria were as good or better than those obtained after using transcriptome integrating methods, 
which impact notably the received and to be expected prediction capabilities (Machado & 
Herrgård, 2014, Opdam et al., 2017). Therefore, we did not believe that generating context-spe-
cific networks in the context of our manuscript would improve the quality of our first collection of 
reconstructed strain-GEMs of A. fumigatus, but contrarily would raise further questions about the 
validity of the (whichever chosen) applied  approach. The ability of our pan-GEM to predict the 
growth in normoxic and hypoxic conditions was shown above and explained in the response of 
the second comment of reviewer 1. For further downstream analyses we relied on normoxic 
growth conditions, since our experimental data derived from cystic fibrosis patients originated 

 



from lung tissue via sputum and did not resemble established IPA. We added this notion to our 
results as follows: 
 
Results: “For the remainder of our analysis we assumed normoxic growth conditions unless oth-
erwise noted.” 
 
 
7- It has been shown that lysF deficiency would result in Lysine auxotrophy in Aspergillus fu-
migatus, and subsequently stops pathogenicity (PMID: 15052376). This might indicate that Ly-
sine availability during IPA becomes a bottleneck in virulence factor synthesis for Aspergillus fu-
migatus. Could GEMs predict any significant metabolic changes comparing wild type and lysF 
mutant? 
 
Response:  
In the context of our Biolog phenotypic microarray data, deletion of lysF (AFUA_5G08890) did not 
result in lysine-auxotrophy. As shown in Supplementary Table S2, A. fumigatus grew in well C09 
on plate PM1 where glucose resembled the carbon source and lysine did not exist. The same 
occurred in other wells for testing different sources where Lysine is lacking (Supplementary Table 
S2). 
Following the reviewer’s suggestion, we constrained the pan-GEM with respect to a minimal me-
dia and performed FVA across all reactions simulating the lysF knock-out and compared it with 
the same simulation in wild-type condition. However, we observed no difference between the two 
simulated conditions suggesting that this observation cannot be reflected using minimal media. 
We note this observation in our results:  
 
“Of note, we did not observe lysine-dependent growth cessation with our phenotypic microarray 
data of the lysF mutant strain (Supplementary Table S2) suggesting a media influence on the 
environment for growth and virulence19.”  
 
 
8- Growth rates shown in fig.4-b are in an unrealistic range compared to the maximum experi-
mental growth rate reported in the literature, it’s also in contrast to the growth rate prediction re-
ported in (Supplementary Table S2). How do authors explain this inconsistency? Is it because of 
unconstraint exchange reactions during MAMBO analysis? If so, why did exchange reactions 
remain unbound during this analysis? 
 
Response:  
For the FBA simulations, the exchange reactions of the GEMs were constrained using the me-
tabolite levels predicted by MAMBO before and after colonization of A. fumigatus. However, the 
overall predicted metabolite levels by MAMBO were an order of magnitude higher than the mini-
mal media used in Supplementary Table S2. Moreover, the predicted metabolome environment 
by MAMBO contained a wide variety of metabolites (Supplementary Table S8 [formerly S6]) and 
was not limited to the low number of nutrients used in each Biolog corresponding simulation case 
in Supplementary Table S2 (minimal media plus a target nutrient). Nevertheless, constraining the 
feasible uptake by the MAMBO derived metabolite distributions had substantial impact on 
achieved growth rates as can be compared to simulations when uptake rates would generally 
have been unconstrained (Fig. R1.8)  
 

 



 
 Figure R1.8: Predicted growth rates of clinical GEMs by unconstrained uptake rates with re-

spect to the MAMBO predicted available metabolite profiles. Blue: before A. fumigatus coloniza-
tion; orange: after A. fumigatus colonization. 

 
We added an explicit note of the elevated growth to our Results section: 
 
“Notably, the achieved absolute growth rates were higher than previously reported growth rates 
on, for example, minimal media20, but nevertheless indicated beneficial growth after functional 
output from the microbial community changed upon A. fumigatus colonization.” 
 
 
9- Providing a supplementary table containing all the constraints required for in silico simulation 
(exchange reactions bounds), and a file containing scripts that have been used for GEMs 
generation and analysis, would help the reproducibility of results. 
 
Response:  
We agree that this will be valuable for further modeling efforts. We added Supplementary Table 
S10 containing individual sheets for the constraints used in each simulation. This includes con-
straints for reproducing the results in Fig. 1f (FBA associated with growth data), Fig. 1g (FBA 
associated with gene essentiality data), Fig. 1h (FBA associated with normoxic and hypoxic 
growth data), Fig. 3c (FBA associated with metabolite consumption by the strain GEMs), Fig. 3d 
(FVA associated with strains’ growth in minimal media), Fig. 5b (FBA associated with growth of 
the clinical GEMs in MAMBO-derived media), and Fig. 5c (FVA associated with growth of the 
clinical GEMs in MAMBO-derived media). Furthermore, we deposited all our code to Github3 
alongside our manuscript. 
We added this information to our methods: 
 
“Simulation scripts for all analyses are at github: https://github.com/mohammadmirhakkak/A_fu-
migatus_GEM/, which also holds the MEMOTE report (github folder: blob/main/memote_re-
port.html). Simulation specific constraints are in Supplementary Table S10.” 
 
 
 
  

                                                 
3 https://github.com/mohammadmirhakkak/A_fumigatus_GEM 
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10- The criteria for defining the core and accessory genes (e.g. cut-off threshold, method, etc.) 
are not well defined. 
 
Response:  
We apologize for our insufficient description of our definition of the core and accessory Genes 
and Reactome. We modified the respective paragraph in the methods section: 
 
“By mapping the genomes for 252 strains to the Af293 A. fumigatus reference genome annotation, 
we identified metabolically relevant genes by requiring at least 95% sequence identity under the 
rationale that high sequence identity preserves metabolic function. Small deviations from the cho-
sen sequence identity threshold did not change the results. The similarity analysis was done by 
BLAST analysis of protein sequences using diamond (v0.9.24.125)63. The presence or absence 
of metabolic reactions was deduced for each strain using the associated gene-protein-reaction 
rules from the pan-GEM and the relevant identified genes. The metabolic core comprised reac-
tions and genes that occurred in all strains with other reactions and genes defining, respectively, 
the accessory reactome and genome.” 
 
 
11- It would be more informative to discuss the results of the ‘unique’ metabolites and genes 
found in the study. 
 
Response:  
We apologize if we did not fully grasp the intention of this comment. In case the reviewer means 
metabolites and genes that were not known to be relevant for A. fumigatus metabolism before, 
we note that our modeling endeavor was not tailored towards identifying novel A. fumigatus rele-
vant metabolic compounds, but rather to provide the most comprehensive metabolic knowledge 
(molded and summarized into our pan-GEM) which we further used to derive strain-specific A. 
fumigatus GEMs of clinical and environmental origin. Whenever appropriate and when we de-
scribe the number of metabolites or genes we modified the text by explicitly adding information 
about the total and unique number of GEM associated genes and metabolites.  
  

 



Reviewer #2 (Remarks to the Author): 
 
This paper aims to investigate the growth dependencies of the important human fungal patho-
gen Aspergillus fumigatus on the lung microbiome. This paper contains a wealth of information, 
but I do have some concerns about fundamental experimental techniques carried out, mainly for 
the phenotyping via omnilog. This is (at least, to my knowledge) the first time this has been used 
on Af I believe? If so, this is extremely novel and should be more of a focus!  
 
Response:  
We would like to thank the reviewer for these positive remarks about the novelty and richness of 
our study. 
 
 
1- However, it is not clear whether biological duplicates/triplicates were performed (although I 
didn't have access to the supplementary information) - replicates are needed to confirm the find-
ings. If they weren't performed, these need to be redone to include replicates. If they were, 
please include these data. 
 
Response: 
We apologize for the unavailability of our supplementary material in case this was due to us. We 
uploaded seven Supplementary Tables and they should have been available via the journal’s 
management system. During this revision process 3 further Supplementary Tables were added 
for a total of 10. Regarding the phenotypic microarray experiments, these were done either in 
triplicates or duplicates. We completed full triplicates for the sulfur plates to improve our accuracy 
for these resources also in response to further comments below. The exact number of replicates 
per tested C, N, P or S source is shown in the “Description” sheet of Supplementary Table S2. 
 
 
2- The methods for the omnilog need clarifying: refrained two of the strains because of incom-
patibility issue for pm04 and two incubation temperature for the phenotype 25 for 7 days and 
then move it to 37 for 3 days are issues I believe that could impact the results (more below on 
this). 
 
Response:  
Indeed we originally refrained from using two strains for our model calibration with respect to 
sulfur metabolites. In order to address all points raised by the reviewers and the editor we rein-
vestigated our pan-GEM and improved this weakness. After adding full triplicate information for 
the PM4 plate alongside a careful model re-evaluation, we used also all information of all strains 
for PM4 and substantially improved the accuracy for this plate (please cf. the updated Fig. 1f and 
Supplementary Table S2 of this revision).  
The incubation temperature was changed from 25°C to 37°C to mimic the change in temperature 
that occurs in the transition from the environment to the human host as used before (Slesiona, 
Gressler et al., 2012, Slesiona, Ibrahim-Granet et al., 2012, and Lambou et al.,2010). 
We modified our text to account for the improvements and better describe the necessity of our 
experimental design accordingly:  

 
Results: “The pan-GEM achieved 79% and 82% compatibility for, respectively, the tested phos-
phorus and sulfur sources (Fig. 1f, Methods).” 
 
 
 

 



Methods:  
Deletion of: “Resolving growth compatibility for two of our mutants (ΔniaD and ΔlysF, cf. Biolog 
phenotypic microarray) on sulfur would have caused a notable performance drop in the overall 
growth prediction for all investigated growth media and gene essentiality performance. Since 
growth accuracy on sulfur was very good for the remaining wild-type and two mutant strains and 
because optimizing growth on carbon and nitrogen sources was very good over all mutant data, 
we refrained from resolving ΔniaD and ΔlysF sulfur growth accuracy (Fig. 1b).” 
Addition of: “The incubation temperature was changed from the initial 25°C to 37°C for the phe-
notypic microarray experiments to mimic the change in temperature that occurs in the transition 
from the environment to the human host as used before64–66.” 
 
 
3- Why was additional dye added to the suspension with the existing dye in the plates? As the 
omnilog reader system is sensitive to the dye that would cause too much noise in the curves, 
skewing the results. Also, how was the omnilog optimised for Aspergillus? The omnilog protocol 
is optimised for yeast, so were there additional optimisation? 
 
Response:  
The Biolog phenotypic microarray plates did not contain the dye themselves. Instead, it was 
added to the media mix because variable dyes were used with the same base plate based on the 
input species being tested. The dye used (Redox dye D) was used based on consultation with a 
company representative as it was the dye that showed the best and most robust results with fungi. 
We modified our methods description to: 
 
“Phenotypic microarrays were performed using Biolog Phenotypic Microarray plates PM1, PM2, 
PM3, and PM4 (Biolog Inc., Hayward, CA, USA) prepared following the manufacturer’s protocol 
for filamentous fungi with the modification of 0.16 ml of Biolog Redox Dye D added to the master 
mix of each plate to ensure robust quantification of metabolic fungal activity.” 
 
 
Further comments on the omnilog methods include: 
4- Line 149 onwards: 'we manually resolved any incompatibility between our growth data' - 
needs more information. 
 
Response:  
We apologize for the unclear explanation of this part in the manuscript. This sentence aimed to 
explain the curation of the pan-GEM to increase its quality for more accurate predictions. The 
predictions of our draft reconstruction did not reflect the capability of A. fumigatus to grow on a 
number of different carbon, nitrogen, phosphor, and sulfur sources as identified by our phenotypic 
microarray experiments. Hence, to improve predictability of our model, we included more curation 
steps, e.g. gap-filling approaches to adjust the GEM predictions to the experimental data. We 
elaborated and improved this part in the manuscript with the addition of the following methods 
section, which we reference in the mentioned sentence now: 
 
“When our data showed growth in a certain condition that our pan-GEM could not predict, we 
investigated the direction of related reactions, potential gaps in the metabolic network, and con-
nectivity of the involved compartments. When our data showed no growth under a given condition 
but our GEM predicted a nonzero growth rate, we investigated if the metabolic reactions in our 
initial, draft pan-GEM were not associated with the genome and needed to be removed. We used 
similar curation efforts to resolve incompatibilities in the gene-essentiality data.” 
 

 



5- Line 531/532: 'we refrained from resolving sulfur growth accuracy' - why? Earlier lines state is 
would have caused a notable performance drop - that is concerning. Is this an issue with the 
platform or the mutants, or another issue? Not resolving raises concerns on the findings. 
 
Response:  
We are very thankful to the reviewer for this constructive comment. We investigated the issue 
from two aspects: I) capability of our pan-GEM to predict growth/ no growth based on the growth 
data; II) precision of produced phenotypic microarray growth data. 
I) We investigated our pan-GEM whether further curation can increase its accuracy to predict the 
growth/ no growth conditions. We found Aminoacetaldehyde in cytoplasm causing a blocked re-
action, i.e., R2596: Taurine, 2-oxoglutarate: O2 oxidoreductase (sulfite-forming); Taurine + 2-Ox-
oglutarate + Oxygen --> Sulfite + Aminoacetaldehyde + Succinate + CO2, in Taurine and Hypotau-
rine metabolism (Supplementary Table S9 [formerly S7]). 
According to the KEGG database, the compound is associated with three enzymes, i.e., 
1.1.1.276, 1.1.1.387, and 1.14.11.17. Our reconstruction encompasses only 1.14.11.17 which is 
only responsible for catalyzing the identified blocked reaction. As the other two EC numbers do 
not occur in the reconstruction and 1.14.11.17 is a specific enzyme, we concluded that there is 
no missing reaction metabolizing Aminoacetaldehyde in our network through different metabolic 
routes. Moreover, searching in the literature, we did find experimental results indicating secretion 
of the compound from A. fumigatus.  
Considering the aforementioned inspections and following the protocol for generating high-quality 
genome-scale metabolic models (Thiele & Palsson 2010), we added a Demand reaction for this 
particular compound to our reconstruction, i.e., DM_C06735[c], to make the reaction able to carry 
flux. Of note, the same demand reaction is also present in other high quality reconstructions avail-
able in the BiGG database (http://bigg.ucsd.edu/) such as different Escherichia coli strains and 
Shigella species GEMs. This curation resulted in enhancement of the GEM to predictions for 
sulfur sources by 8% in average for all four mutants and the wild-type (73% accuracy). The accu-
racy for the problematic mutations, i.e., ∆lysF and ∆niaD, increased to 46%. Since this value was 
still below 50% and thus inadequate, we checked the precision of our Biolog experiments de-
scribed in bullet point II) below. Of note, we regenerated all the strain GEMs and repeated all 
related analyses and figures due to this modification in the pan-GEM. Although a number of fig-
ures had to be recomputed, this did not affect the main results and conclusions in our study. The 
only notable difference we identified were different sets of machine learning selected reaction 
features to differentiate clinical from environmental strains affecting both the decision tree (up-
dated Fig. 3c) or the necessary number to hold a high precision-recall curve (cf. updated Fig. 3d) 
which reduced to 21 reactions (cf. Supplementary Table S5 [formerly S4]). However, our main 
observation that chorismate and amino acid-associated reactions are involved in the predicted 
differentiation of simulated strain-GEMs still holds. Hence, our updated prediction appeared ro-
bust with respect to these metabolic components, despite the involved sensitivity and dependence 
of predictions on even a few, but apparently relevant model changes. Considering the new ar-
rangement of the figures in this revision, the following figures were changed: Fig. 1d-f, Fig. 2b,c, 
Fig. 3a,c,d, Fig. 5b-d. We updated our text for the machine learning descriptions accordingly:  
 
“Notably, the presence of chorismate lyase alone allows to categorize 93% of all strain-specific 
GEMs correctly. Chorismate lyase activity is linked to differential activity in the shikimate pathway, 
which is associated with virulence in A. fumigatus24,25. Combining the ability to convert chorismate 
and glutamine to anthranilate, pyruvate and glutamate, with amino acid and energy metabolism-
associated conversions of methionine, succinate or tryptamine, and the ability to take up and grow 
on aspartic acid, appeared sufficient for strain origin classification. These reactions yielded met-
abolic discriminators that were complementary to the sole presence/absence statistical analysis 
of metabolic reactions in our strain-specific GEM collection (Fig. 3a,b). [...] In addition to previously 

 



highlighted chorismate-associated reactions, the ML-model also selected features associated 
with amino acid and energy pathways, especially in the mitochondrial compartment. These in-
cluded, for example, homoserine succinate-lyase, ribulose-phosphate 3-epimerase and succin-
ate:CoA ligase, suggesting the contribution of altered amino acid and energy metabolism to dif-
ferentiation of clinical and environmental A. fumigatus strains.” 
 
II) In order to increase the precision of our experiments, we completed third replicates for all sulfur 
source associated Biolog experiments for all used strains (except MET2 which was already done 
in triplicates in the original submission, cf. response to point 2, reviewer 2 above and Supplemen-
tary Table S2). Consequently, this includes full triplicates of tested sulfur sources in plate PM04 
for Af293, CEA17, ∆lysF, and ∆niaD in our revision. Next, we repeated our statistics with Dunnett’s 
tests to compare respective negative controls with all the tested sulfur sources per strain. Signif-
icantly higher growth signals than negative controls were taken as growth conditions (p-
value ≤ 0.05). Adding these complementary experiments improved the accuracy of our GEM pre-
diction for sulfur sources to a convincing level of 82% on average across all the mutants and the 
wild-type. The respective accuracy for ∆lysF and ∆niaD increased to 77% and 70%, respectively. 
We subsequently incorporated all the results for the sulfur sources and updated the new Fig. 1f 
and simplified our results description accordingly:  
 
Results: “The pan-GEM achieved 79% and 82% compatibility for, respectively, the tested phos-
phorus and sulfur sources (Fig. 1f, Methods).” 
 
 
6- Line 549: why grown at 25 degrees? and then transfered to higher temperature (37 degrees) 
for 3 days? This could be responsible for growth changes seen 
 
Response:  
We adhered to this setup, since it reflects best the knowledge of the community in letting Asper-
gillus strains pre-grow in 25°C, because it mimics the transition from environment to human lung. 
Growing the strains this way also allowed us to standardize the results with how strains were 
grown prior to infections using a mouse model. Please see also Slesiona, Gressler et al. (2012), 
Slesiona, Ibrahim-Granet et al. (2012), and Lambou et al. (2010). 
We modified our methods description to better justify our experimental setup with showing our 
phenotypic microarray data for the first time (cf. response to point 2 of Reviewer 2):  
 
“We switched the temperature from the initial 25°C to 37°C to adhere to community-acquired 
standards64–66, mimic the change in temperature from environment to human host, and prevent 
fungal filamentation during growth experiments.” 
 
 
7- Line 550: why was uracil added? 
 
Response:  
One of the mutants (ΔpyrG) is a uridine auxotroph and required supplementation with uracil to 
grow. For standardization, all strains were grown on the same media of Malt agar containing 
uracil. We added this information to our methods: 
 
“Uracil supplementation was required for growth of the CEA17 pyrG- strain (a uridine auxotroph) 
and was added to all media to ensure comparable growth.” 
  

 



8- The bioinformatics analysis seems comprehensive, but I do question why only 252 of the 300 
genomes in Barber et al. were mapped to Af293 for identification of metabolically relevant genes 
- what is the rationale for this reduced number? Surely additional information would yield a 'gold 
standard' set of genes? 
 
Response: 
We used our bioinformatic approach to build and cross-check 48 additional strain-GEMs with our 
252 GEMs. Of note at the time of creating our strain-GEMs and subsequent studies we did not 
have access to these 48 additional genomes from different locations outside of Germany, which 
were added during the revision process of our Barber et al. (2021) study. Following your comment, 
we reconstructed the GSMMs of the remaining 48 strains and we analyzed whether they would 
yield or improve separation by comparing the Jaccard distance (Fig. R2.8) of the affected meta-
bolic reactions to all other 252 models in resemblance of our hierarchical clustering of Jaccard 
distances in Fig. 2c. 
 

 
Figure R2.8: Jaccard distance heatmap across considered GEMs from German landsides com-

pared to further international strains. 
 
We neither observed any improvement in differentiating clinical from environmental strains nor 
did we see a separate cluster of these additional strain models by Jaccard distance over all met-
abolic reactions. The notion of a gold standard of a metabolically relevant gene set is certainly 
valuable. However, we identified only one additional metabolically relevant gene 
(AFUA_6G11210, 3-oxoacyl-(acp) reductase), which did not yield any new metabolically relevant 
reaction activity, as isozymes exist in the already existing 252 models. Henceforth, given that 
reaction-wise these models were not distinct from our previous 252 strain-GEM set and the met-
abolically relevant gene gold-standard was virtually not affected, we refrained from including these 
additional models in our setup. We explicitly mention metabolically relevant genes in our discus-
sion now: “This strain-specific A. fumigatus GEMs platform is publicly available (BioModels ID 
MODEL2211100001) for investigating the metabolically relevant A. fumigatus geneset and its 
impact on the metabolic diversity influencing growth rate capabilities, metabolic adaptation and 
pathogenicity in this important human fungal pathogen.”  

 



9- How reliable are GEMs compared to experimental metabolomics? 
 
Response: 
In fact, genome-scale metabolic modeling became a serious alternative to e.g. kinetic modeling 
for host and disease modeling in light of limited knowledge of intricate metabolic mechanics and 
parameters. Without requiring kinetic parameters and solely based on stoichiometric information, 
metabolic modeling enables analyses at the genome-wide scale for simulating and predicting 
metabolism. It could celebrate numerous victories to not only improve product yield with simple 
bacterial organisms, but also to understand metabolic pathway deterioration – and potential re-
covery – in human disease (cf. Yang et al., 2018, Björnson et al., 2015, Agren et al.,2014, or Wu 
et al., 2017 to name a few).  
To the best of our knowledge the present study is the first work that tried putting GEMs on strain 
level resolution for an important fungal, and thus eukaryotic, pathogen. As with other pioneering 
works, this came with a number of obstacles that needed to be overcome such as high quality 
GEM generation for the fungus, since neither an adequate base (or template) model nor a suffi-
cient data or even established naming convention was available when we started our work. During 
our revision we substantially further improved the accuracy of our GEMs for predicting phenotypic 
growth data. Furthermore, following the excellent suggestion of Reviewer 1 we evaluated the 
quality of constructed GEMs using the MEMOTE pipeline. MEMOTE is a software suite ensuring 
metabolic models adhere to metabolic modeling community standards. Our pan-GEM, of which 
all strain-specific GEMs are derived, scored 78% and outperformed the consensus Yeast v8.6.2 
GEM (Lu et al. 2019), a highly curated fungal metabolic model (compare answer to reviewer 1, 
point 4).  
One of our findings when we reconstructed the 252 strain-specific models was the high variability 
observed in the amino acid potential (see section “A. fumigatus strains show notable accessory 
reaction content”). Therefore, we cultivated 20 A. fumigatus strains on A. fumigatus minimal media 
for this revision. By acquiring and analyzing targeted amino acids found in the resulting superna-
tants after 24 hr, we found a considerable variability of metabolites that reflect the metabolic var-
iability of at most 40% shared metabolic reactions across all strain-GEMs. We added this infor-
mation to Supplementary Table S4 and in our results: 
 
“The large variability among strains in amino acid metabolism was confirmed by cultivation and 
targeted metabolomics profiling of 20 A. fumigatus strains (Supplementary Table S4).” 
 
 
10- Overall, whilst this contains a lot of information that would be relevant to the mycology 
community, I found the paper hard to follow and read, being confusing in a number of places. 
For instance, the Results are hard to follow, and the sections seem to jump with no flow. I 
appreciate that word limits are placed on these manuscripts, but I would suggest a hard edit to 
enable an easier read to enhance these data presented. 
 
Response:  
We thank the reviewer for this remark which certainly may affect how readers perceive our work. 
During this revision we heavily modified our text, including clarification of multiple sections in 
response to this and the other reviewers. In addition, we included a professional for proofreading 
into our revision process and modified our manuscript substantially without changing the content. 
We added our gratitude for professional editing towards Chris Tachibana for doing so in the 
acknowledgements. 
 
 
 

 



Reviewer #3 (Remarks to the Author): 
 
Mirhakkak et al. 
A pan-genome resembling genome-scale metabolic model platform of 262 Aspergillis fumigatus 
strains reveals growth dependencies on the lung microbiome. 
 
1- Metabolic models are a prevalent topic of research. Within this theoretical frame the authors 
applied methods that are state of the art (lines 445 – 545). According to the reviewer’s gut 
feeling the field still looks like a fancy Glass Bead Game. 
 
Response:  
We would like to thank the reviewer for finding our methodology state of the art. We understand, 
the in silico aspects of metabolic modeling may appear complex. We are confident, however, that 
they have their merits. Not only did we reconstruct high quality models using vast amount of data 
for calibration (that may be further used by the scientific community for a number of different 
applications), but we also showed translational aspects by combining in silico prediction and ex-
perimental data.  
Our simulations pinpointed to considerable metabolic variations of the strains, both shown by 
differences of the individual strain-GEMs and thus their metabolic capabilities. We showed from 
multiple angles the importance of aromatic amino acids and suggested known and novel meta-
bolic targets for potential drug interventions. By investigating fungal growth on minimal, but also 
on cystic fibrosis-mimicking media we finally could show that clinical strains may be capable to 
modulate their lung microbial environment towards improved growth. Towards this aim we in-
cluded e.g. analysis of MAMBO-derived metabolite profiles, FVA based flux activity analysis as 
well as amino acid-supplemented growth experiments. Notably, we added tryptophan growth and 
metabolic activity experiments given its reported importance for virulence and the closely con-
nected biosynthetic anabolic pathway to phenylalanine, which we already investigated in our orig-
inal submission (Zelante et al. 2021, Choera et al., 2018).  
Moreover, during the revision of our manuscript we also investigated clinical metadata of our 
cystic fibrosis samples including the forced expiratory volume (FEV) parameter. This readout for 
the functional capacity of the lung correlated positively with module 2 of our identified lung micro-
bial species confirming that the in silico predicted metabolic dependencies of A. fumigatus by lung 
bacteria translate to actual worsening of the patient health status. Therefore, the integration of 
metabolic modelling with shotgun metagenomics data allowed us to support our initial hypothesis 
that identifying drug targets based on lethality data from in vitro gene deletions in A. fumigatus is 
a risky strategy since A. fumigatus’s growth can be probably rescued by obtaining the necessary 
metabolites from the lung bacteria. Therefore, multimodal strategies targeting both metabolic 
genes as well as transporters of A. fumigatus would probably be more efficient drug interventions 
(Discussion, lines 458-466). 
In summary, we believe metabolic model simulations at the genome-scale are far away from being 
a glass bead game. Quite the contrary, they can be used to shed light on metabolic components 
that otherwise remain infeasible to study by experiment alone. Given our extensive efforts for this 
revision we hope that we could address all the reviewer’s requests. Our addition of further anal-
yses and experimental data substantially strengthened our manuscript and we are grateful for the 
reviewer’s thoughts on improving our manuscript. 
 
 
 
  

 



Please find below my comments on methods, Figures and Tables that need substantial 
improvements. In other words, I will not comment on the theoretical framework but will confine 
myself to the bread-and-butter methodology. 
 
2- Lines 551-552, lines 682-686. Demonstrate the purity of your spore solution. 
 
Response:  
Fig. R3.2 is the microscopic image demonstrating the spore purity of A. fumigatus in our 
experiments. We added a notion to both methods sections: 
 
“Spore purity was assessed and confirmed by microscopy.” 
 

 
Figure R3.2: Microscopic image of A. fumigatus conidia suspension. 

 
 
3- Line 554. Provide the source of the phenotypic microarrays. 
 
Response: 
We apologize for this missing information. The phenotypic microarrays were purchased from 
Biolog Inc. (Hayward, CA, USA). Adapted methods description: 
 
“Spore solutions were adjusted to a transmittance of 75%. Phenotypic microarrays were 
performed using Biolog Phenotypic Microarray plates PM1, PM2, PM3, and PM4 (Biolog Inc., 
Hayward, CA, USA) prepared following the manufacturer’s protocol for filamentous fungi, 
including the addition of 0.16 ml of Biolog Redox Dye D to the master mix of each plate to quantify 
fungal metabolic activity.” 
 
 
 
 

 



4- Lines 565-606. 
The clinical literature differentiates between 
- Airway colonization with A. fumigatus, 
- ABPA 
- aspergillome 
- Invasive aspergillosis. 
Please provide the individual patient’s diagnosis in a Table in the supplement and link with the 
respective sputum sample. 
 
Response:  
We thank the reviewer for the remark and we added this information accordingly to our 
Supplementary materials (Supplementary Table S7, updated order). Of note, all patients were 
considered as colonized with A. fumigatus, if we could cultivate the fungus from the sputum 
samples. Further disease classification was neither tracked, nor was it necessary for our 
purposes, where we aimed at exploring the lung microbiome affected by A. fumigatus presence 
(or not). ABPA, aspergillome and pulmonary invasive aspergillosis are certainly important 
manifestations of A. fumigatus-driven disease. Since we identified first colonisations with 
A. fumigatus we considered it very unlikely, our patients suffered from aspergillome or IPA. We 
could not rule out ABPA due to the lack of tracked data and hence, we opted for categorizing 
these patient samples as positive A. fumigatus culture. Elucidating these disease types was out 
of the scope of our current manuscript, which focused on providing and applying our strain 
resolved A. fumigatus genome-scale metabolic models, but warrants further studies in the future. 
 
 
5- The authors collected spontaneously expectorated sputa. This mode of sampling is prone to 
contamination by the oropharyngeal flora. The leading symptom of ABPA is bronchial 
obstruction. Hence, the mode of drainage of sputum may be shaped by the obstruction of the 
conducting airways, which may impair comparability of sample pairs collected prior and during 
A. fumigatus detection. Authors should provide the patient’s spirometry data at the days of 
collection. 
 
Response: 
We appreciate the reviewer’s view on expectorated sputa and potential contamination. We did 
not aim for identifying ABPA, however, but only needed detection of A. fumigatus colonization 
and subsequent differentiation of fungus positive and negative samples for our downstream 
strain-GEM analysis. For this we considered the expectorated sputum as a gold standard for 
microbiological diagnostic as reported also elsewhere (cf. Jones et al., 2021 or Xiao et al., 2018). 
Following the reviewer’s suggestion, we added Supplementary Table S7 (updated order) 
containing clinical data of the CF patients including age, BMI, sex as well as PFTFEV1 (forced 
expiratory volume-one second in pulmonary function testing) and PFTFEV1pred (percent 
predicted PFTFEV1). Spirometry data is shown as “FEV1pred” (if available). We noted this 
addition in our methods and also added a piece of caution mentioning the oropharyngeal flora 
contamination in the results: 
 
Methods: “Supplementary Table S7 has clinical data on the cystic fibrosis patients including age, 
body mass index, sex, forced expiratory volume-one second in pulmonary function testing 
(PFTFEV1) and percent predicted PFTFEV1 (PFTFEV1pred).” 
 
Results: “Although spontaneous expectoration of sputum is frequently used for sample 
acquisition29,30, this practice may introduce contamination from oropharyngeal flora.” 
 

 



6- How did you define A. fumigatus colonization (line 572)? 
 
Response:  
Colonization was defined by positive culture from the specimen of our sputum samples. Sputum 
samples were prepared for microscopy testing using Lactophenol Anilin Blue solution to detect 
fungi. In parallel, samples were plated on different agar: Columbia-Agar (with 5% sheep blood) 
(BD Diagnostic, Heidelberg, Germany), Chocolate-Agar (BioMérieux, Nürtingen, Germany), 
McConkey- Agar (BioMérieux, Nürtingen, Germany), Burkholderia cepacia-Spezial-Agar (7 days, 
36°C) (BD Diagnostic, Heidelberg, Germany), and Sabouraud- Agar (7 days, 36°C) (BD Diagnos-
tic, Heidelberg, Germany). Additionally, two media were used for anaerobic isolation (36°C): 
Schaedler-Agar (BioMérieux, Nürtingen, Germany) and Kanamycin-Vancomycin-Agar (BD Diag-
nostic, Heidelberg, Germany). Since all samples included in this study showed the growth of 
A. fumigatus on at least one of those agar plates, further testing by e.g. ITS sequencing was not 
applied. We added this piece of information to our methods: 
 
“Sputum samples were prepared for microscopy using lactophenol anilin blue solution to detect 
fungi. In parallel, samples were plated on: Columbia agar (with 5% sheep blood) (BD Diagnostic, 
Heidelberg, Germany), chocolate agar (BioMérieux, Nürtingen, Germany), McConkey agar (Bio-
Mérieux, Nürtingen, Germany), Burkholderia cepacia special agar (7 days, 36°C) (BD Diagnostic, 
Heidelberg, Germany), and Sabouraud agar (7 days, 36°C) (BD Diagnostic, Heidelberg, Ger-
many). Two other media were used for anaerobic isolation (36°C): Schaedler agar (BioMérieux, 
Nürtingen, Germany) and kanamycin-vancomycin agar (BD Diagnostic, Heidelberg, Germany). 
Colonization was defined as positive culture from a specimen from the sputum samples on at 
least one of the agar plates.“ 
 
 
7- Sensitivity, specificity, validity and reliability of airway metagenome data critically depend on 
sample collection and processing (see e.g. Gut Pathogen 2016;8:24; BMC Biol 2014;12:87; Mol 
Ecol Resourc 2019;19:982-96). Please describe the 
– mode of sampling, 
– the latent period between sampling and freezing, 
– the standard cleaning procedure of the laboratory environment, 
– number and handling of negative controls during DNA extraction and library preparation. 
 
Response:  
Samples were obtained by spontaneous expectoration during routine visit in the CF center and 
were frozen within 24h after reception at the microbiology department. Regarding the cleaning 
procedure and laboratory environment, we delivered our samples to Novogene (https://en.novo-
gene.com/) for metagenomic sequencing, The establishment of the quality management system 
of the Novogene laboratory is in accordance with the CAP laboratory certification, the international 
standard ISO 15189:2012 "Guidelines for the Quality and Capability of Medical Laboratory" and 
the international standard ISO 15190:2003 "Guidelines for the Safety Approval of Medical Labor-
atories". These ensured a clean laboratory environment. The whole process from DNA extraction, 
quality check, library construction to library pooling does not require intervention by the operators 
and is automated and intelligent, thus ensured a clean sequencing procedure. 
DNA extraction and library preparation were performed by Novogene UK. During library prepara-
tion, we had a negative control (ethidium bromide solution) for quality check for every 11 samples, 
and it followed exactly the same handling procedure as our experimental samples. For the auto-
mated DNA extraction, there was no negative control. We modified our methods description ac-
cordingly: 

 



Cystic Fibrosis sample acquisition: “Samples were frozen within 24 hr after reception at the mi-
crobiology department.” 
 
Library preparation and DNA sequencing: “For quality checking, 1 ethidium bromide negative 
control was added for every 11 samples and treated with the same handling procedure as the 
experimental samples.” 
 
 
8- Lines 615-617. Why did you use Kranken2? KrakenUniq is a more accurate metagenome 
binning tool surpassing Kraken and Kranken2. Back up your k-mer approach by an index classi-
fier such as Centrifuge or MetaPhlAn3. 
 
Response:  
We thank the reviewer for this suggestion. We agree that Kraken 2 has a slight false-positive rate 
that KrakenUniq does not have. However, as documented by the official guidelines 
(http://ccb.jhu.edu/software/choosing-a-metagenomics-classifier), KrakenUniq and Kraken 2 are 
uniquely useful depending on the project goal. For diagnosis of infections, where the goal is to 
identify a very small number of reads, KrakenUniq is superior to Kraken 2. This, however, was 
not the goal of our study. Given that Kraken 2 has also been successfully applied in many large 
microbiome studies (Almeida et al., 2021, Stacy et al., 2021, McCulloch et al., 2022) and in bench-
marking studies for metagenomic profiling tools (with good performance) (Sun et al., 2021, Ye et 
al., 2019), we opted to keep our Kraken 2-derived results (including abundance and prevalence 
filtering).  

Following the reviewer’s valuable suggestion, we also assessed the reliability of and 
backed up our Kraken 2 results by applying KrakenUniq and Centrifuge, a non-Kraken index clas-
sifier (Table R3.5a and R3.5b below, updated Supplementary Table S6 [formerly S5]). The top 10 
identified most abundant species were exactly the same for Kraken 2 and KrakenUniq, while for 
Centrifuge, 9 out of top 10 abundant species were the same (shown in Table R3.5a below). Fur-
thermore, the top 10 abundant genera from Kraken 2 were also found by Centrifuge, while for 
KrakenUniq 9 out of 10 were the same (shown in Table R3.5b below). For all 5688 species that 
Kraken 2 detected (without any filtering), 4822 species (85%) can be detected by KrakenUniq 
(total 4950 species), while 4328 species (76%) can be detected by Centrifuge (total 4684 spe-
cies). For the species that we listed in Supplementary Table S6 (after filtering), 574 out of 598 
species (96%) that Kraken 2 detected could also be detected by KrakenUniq, while Centrifuge 
also detected 445 (74%). We adapted our manuscript and added these additional results accord-
ingly:  
 
Results: “Despite differences among the patient cohort, starting biomaterial, and sequencing 
method, the taxonomic annotation of the 10 most abundant genera (Fig. 4a, Supplementary Ta-
ble S6) showed striking similarities to two recent studies. In those papers, the lung microbiome of 
A. fumigatus-infected and control patients was investigated using 16S rRNA sequencing of either 
sputum samples or bronchoalveolar lavage31,32. The genera were also found using Centrifuge as 
an alternative taxonomic profiling algorithm, while KrakenUniq also identified 9 of the 10 genera 
(Methods).” 
 
Methods: “KrakenUniq (v0.5.7, default parameters) and Centrifuge (v1.0.4, default parameters) 
were used to assess reliability and for comparison of Kraken 2 results.”  
 
  

 



Table R3.5a: Top 10 detected species by different classifiers (by relative median abundance). 

Kraken 2 KrakenUniq Centrifuge 
Haemophilus parainfluenzae Streptococcus mitis Streptococcus mitis 

Streptococcus mitis Haemophilus parainfluenzae Haemophilus parainfluenzae 
Rothia mucilaginosa Rothia mucilaginosa Prevotella melaninogenica 

Prevotella melaninogenica Prevotella melaninogenica Rothia mucilaginosa 
Staphylococcus aureus Staphylococcus aureus Staphylococcus aureus 

Neisseria mucosa Veillonella atypica Veillonella atypica 
Streptococcus pneumoniae Neisseria mucosa Streptococcus pneumoniae 

Streptococcus oralis Streptococcus oralis Streptococcus oralis 
Veillonella atypica Streptococcus pneumoniae  Veillonella dispar 
Veillonella parvula Veillonella parvula  Veillonella parvula 

 
 

Table R3.5b: Top 10 detected genera by different classifiers (by relative median abundance). 

Kraken 2 KrakenUniq Centrifuge 
Streptococcus Streptococcus Streptococcus  

Prevotella Prevotella Haemophilus 
Haemophilus Haemophilus Prevotella 

Veillonella Veillonella Veillonella 
Rothia Rothia Rothia 

Neisseria Neisseria Neisseria 
Gemella Gemella Gemella 

Staphylococcus Staphylococcus Staphylococcus 
Pseudomonas Actinomyces Pseudomonas 
Actinomyces Capnocytophaga Actinomyces 

 

 
9- Lines 617-618. Low abundance species are meanwhile known to be crucial for the metabolic 
competence of an airway metagenome. Please process your datasets with a tool that removes 
false negative and false positive assignments. 
 
Response:  
Since airway microbiome is a relatively low-biomass environment compared to the gut microbiota, 
we preferred to use a sensitive approach as given by Kraken 2. As a result, this will inevitably 
introduce false positive species, as pointed out by the reviewer as well as by a previous study 
(LaPierre et al., 2020), which found that Kraken 2 can produce false positive species that are low-
abundant. Without an experimental negative control during the sampling step (that we 
acknowledge as a limitation, see below), it is difficult for us to flag the true false positive species. 
As mentioned above, even the use of KrakenUniq that was claimed to be well suited to help filter 
false positives still detected 4950 species in total. Thus, to counteract and compensate this short-
coming we decided to remove low-abundance species to reduce the effect of false positive. Of 
course, we cannot rule out that this approach will possibly remove some low-abundance species 
that are actually present. In fact, the MAMBO algorithm we used for predicting the lung microbi-
ome most supporting metabolite profiles relies on Pearson’s correlation and thus weighs nutri-
tional needs of highly abundant species higher than those of low abundance species. Since our 
downstream strain-GEM simulations relied on the metabolite profiles rather than the detected lung 
microbiome profile, this also increased the credibility of our analysis. Although the actual lowly 
abundant species are of less important to us than potentially to other studies, removal of low 

 



abundant species involving applying Kraken 2 has also been used before (Peabody et al., 2015, 
LaPierre et al., 2020). We extended our results and methods to address these points: 
 
Results: “Our study lacked true negative controls, so to minimize the chances of detecting false-
positives species, we applied abundance and prevalence filters and compared detected genera 
and species using two alternative tools to ensure robustness in lung microbe detection (Meth-
ods).” 
 
Methods: “KrakenUniq (v0.5.7, default parameters) and Centrifuge (v1.0.4, default parameters) 
were used to assess reliability and for comparison of Kraken 2 results.” 
 
 
10- Lines 615-618. Unfortunately, reference eukaryotic genomes are often contaminated, mak-
ing it hard to detect and quantify eukaryotic microbes in shotgun metagenomic data. You may 
use a tool like EukDetect, which is specifically built to deal with these problems. In the context of 
Aspergillus, one need to know whether patients’ samples contained other fungi like 
Scedosporium that are suspected to be clinically more relevant for the ABPA phenotype than A. 
fumigatus. 
 
Response:  
We agree that reference eukaryotic genomes are frequently contaminated. In this manuscript, 
shotgun metagenomic data were used only to detect and quantify prokaryotic microbes, whereas 
colonization of A. fumigatus was confirmed by cell culture. We also followed the reviewer’s rec-
ommendation and applied EukDetect to detect other eukaryotic microbes in our samples, how-
ever, in most samples no fungi were detected by EukDetect including Scedosporium. We added 
the additional test by EukDetect to our methods: 
 
“We applied EukDetect (v1.3)76 to test and confirm that patient samples contained no other fungi 
such as Scedosporium that may be clinically relevant to A. fumigatus-associated disease pheno-
types such as allergic bronchopulmonary aspergillosis.” 
 
 
11- Line 631. How did you define infection with A. fumigatus? 
 
Response:  
As pointed out in the response to point 6 by this Reviewer we defined infection by a positive 
culture from the specimen of our sputum samples in at least one of the tested agar plates and 
clarified this also in the manuscript.  
 
 
12- Line 629. The rationale for the thresholds of prevalence and abundance filters should be 
given. If the dataset is appropriately curated, less prevalent and less abundant taxa can be in-
cluded. 
 
Response:  
The reviewer has expressed also above his/her concern of including false positives during our 
taxonomic annotation. Balancing not missing true positives and including false positives when 
using a sensitive method like Kraken 2 for taxonomic profiling requires some compromises. Ac-
cording to previous research studies not using prevalence and abundance filters (LaPierre et al., 
2020) can produce many false positive species that are low-abundant. In order to reduce the 
effect of false positive species, we decided to use a prevalence and abundance filter. Our choice 

 



of abundance thresholds was similar to other papers (Beghini et al., 2021, Erawijantari et al., 
2020) and our choice for the threshold of prevalence filter is also commonly used. We added this 
notion to our methods: 
 
“Low-abundance species were removed at cutoff = 0.1% (Supplementary Table S6) as in similar 
studies74,75.” 
 
 
13- Figure 3A. Burkholderia spp. and particularly Sphingomonas spp. are rare members of the 
CF airway community. Demonstrate that Af positive patients at the Heidelberg CF clinic are 
more frequently harboring these proteobacteria than patients seen at any other CF clinic in the 
world. 
 
Response:  
We thank the reviewer for pointing out this potential issue and agree on Burkholderia spp. and 
Sphingomonas spp being rare members of the CF airway microbiota community.  According to a 
previous study, the CF airway microbiota community is often dominated by one or a few principle 
colonizers/pathogens (Feigelman et al., 2017). Similarly, in our cohort, Burkholderia spp. and 
Sphingomonas spp. have low prevalence (22 out of 80 samples had a relative abundance above 
0.1% for Burkholderia, while Sphingomonas was above 0.1% relative abundance in only 15 sam-
ples) but were highly abundant in only few patients, which biased the calculation of mean relative 
abundance of all samples. To avoid this issue and potential skews in our data visualizations, we 
have switched to a more robust median relative abundance to obtain top-abundant taxa and cre-
ate a new Fig. 4a (shown below). 

 
Updated Figure 4a (3a in the original submission). 

 
 
 
  

 



14- Figure 3B shows numerous taxa that have not been detected in previous 16S rRNA or met-
agenome studies of CF airway specimens. Verify these species by another pipeline (Centrifuge, 
MetaPhlAn3) and by a tool that flags false positive and false negative taxonomic assignments. 
In other words, the datasets need to be curated. The reviewer assumes that the figure shows 
about 17, 14, 7 and 9 false positive assignments in modules 1, 2, 3, 4, respectively. 
 
Response:  
As in several of the comments above the reviewer refers to the accuracy of the taxonomic anno-
tation and we believe we have already addressed it in comment 8 by including more taxonomic 
annotation tools. Nevertheless, as recently reviewed (Thornton et al., 2022), most of previous CF 
airway studies were based on 16S, which has lower taxonomy resolution than shotgun meta-
genomics. For the limited metagenomes studies, the sample size was also smaller than ours, 
which is another possibility why we see new taxa in our analysis. Having said that we also followed 
the reviewer suggestion to increase the trust in our approach. We verified our identified species 
by KrakenUniq and a representative index classifier (Centrifuge), where 95 (66) species out of 96 
species in the network can be detected as well, respectively. We are not aware of a tool that can 
flag accurately true false positive/negatives nor how the reviewer proposed false positives by 
simply looking into the modules. However, to provide confidence assessments of the taxonomic 
assignments, we adopted a voting system when visualizing the species in the network, where 
species annotated by different numbers of tools were sized differently (as shown in the new Fig. 
4b below, where larger size represents several supporting tools). We included this additional 
piece of information into an updated Supplementary Table S6 (formerly S5), now detailing the 
species detection by different tools. 
 Of note, unlike the research into gut microbiota, admittedly lung microbiome is still in its 
infancy (hinted by 3278 available papers listed at pubmed searching for “metagenomics” together 
with “gut” compared to 295 papers using the search terms “metagenomics” and “lung”). Future 
studies with more appropriate designs, quality controls and higher sequencing depths with larger 
number of samples are definitely needed to widen our knowledge on the exact nature of lung 
microbe communities and to establish the lung microbiome gene catalog. We improved Figure 
4b, highlighting now species detected by multiple tools and reflected this with the following figure 
4b caption addition:  
 
 “Larger node size indicates species detected by multiple tools for taxonomic profiling.” 
 

 
Updated Figure 4b (formerly 3b). 

 



15- Figure 4. Authors should discuss why the first two dimensions in the PCA just explains 13-
14% of the variance. 
 
Response:  
Following the suggestion from the reviewer, we have added the text below to our manuscript. The 
explained variance in our study is not anything unique and there are other studies of microbiome 
and metabolites that showed similar levels of explained variance (e.g. Wang, et al., 2019, Fig. 
1b). We added a note in our results towards this point: 
 
Results: “Of note, more than 82% of the variance could be explained by the first 50 dimensions 
of the principal component analysis. The first two components explained fewer, albeit significant, 
changes in metabolites between patient samples before and after A. fumigatus infection despite 
the high complexity of these data.” 
 
 
16- Table S1. ATP demand. Provide error estimates and restrict numbers to physically plausible 
digits. 
 
Response:  
We rounded the respective numbers to two decimal places except the values for DNA and RNA 
in column C as they are were an order of magnitude lower compared to the other reported values. 
 
 
17- Table S2. Quantify the term ‘optimal’ for growth prediction and explain your terminology in 
more depth in the Read me section. 
 
Response:  
We apologize for the unclear explanation of the term ‘optimal’. The term is related to the type of 
mathematical solution in constraint-based metabolic modeling (CBM) and flux balance analysis 
(FBA, Orth et al. 2010). To “solve” a genome-scale metabolic model, a target objective function 
(commonly biomass) needs to be defined. This is usually solved by FBA, meaning that it is 
maximized (less common: minimized). We extended our explanation accordingly and revised the 
text in the related Supplementary Table S2:  
 
“'optimal' indicates that the maximization of growth rate by flux balance analysis was feasible 
given the set constraints, i.e. the allowed influx of metabolites.” 
 
 
18- Table S3. Metadata of the A. fumigatus strains should be given (date of collection, habitat, 
geographic origin, collector (name or institution)). I did not find this standard information in the 
authors’ ref. 6 (Barber et al., 2021) cited throughout the table. 
 
Response:  
Following the reviewer’s suggestion, we added the requested information in Supplementary Table 
S3, sheet “afu_isolate_metadata”, in separate columns. This includes “Isolate”, “Sample Name”, 
“Source”, ”NCBI BioSample Accession”, “Geographic origin”, “Habitat”, “Year of collection”, and 
“Collector”.  
 
 
 

 



19- Table S4. Description. Provide reference for reaction ID, spell out abbreviation (FVA). 
Provide error estimates for the ratio mean(clinical)/mean(environmental). Five or six digits do 
not make sense. 
 
Response:  
To avoid overly complex information per supplementary item we provided references per reaction 
only in Supplementary Table S9 (formerly S7). We rounded the numbers to two decimal places. 
Also, we speeled out ‘flux variability analysis’ in the Description sheet of Supplementary Table S5 
(formerly S4). We also added a note that references of reactions IDs can be found in Supplemen-
tary Table S9. We changed the description in Supplementary Table S5 accordingly: 
 
“The input for the model were flux variability analysis (FVA) derived flux bounds for each reaction 
that support the objective function (biomass). 
Details on reaction IDs including full equation, database and literature references are given in 
Supplementary Table S9.” 
 
 
20- Table S5 lists the presence of 600 taxa the majority of which never seen before in any CF 
patient’s airways. The dataset must be rigorously curated and checked for false positive assign-
ments and contaminations from other sources (lab, environment, other samples). 
 
Response:  
We have discussed parts of this request in several of the previous comments. We already added 
information about whether the species can be detected by other tools (Krakenuniq, Centrifuge) in 
Supplementary Table S6 (formerly S5). As we have mentioned in our paper (Line 272-275), the 
top 10 most abundant genera showed striking similarities to two recent 16s rRNA studies. Be-
sides, 574 out of 598 species (96%) that Kraken 2 detected can also be detected by KrakenUniq, 
while Centrifuge also detected 445 species. To further interrogate our results, we obtained taxa 
results from three independent airway metagenomics dataset using the same tools and parame-
ters that we used in this paper (Pust et al., 2020, Feigelman et al., 2017, Dmitrijeva et al., 2021). 
Clustering of samples by PCoA based on the beta diversity (Bray-Curtis distance) of our samples 
and other datasets showed that our dataset shared similar microbial structure and composition 
with other airway metagenomes (Fig. R3.20a below). It also turned out that the percentage of 598 
species that we detected in other datasets is very high (Pust dataset: 94.48%, Feigelman dataset: 
93.14%, Dmitrijeva dataset: 94.65%).  
  



 
Figure R3.20a: The beta diversity (bray-curtis distance) of our samples and other lung meta-

genome datasets. 
 

 
To further check for possible contaminations as requested by the reviewer, we used FEAST 
(Shenhav, et al., 2019). FEAST partitions microbial samples into their source components that 
can be used to quantify contamination or other potential source environments. We combined the 
three other CF airway datasets mentioned above and a clinical environmental dataset (Brooks, et 
al., 2017), as the potential source environments. The FEAST results (Fig. R3.20b below) indicated 
a dominant source of our samples to be CF patients’ lung microbiome and a significantly higher 
contribution of them than the environment.  

 

 
Figure R3.20b (new Supplementary Fig. S3): The FEAST result for estimating the contribution 

of potential source environments to the target dataset (i.e. our dataset) by combining three other 
lung metagenome datasets and a clinical environmental dataset (see response for description). 

The p value was obtained by Wilcoxon signed rank test. 
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To provide confidence assessments of the taxonomic assignments, we updated Supplementary 
Table S6 (formerly S5) with information on detection by different tools in sheet ‘Metagenomic 
species’ and added a new sheet ‘Detection by other studies’ showing the details of detection by 
other studies. 
 
We added the FEAST results as new Supplementary Figure S3, added its description to our 
methods section and noted the lack of negative controls in our results: 
 
Methods: “FEAST (v0.1.0, default parameters) was used to check for possible contamination and 
to estimate the contribution of potential source environments using the cystic fibrosis lung micro-
biome dataset from three published studies70–72 and a clinical environmental dataset73. Taxonomic 
assignment of the datasets followed the same pipeline used for our dataset. FEAST results (Sup-
plementary Fig. S3) indicated a dominant source of our samples was the lung microbiome of 
cystic fibrosis patients with a significantly higher contribution from them than from the clinical 
environment.” 
 
Results: “Our study lacked true negative controls, so to minimize the chances of detecting false-
positives species, we applied abundance and prevalence filters and compared detected genera 
and species using two alternative tools to ensure robustness in lung microbe detection (Meth-
ods).” 
 
 
21- Table S6. Were P values corrected for multiple testing? 
 
Response: Yes, the p values were corrected by FDR. We clarified this in the description sheet of 
Supplementary Table S8 (formerly S6): 
 
“P values and adjusted p values for multiple test correction by FDR are indicated.” 
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have sufficiently improved their paper, in response to the comments made. I enjoyed 

reading it. 

although there are some major concerns remained with the methodology itself. the main concern 

would be the number of reactions that must be added to a network to fill its gaps (previously 500 

reactions - reduced to 200 reactions after the first revision). in this regard, there are several 

available gap-filling approaches that are capable of filling networks gaps by adding less than 50 

reactions regardless of network size and the species, But all are template based and computationally 

expensive. current approach would be highly beneficial when it comes to reconstructing GEMs for 

non-model organisms lacking a previous template for gap-filling. The following comments may help 

to improve the methodology to some extent. 

 

1- a downstream workflow to assess the necessity of reactions that are added to networks to fill its 

gaps. this could be made by running a simple reaction essentiality analysis (both for Biomass 

objective function and targeted fermentation metabolites) on a set of 200 reactions that are added 

to the network. this may infer some of the mentioned reactions are not essential either for growth 

or for enhancing prediction on fermentation profile and thus may result in a reduced number of gap 

reactions. 

2- given that NADH and NADPH are the main redox cofactors of catabolic and anabolic pathways 

respectively, it might be helpful to consider a weighting score for reactions with different cofactors 

as further selection criteria, this may potentially help to reduce the number of added reactions by 

reducing the number of redundant reactions. 

3- checking the directionality of CHESHIRE-200 is a simple and doable analysis and may help to make 

the number of gaps fall into a reasonable range (less than 100). this could be done by checking 

whether any two reactions within CHESHIRE-200 have the same stoichiometry but different 

directionality. any two reactions that meet these conditions could be merged into a bi-directional 

reaction. 

 

 

Reviewer #2 (Remarks to the Author): 

 

 



I thank the authors for providing a thorough rebuttal to all the reviewers comments. The paper is 

much improved, and I acknowledge that a lot of work has gone into this, both initially and in the 

review process. I believe enough has been done, and I think the editors will be happy. 

 

Personally, I am still confused by the omnilog section of the paper. Whilst the authors have indeed 

provided more clarity on this, it actually leads to more questions, the main one being, why the 

choice of redox dye D? This is a dye specifically for yeast, not filamentous fungi. In which case, 

maybe the FF plates would have been better for this particular part of the study? 

 

 

Reviewer #3 (Remarks to the Author): 

 

NCOMMS-22-25651A 

Mirhakkak et al 

Genome-scale metabolic modeling of 252 Aspergillus fumigatus strains reveals growth dependencies 

on the lung microbiome 

 

After having studied the point-to-point response, manuscript and supplement for more than a full-

working day, I can say that I am impressed with the ambitions, scope and beauty of this work. For 

me, the strength resides in the Systems Biology part, i.e. the Pan-GEM reconstruction. However, 

unfortunately the experimental part still contains some major flaws that will backfire over time so 

that this work (as it is now) will not become a milestone of Aspergillus research. 

 

Please take my critique seriously and do not look for excuses. If you cannot fix the errors, you may 

reorganize scope and contents of the manuscript and delete some parts. 

 

Major 

 

In my opinion, the most critical part is the CF airway metagenome study: 

 

Sample collection. Lines 639 – 643: “Spontaneously expectorated sputum was collected during visits 

to the Cystic Fibrosis Center at the University Hospital Heidelberg and frozen in liquid nitrogen on 

the day of visit … Samples were frozen within 24 hr after reception at the microbiology department.” 

 



 

1.First, spontaneously expectorated sputum will always be contaminated by oral microbiota. This is 

not problematic for routine culture-dependent diagnostics of the typical CF pathogens, but it is 

inappropriate for any in-depth metagenome analysis that includes commensals. Induced sputum is 

the best compromise to minimize contamination (Weiser et al. The lung microbiota in children with 

cystic fibrosis captured by induced sputum sampling. J Cyst Fibros. 2022;21:1006-1012; Ronchetti K 

et al. The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young 

children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir 

Med. 2018;6:461-471). 

 

2.Second, the composition of microbial communities in CF respiratory secretion shifts within 

minutes. Hence, samples must be frozen asap at -80°C or liquid nitrogen, i.e. within less than a 

minute. 

 

Processing and evaluation of sequence data. Line 692-693: ‘BWA (v07.17) was used to align quality 

filtered reads to the human reference 693 genome (hg38) for removal of human-derived reads.’ 

 

3.BWA is an adequate aligner for any study on human genomic DNA, but it is inappropriate for 

metagenome studies, particularly if the reads are longer than 50 bp. The aligner will clip sequence 

reads and the generated short k-mers will give an explosion of false-positive assignments. (You may 

test this behaviour by the comparison of 50, 70, 100, 150, 200 bp long reads of the same 

metagenome dataset.) Recommendation: The primary data should be re-evaluated by another 

aligner. 

 

4.Figure 4b. I counted 18 species that have never been detected by others in the CF airway 

microbiome. In other words, the taxonomic classification of your datasets needs a rigorous re-

classification. 

 

5.Table S6. Of the 596 species I counted more than 150 implausible taxa. In addition, I noted an 

inflation of taxa among the abundant genera, probably due to false-positive alignment of 

homologous reads. The latter argument particularly applies to the genera Pseudomonas, 

Stenotrophomonas and Neisseria. You may easily curate your dataset by eliminating all microbial 

species with non-uniform read distributions. 

 

6.You write in your response to point 20: “To further interrogate our results, we obtained taxa 

results from three independent airway metagenomics dataset using the same tools and parameters 

 



that we used in this paper (Pust et al., 2020, Feigelman et al., 2017, Dmitrijeva et al., 2021). 

Clustering of samples by PCoA based on the beta diversity (Bray-Curtis distance) of our samples and 

other datasets showed that our dataset shared similar microbial structure and composition with 

other airway metagenomes (Fig. R3.20a below). It also turned out that the percentage of 598 species 

that we detected in other datasets is very high (Pust dataset: 94.48%, Feigelman dataset: 93.14%, 

Dmitrijeva dataset: 94.65%).” 

In case of the Pust dataset 94.48% of 598 species are 565 species. Pust’s original paper 

(Supplementary Table S2 published in Comput. Struct. Biotechnolog. 2021, 20:176-186), however, 

lists just 257 species. Please contain the inflation of species generated by false-positive alignment by 

eliminating all microbial species with non-uniform read distributions. 

 

7.I am struggling with the meaning of the ‘targeted metabolomics’ data. What do this data of amino 

acid content in the supernatant tell us about the cellular amino acid metabolism? Some amino acids 

were apparently not detected, whereas others showed high coefficients of variation. I missed the 

information about the number of biological and technical replicates. This part is probably 

dispensible. 

 

Minor 

 

8.Line 118. You mention that the first draft model included 3,233 exchange reactions, but Figure 1b 

(probably representing the final model) indicates only 239 exchange reactions. Please clarify. 

 

9.Figure 3c. The decision tree deserves some more interpretation in the text. 

 

10.Table S7. The inclusion of clinical metadata is appreciated. However, first, please explain why you 

can provide paired spirometry and BMI data for only 14 and 26 of the 40 study participants, 

respectively. The CF clinic Heidelberg receives high financial support for its patient registry; hence, 

complete data should be available. According to guidelines, spirometry is obligatory at each patient’s 

visit of the CF center. Second, and more importantly, I do not see a clinical signal of the detection of 

A. fumigatus in the patient’s respiratory secretion. FEV1 was better in 8 patients at the day of the Af-

negative sample and better in 8 patients at the day of the Af-positive sample. Likewise, BMI was 

higher in 8 patients at the day of the Af-negative sample and higher in 18 patients at the day of the 

Af-positive sample. Apparently, the investigated dataset does not show any association between Af-

status and clinical status. This observation is consistent with clinical experience that the detection of 

Af needs to be interpreted in the light of clinical symptoms and Af serology. Your text avoids any 

claims expressis verbis between presence/absence of Af and clinical status, but you should state 

more clearly in the text that Af modifies the lung microbiome, but no consequences for the host – 

 



microbe interaction can yet be deduced from your data. Your title is sexy, but evokes expectations 

that cannot be fulfilled. 

 

11.Supplementary Tables. For most tables, the number of the Table is not given in the description. 

Please rectify. 

 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have sufficiently improved their paper, in response to the comments made. I 
enjoyed reading it. 

Response: We thank the reviewer for this remark as indeed tremendous serious efforts went 
into improving the manuscript on all provided comments. 

 

although there are some major concerns remained with the methodology itself. the main 
concern would be the number of reactions that must be added to a network to fill its gaps 
(previously 500 reactions - reduced to 200 reactions after the first revision). in this regard, there 
are several available gap-filling approaches that are capable of filling networks gaps by adding 
less than 50 reactions regardless of network size and the species, But all are template based 
and computationally expensive. current approach would be highly beneficial when it comes to 
reconstructing GEMs for non-model organisms lacking a previous template for gap-filling. The 
following comments may help to improve the methodology to some extent. 

Response: We appreciate the thoughts of the reviewer towards further improvement of our 
GEMs and the comments made below. To respond to all points made, we aimed to minimize 
the presence of non-annotated reactions for gap-filling purposes in our pan-GEM. All additional 
analyses described below were based on 688 identified reactions that were included during 
refinement steps of our pan-GEM. These included 609 transport reactions between 
compartments and 79 non-genome associated reactions occurring in only one compartment 
in our pan-GEM.  

 

1- a downstream workflow to assess the necessity of reactions that are added to networks to 
fill its gaps. this could be made by running a simple reaction essentiality analysis (both for 
Biomass objective function and targeted fermentation metabolites) on a set of 200 reactions 
that are added to the network. this may infer some of the mentioned reactions are not essential 
either for growth or for enhancing prediction on fermentation profile and thus may result in a 
reduced number of gap reactions.  

Response: To accomplish essentiality analysis on the set of available gap-filling reactions, we 
performed minimal cut set analysis (MCS). MCS allowed us to not only detect single essential 
reactions, but to identify minimal sets of reactions that must occur simultaneously. By 
simulating unconstrained exchange reaction fluxes we identified 210 blocked reactions, which 
are not present in any strain GEM. We deleted these from our pan-GEM accordingly. Of note 
this step did not alter any downstream analysis with either pan-GEM or the strain GEMs. In 
addition, we identified 314 reactions involved in at least one MCS. All of these reactions were 
essential individually or together in identified MCSs with sizes greater than one. In summary, 
we could safely remove 210 out of 688 reactions by this analysis. 314 further reactions were 
individually essential, or essential as a set of reactions and were kept accordingly. The 
remainder of 164 reactions that were added during gap-filing procedures could not be 
associated to any MCS assuming hypoxic or normoxic growth conditions on otherwise 
unconstrained exchange reaction fluxes. Since we aimed to provide a flexible platform for 
A. fumigatus simulations we kept these reactions to allow for a diverse range of simulated diets 
that may be much more restricted than unconstrained media influx resulting in further diet-
specific reactions essentiality. We added this information to our results and methods section 
accordingly: 

 



Results: “After these steps we analyzed again the consistency in our pan-GEM and identified 
210 blocked reactions by flux variability analysis (FVA)18 based on relaxed flux bounds of 
exchange reactions.” 

Methods: “Next, we analyzed re-introduced non-genome annotated reactions during curation 
to identify reactions that re-introduced metabolic redundancy after all curation steps were 
done. We identified 609 putative transport reactions between compartments and 79 further 
reactions occurring in only one compartment, which we analyzed further. 210 were blocked 
based on analyzing relaxed influx through all defined exchange reaction. The remainder of 478 
reactions were analyzed for essentiality, that is, identifying reactions that require carrying flux 
to support a non-zero biomass value given relaxed metabolite influx. Towards this goal we 
conducted a minimal cut set analysis21 assuming hypoxic or normoxic growth conditions and 
otherwise again unconstrained exchange reaction fluxes. 314 reactions were individually 
essential, or essential as a set of reactions identified by MCS analysis. For 164 reactions the 
essentiality status remained unknown with relaxed exchange flux bounds and biomass 
optimization.” 

 
 
2- given that NADH and NADPH are the main redox cofactors of catabolic and anabolic 
pathways respectively, it might be helpful to consider a weighting score for reactions with 
different cofactors as further selection criteria, this may potentially help to reduce the number 
of added reactions by reducing the number of redundant reactions. 
 
Response: We investigated the 79 non-genome associated reactions occurring only in one 
compartment, whether these are identical except for co-factors. Only two pairs of two reactions 
were identical except for NAD or NADP co-factors: 

Pair 1: 

H2O [cytoplasm] + NAD(+) [cytoplasm] + L-saccharopine [cytoplasm] --> NADH [cytoplasm] + 
2-oxoglutarate [cytoplasm] + L-lysine [cytoplasm] 

H2O [cytoplasm] + NADP(+) [cytoplasm] + L-saccharopine [cytoplasm] <=> NADPH 
[cytoplasm] + 2-oxoglutarate [cytoplasm] + L-lysine [cytoplasm] 

Pair 2:  

NAD(+) [cytoplasm] + L-arogenate [cytoplasm] --> NADH [cytoplasm] + CO2 [cytoplasm] + L-
tyrosine [cytoplasm] 

NADP(+) [cytoplasm] + L-arogenate [cytoplasm] <=> NADPH [cytoplasm] + CO2 [cytoplasm] 
+ L-tyrosine [cytoplasm] 

Of note during EGC refinement efforts, we identified the reactions using NAD/NADH as 
causing a problem with their original bidirectional definition. To resolve the issue and keep the 
models viable we restricted reaction direction for both accordingly. To keep our models viable, 
and since both variants occur in the subsequently optimized strain GEMs and usage of 
NADH/NADPH did not generate major redundancies in our non-genome associated reactions, 
we kept for gap-filing purposes, both variants. We added a note to our methods mentioning 
this analysis: 

Methods: “In addition, we investigated the 79 non-transport reactions for identity in metabolite 
conversion except co-factors. We identified only two pairs of reactions that differed in the use 
of co-factors NAD/NADH or NADP/NADPH, but had different directionality due to curation of 
energy generating cycles.” 

 



3- checking the directionality of CHESHIRE-200 is a simple and doable analysis and may help 
to make the number of gaps fall into a reasonable range (less than 100). this could be done by 
checking whether any two reactions within CHESHIRE-200 have the same stoichiometry but 
different directionality. any two reactions that meet these conditions could be merged into a bi-
directional reaction. 

Response: We investigated the necessity of reactions to be present in our network by running 
the deep learning based method CHESHIRE1. To this end we used the tool to identify 200 
reactions based on similarity score and investigated whether these possess different reaction 
directionality, but are otherwise stoichiometrically identical. We identified only one transport 
reaction for CoA between the compartments cytoplasm and mitochondria. R3150 is a 
unidirectional reaction from cytoplasm to mitochondria, which originated from the consensus 
yeast model during our initial merging of multiple draft GEMs. R3369, in contrast, is a 
bidirectional reaction and was added later during our automated gap-filling procedure. We 
deleted R3150 accordingly. Of note, reaction R3369 is present in all downstream derived strain 
GEMs of A. fumigatus. 

Next to the set of reactions suggested by CHESHIRE, we investigated the remainder 
of the gap-filling reactions for the same directionality issue. Together with R3369, we identified 
35 reactions with directionality differences and otherwise stoichiometric identity. By providing 
these reactions as bidirectional reactions, we could remove 31 reactions from the pan-GEM 
and all derived strain-GEMs. We added a note to the respective methods section that we 
applied CHESHIRE to reduce redundancy in our pan-GEM and thus each derived strain-GEM: 
 
Methods: “These were kept accordingly and we removed the 210 blocked reactions from our 
generic draft pan-GEM. We finally analyzed our pan-GEM for redundant reactions using 
CHESHIRE63. We used the tool to identify 200 reactions based on similarity score and 
identified only one further internal transport reduncancy for CoA, comprising two reactions with 
different directionality and resolved this by allowing bidirectional transport. No further 
redundant reaction was identified by CHESHIRE, which concluded our refinement efforts for 
our pan-GEM.” 
 

  

 



Reviewer #2 (Remarks to the Author): 

 
I thank the authors for providing a thorough rebuttal to all the reviewers comments. The paper 
is much improved, and I acknowledge that a lot of work has gone into this, both initially and in 
the review process. I believe enough has been done, and I think the editors will be happy.  
 
Personally, I am still confused by the omnilog section of the paper. Whilst the authors have 
indeed provided more clarity on this, it actually leads to more questions, the main one being, 
why the choice of redox dye D? This is a dye specifically for yeast, not filamentous fungi. In 
which case, maybe the FF plates would have been better for this particular part of the study? 
 

Response: We appreciate the concern raised by the reviewer. In fact, during assay 
optimization, we tested and compared OD with redox dye D on the PM1 plate in two 
independent replicates with the reference strain Af293. As can be seen from Figure R2.1, the 
measured growth agrees very well between the two methods for most tested metabolites. 
Moreover, the addition of redox dye D specifically over other dyes was made after consultation 
with a Biolog company representative. These insights allowed us to use our OmniLog plate 
reader (which measures colormetric change and not OD). The OmniLog plate reader was 
specifically designed for phenotypic microarrays and can measure up to 50 assay plates at 
once, allowing us to perform our experiments at the scale we required.  

 

Figure R2.1: Comparison of OD and redox dye using the Biolog phenotypic microarray plate 
PM1 for various carbon sources.  

 



Reviewer #3 (Remarks to the Author): 

 
NCOMMS-22-25651A 
Mirhakkak et al Genome-scale metabolic modeling of 252 Aspergillus fumigatus strains reveals 
growth dependencies on the lung microbiome 

 
After having studied the point-to-point response, manuscript and supplement for more than a 
full-working day, I can say that I am impressed with the ambitions, scope and beauty of this 
work. For me, the strength resides in the Systems Biology part, i.e. the Pan-GEM 
reconstruction. However, unfortunately the experimental part still contains some major flaws 
that will backfire over time so that this work (as it is now) will not become a milestone of 
Aspergillus research. 

 
Please take my critique seriously and do not look for excuses. If you cannot fix the errors, you 
may reorganize scope and contents of the manuscript and delete some parts. 

Response: All the suggestions from this reviewer in the first round were implemented to 
improve the quality of our manuscript. Running the annotation tools Centrifuge, KrakenUniq 
and EukDetect were suggested by the reviewer and the results were included in the revised 
version. Additional methods like FEAST were tested to support the microbiome annotation. It 
seems that the substantial additional analyses and a 30+ pages long point-by-point response 
during our revision to answer all reviewer concerns including the ones of reviewer 3 were seen 
by this reviewer as “excuses” but our efforts have been acknowledged by two reviewers who 
were impressed and happy by our revision. We continued in this second revision improving 
the manuscript by adding new analysis based on the reviewer’s recommendations (see below) 
and we remain optimistic that our updated results would be appreciated. 

 

 
Major 
 
In my opinion, the most critical part is the CF airway metagenome study: 

Sample collection. Lines 639 – 643: “Spontaneously expectorated sputum was collected during 
visits to the Cystic Fibrosis Center at the University Hospital Heidelberg and frozen in liquid 
nitrogen on the day of visit … Samples were frozen within 24 hr after reception at the 
microbiology department.” 

1.First, spontaneously expectorated sputum will always be contaminated by oral microbiota. 
This is not problematic for routine culture-dependent diagnostics of the typical CF pathogens, 
but it is inappropriate for any in-depth metagenome analysis that includes commensals. 
Induced sputum is the best compromise to minimize contamination (Weiser et al. The lung 
microbiota in children with cystic fibrosis captured by induced sputum sampling. J Cyst Fibros. 
2022;21:1006-1012; Ronchetti K et al. The CF-Sputum Induction Trial (CF-SpIT) to assess 
lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally 
controlled interventional trial. Lancet Respir Med. 2018;6:461-471).  

Response: We agree with the reviewer that it is important to consider oral microbiota 
contamination for both spontaneously expectorated sputum and induced sputum, but disagree 
that induced sputum can always minimize contamination. To check for the level of possible 
oral microbiota contamination, we conducted the FEAST (Shenhav, et al., Nature Methods, 
2019)2 analysis as in the first revision and found out: (1) when using the dataset from 

 



Feigelman et al. (2017)3, where both induced sputum and spontaneous sputum were used, 
the contribution of oral microbiome was significantly higher in induced sputum samples than in 
spontaneous sputum samples (see Figure R3.1a below); (2) when comparing the contribution 
of oral microbiome in our samples against the induced sputum samples published in a Nature 
Publishing Group journal (Yan et al, Nature Microbiology, 2022)4, our samples had significantly 
lower contamination from oral microbiome (p=0.05, see Figure R3.1b below). 

Moreover, both, Weiser et al. (2022) and Ronchetti et al. (2018), focus on investigating 
the best sampling technique for young children and compare BAL with induced sputum, the 
latter being the more tolerable and thus preferred method5,6. However, the majority of our 
samples were not derived from patients <10 years, since it was not our aim to identify the best 
sampling technique in children. The samples obtained for this study are part of a study-cohort 
comparing NGS diagnostic to gold standard culture. Expectorated sputum is the most common 
sample from the lower airway in microbiological diagnostics in cystic fibrosis. All visits were 
routine visits and therefore induction was not required. Furthermore, other studies have shown 
that the microbiome of induced sputum and expectorated sputum are similar and are both 
suitable for microbiome studies3,7,8, as being applied in studies recently published in prestigious 
journals from the Nature Publishing Group (Aogáin et al, Nature Medicine, 2021). 
 

 

 
Figure R3.1: FEAST results using showing source proportion of oral microbiome. a) data from 
Feigelman et al., 20173. b) data from Yan et al., 20224. 
 
 

 
2.Second, the composition of microbial communities in CF respiratory secretion shifts within 
minutes. Hence, samples must be frozen asap at -80°C or liquid nitrogen, i.e. within less than 
a minute. 

Response: In our study, flash freezing on site was not possible and would have rendered 
culture impossible for determining A. fumigatus colonization. Performing necessary 
work/experiments before freezing the samples was also seen in another study into airway 
microbiome via sputum sampling (Yan et al., Nature Microbiology, 2022)4. Furthermore, in 
another study published in an NPG journal (Aogáin et al, Nature Medicine, 2021)9, transport of 
specimens was also involved which was completed within 4 hours instead of minutes. We 
appreciate that it is ideally the best practice to freeze samples as soon as possible. Yet 
realistically this is not achievable and next to our encouraging FEAST results it has been 

 



sufficiently shown that sending samples within hours up to a day followed by immediate 
freezing in liquid nitrogen is an adequate and feasible compromise for microbiome studies.  

 

 
Processing and evaluation of sequence data. Line 692-693: ‘BWA (v07.17) was used to align 
quality filtered reads to the human reference 693 genome (hg38) for removal of human-derived 
reads.’  
 
3.BWA is an adequate aligner for any study on human genomic DNA, but it is inappropriate for 
metagenome studies, particularly if the reads are longer than 50 bp. The aligner will clip 
sequence reads and the generated short k-mers will give an explosion of false-positive 
assignments. (You may test this behaviour by the comparison of 50, 70, 100, 150, 200 bp long 
reads of the same metagenome dataset.) Recommendation: The primary data should be re-
evaluated by another aligner. 

Response: We respectfully disagree with the reviewer that BWA is inappropriate for 
metagenome studies. There are many pipelines and numerous recent studies of 
metagenomics that use BWA to remove host reads as we did10–12. A recently published 
protocol article in Nature Protocols by Lu et al. (2022) also stated that the Bowtie 2 tool used 
to filter host reads can be replaced with similar read alignment tools such as BWA-MEM or 
minimap213. 
 Furthermore, Bush et al. (2020) compared the methods for detecting human reads in 
metagenomic sequencing datasets and show that the most sensitive methods of human read 
detection is BWA14. For our study of airway microbiome, BWA is thus more than appropriate 
for detecting human reads. 
 

4.Figure 4b. I counted 18 species that have never been detected by others in the CF airway 
microbiome. In other words, the taxonomic classification of your datasets needs a rigorous re-
classification. 

Response: Following the reviewers’ suggestions, we used raspir, which is also used in the 
Wochenende pipeline, to flag and eliminate the microbial species with non-uniform read 
distributions15,16. As a result, we retained only raspir-confirmed 200 species in our dataset and 
updated all results in our manuscript. We then constructed a new network using raspir-
confirmed species (Figure 4b), and found that module 3 is significantly correlated with Valine, 
Phenylalanine and Tryptophan related pathway, as well as with FEV1. Therefore, our main 
conclusion for network analysis remains the same: “The associated metabolic functions 
enriched in differential correlation microbial modules pinpointed again towards amino acid, 
particularly aromatic amino acid pathways, but also fatty acid, nitrogen and sulfur metabolic 
pathways, suggesting that lung microbiome metabolic activity is reshaped in the presence of 
A. fumigatus”. This also demonstrates the robustness of our network analysis.  
 In addition, we also examined whether the species in the network (n=124) have been 
detected by previous studies into CF airway microbiome (Pust et al., 2020, Feigelman et al., 
2017, Dmitrijeva et al., 2021)3,17,18. We obtained taxa results from these three independent 
airway metagenomics datasets using the same tools and parameters as used in our study 
(including raspir). From the 124 species, 89 of them (72%) were also found in at least one of 
those studies (Figure R3.4a); for the remaining 35 species, 12 were able to colonize the airway 
as indicated by culture studies while the final 23 were also detected in the human airway 
microbiome of COPD patients (Yan et al., Nature Microbiology, 2022)4. 

 



 

Figure R3.4a: Comparison of taxa used in our network analysis and those detected in three 
independent airway metagenomics datasets3,17,18.  
 
 Notably, while our study has a unique set of 35 species (28.2% of total 124) that have 
not been detected by those 3 studies, we found this is common to each study/cohort (see 
Figure R3.4b). For example, the study by Dmitrijeva et al. (2021) also contains a unique set of 
49 species (28.5% of total 172). 
 

 

Figure R3.4b: Comparison of taxas detected in three independent airway metagenomics 
datasets3,17,18.  
 
5.Table S6. Of the 596 species I counted more than 150 implausible taxa. In addition, I noted 
an inflation of taxa among the abundant genera, probably due to false-positive alignment of 
homologous reads. The latter argument particularly applies to the genera Pseudomonas, 
Stenotrophomonas and Neisseria. You may easily curate your dataset by eliminating all 
microbial species with non-uniform read distributions.  

Response: Following the reviewers’ suggestions, we used raspir to eliminate the microbial 
species with non-uniform read distributions and updated our taxonomic results (updated Table 
S6). Based on the curated dataset (by using raspir), the top 10 abundant species and genera 
are highly similar to our previous results, with 8 out of 10 abundant genera being the same and 
all top 10 abundant species being exactly the same. For the three genera mentioned by the 
reviewer, Pseudomonas and Stenotrophomonas were excluded while Neisseria remained in 
the top-10 list. Moreover, consistent with the previous results, we did not observe a significant 
difference in alpha or beta diversity. We adapted our methods sections accordingly: 

 



“To further control false positive rate, raspir(v1.0.2)30 was used to support our Kraken 2 results. 
Only the species that can be detected in at least one samples by raspir were kept 
(Supplementary Table S6).” 

6.You write in your response to point 20: “To further interrogate our results, we obtained taxa 
results from three independent airway metagenomics dataset using the same tools and 
parameters that we used in this paper (Pust et al., 2020, Feigelman et al., 2017, Dmitrijeva et 
al., 2021). Clustering of samples by PCoA based on the beta diversity (Bray-Curtis distance) 
of our samples and other datasets showed that our dataset shared similar microbial structure 
and composition with other airway metagenomes (Fig. R3.20a below). It also turned out that 
the percentage of 598 species that we detected in other datasets is very high (Pust dataset: 
94.48%, Feigelman dataset: 93.14%, Dmitrijeva dataset: 94.65%).” 
In case of the Pust dataset 94.48% of 598 species are 565 species. Pust’s original paper 
(Supplementary Table S2 published in Comput. Struct. Biotechnolog. 2021, 20:176-186), 
however, lists just 257 species. Please contain the inflation of species generated by false-
positive alignment by eliminating all microbial species with non-uniform read distributions. 

Response: As stated in our response to comment 4-5, we have updated the taxonomic 
profiling result after using raspir to flag false-positive alignments. Now we retained only raspir-
confirmed 200 species in our dataset, which still showed a high degree of overlap with the Pust 
et al. dataset18 as was reported in https://github.com/mmpust/airway-metagenome-infants. 

After obtaining taxa results from it and two further independent airway metagenomics 
datasets using the same tools and parameters as used in our study (including the use of 
raspir), the ratio of overlap species remains high, despite each study showing a unique set of 
identified taxa (as already detailed out above in comment 4, Figure R3.6). 
 

 

Figure R3.6: Intersection of our taxonomic profiling with data from Pust et al. (2020)18. 

 

 
7.I am struggling with the meaning of the ‘targeted metabolomics’ data. What do this data of 
amino acid content in the supernatant tell us about the cellular amino acid metabolism? Some 
amino acids were apparently not detected, whereas others showed high coefficients of 
variation. I missed the information about the number of biological and technical replicates. This 
part is probably dispensible. 

Response: One of our findings when we reconstructed the 252 strain-specific models was the 
high variability observed in the amino acid potential (see section “A. fumigatus strains show 
notable accessory reaction content”). Therefore, we cultivated 20 A. fumigatus strains on 
A. fumigatus minimal media. By acquiring and analyzing targeted amino acids found in the 
resulting supernatants (as a proxy of amino acid metabolism) after 24 hr, we found a 

 



considerable variability of metabolites that reflect the metabolic variability of at most 40% 
shared metabolic reactions across all strain-GEMs. There were performed during our last 
revision as requested by one reviewer, and we added this information to Supplementary Table 
S4 and in our results: 

“The large variability among strains in amino acid metabolism was confirmed by cultivation and 
targeted metabolomics profiling of 20 A. fumigatus strains (Supplementary Table S4).” 

 
 

Minor 
 
8.Line 118. You mention that the first draft model included 3,233 exchange reactions, but 
Figure 1b (probably representing the final model) indicates only 239 exchange reactions. 
Please clarify. 

Response: The draft model was generated by merging the Aspergillus models reconstructed 
by the CoReCo pipeline19. These models originally contain exchange reactions for every 
compound in the network. Therefore, we started with a model containing 3233 exchange 
reactions. However, after the model curations including the model adjustment to the 
phenotypic growth data, we ended up with 239 exchange reactions and removed the rest which 
are not necessary with respect to our collected data. We clarified this in the methods section: 

“Of note, the high number of initial exchange reactions originated from models created with the 
CoReCo pipeline, which includes an exchange reaction for each defined metabolite by default.” 

 
 
9.Figure 3c. The decision tree deserves some more interpretation in the text. 

Response: We extended our description in the text as follows: 

“Specifically, the ability to add sulfur to methionine as well as the absence of the ability to 
convert selenocystathione to selenocysteine or tryptamine to Indole-3-acetaldehyde appeared 
a characteristic of environmental strains, which in part was not present in clincal strains (Fig. 
3c). This may hint to altered Thioredoxin levels, which have been linked to the fungus' redox 
homeostatis before27.” 

 
 
10.Table S7. The inclusion of clinical metadata is appreciated. However, first, please explain 
why you can provide paired spirometry and BMI data for only 14 and 26 of the 40 study 
participants, respectively. The CF clinic Heidelberg receives high financial support for its 
patient registry; hence, complete data should be available. According to guidelines, spirometry 
is obligatory at each patient’s visit of the CF center. Second, and more importantly, I do not 
see a clinical signal of the detection of A. fumigatus in the patient’s respiratory secretion. FEV1 
was better in 8 patients at the day of the Af-negative sample and better in 8 patients at the day 
of the Af-positive sample. Likewise, BMI was higher in 8 patients at the day of the Af-negative 
sample and higher in 18 patients at the day of the Af-positive sample. Apparently, the 
investigated dataset does not show any association between Af-status and clinical status. This 
observation is consistent with clinical experience that the detection of Af needs to be 
interpreted in the light of clinical symptoms and Af serology. Your text avoids any claims 
expressis verbis between presence/absence of Af and clinical status, but you should state 
more clearly in the text that Af modifies the lung microbiome, but no consequences for the host 

 



– microbe interaction can yet be deduced from your data. Your title is sexy, but evokes 
expectations that cannot be fulfilled. 

Response: The missing data from the clinical report were missing due to the non-inclusion in 
the digital database. The data were now retrieved from the paper documents. BMI is now 
available from 57/80 visits; spirometry is available for 77/80 visits. The missing values for the 
spirometry are due to the inability to perform the spirometry at the time of the visit. The new 
data have been added and corrected in the manuscript. We agree with the reviewer that 
A. fumigatus infection should be validated by serology. Yet our study aimed to discover the 
impact of A. fumigatus presence on the colonisation of the lung microbiome. Therefore, we did 
not dissociate infection from colonization and unified our description to A. fumigatus 
colonisation throughout our manuscript. 

11.Supplementary Tables. For most tables, the number of the Table is not given in the 
description. Please rectify. 

Response: We added the table numbers of each Supplementary Table in its respective 
description sheet.  
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I am pleased to acknowledge the authors' significant efforts in addressing the comments made 

during the previous review process. The manuscript has been substantially improved, and I 

commend the authors for their thoroughness and dedication. Their work undoubtedly contributes to 

the field and holds great potential for impacting related research areas. Their study holds great 

potential for advancing our understanding of the organism's metabolism. The work is significant, 

compares well to the established literature, supports the conclusions and claims made, and meets 

the expected standards in the field. Therefore, I strongly recommend its publication. 

 

 

Reviewer #2 (Remarks to the Author): 

 

I personally think the paper is much improved from the initial reading months ago - it is certainly 

clearer and easier to read (making it more enjoyable). 

 

I don't think my previous comments regarding making the omnilog section clearer have really been 

addressed though. I mentioned why use the redox dye and not FF plates. I appreciate that this was 

after consultation with a representative from the omnilog company, and the comparison to OD has 

been done, but doesn't address my original comment of why not use FF plates, which are specific for 

filamentous fungi (as currently recommended on omnilog website)? Does the redox dye get 

metabolised by the fungi and therefore influence result? 

 

I appreciate re-doing this experiment could be costly (both time and financially) so maybe 

mentioning in the discussion that this is a consideration. Or maybe it's an editorial decision to do an 

additional experiment just to check redox dye does not differ from FF plate. 

 

 

Reviewer #4 (Comments to the editors. Keep confidential.) 

 

Dear editors, 

 



 

Below please find my opinion regarding Reviewer #3's comments and the author's response. 

 

Major critique 1 - sample collection in not induced sputum. 

The studies about induced sputum have been published to show this as a reasonable alternative to 

bronchoalveolar lavage in understanding the lung microbiome. Sputum likely has contamination of 

upper airway flora (see Jorth et al, Cell Reports 2019, PMID 31018133; Lu et al, mSystems 2020, 

PMID 32636336). The influence of this on microbiome determination remains debated (see two 

prior articles). However, this is true for both induced and spontaneously expectorated sputum. Thus, 

here I would agree with the authors. 

 

Major critique 2 - sputum samples require immediate freezing. 

Here, I again agree with the authors. Lipuma and collegues have published a number of articles using 

DNA isolated from samples kept for up to a month at 4 degrees, and have not seen significant 

variation in results (Caverly et al, Ann Am Thorac Soc 2019, PMID 31415187 as an exemplar). 

 

Major critique 3 - BWA is inappropriate for metagenomic studies. 

BWA has been published as a tool used in the metagenomic analysis of the human microbiome. No 

tool has been clearly established as the gold standard at this point, and it is unlikely that the aligner 

would be a large confounding factor (Miossec et al., PeerJ 2020, PMID 32864214). I would again side 

with the authors. 

 

Major critiques 4-6 - the authors report implausible taxa. 

I agree with the reviewer that low level taxa in a dataset that have not been previously reported are 

likely not truly present in the sample. However, this is the nature of the bioinformatic tools we have 

available at the moment. I think the authors have appropriately addressed the reviewer's concerns 

in doing their best to control for these factors and present the cleanest data possible. 

 

Major critique 7 - addressed already. 

 

Based on these assessments, I would recommend publication of this manuscript. 

 



Point by point response 

Reviewer #2 

 

I personally think the paper is much improved from the initial reading months ago - it is certainly 
clearer and easier to read (making it more enjoyable). 

Response: We are grateful and appreciate the reviewer acknowledges our efforts to improve 
our manuscript. 

 

I don't think my previous comments regarding making the omnilog section clearer have really 
been addressed though. I mentioned why use the redox dye and not FF plates. I appreciate 
that this was after consultation with a representative from the omnilog company, and the 
comparison to OD has been done, but doesn't address my original comment of why not use 
FF plates, which are specific for filamentous fungi (as currently recommended on omnilog 
website)? Does the redox dye get metabolised by the fungi and therefore influence result? 

Response: We appreciate the reviewer’s continued attention to the issue regarding the use of 
the Omnilog section. Upon further investigation, we believe it is a miscommunication regarding 
the products being discussed and utilised in this study. The confusion appeared to arise from 
the fact that we and the reviewer are referring to two different Biolog products. 

We believe that the reviewer is referring to the Biolog "FF Filamentous Fungi 
Identification Test Panel.” This is a single plate designed for the identification of fungi based 
on their growth patterns on some selected substrates. However, in our study, we employed 
the Biology Phenotypic Microarray plates, which consist of a series of 25 plates designed for 
testing various metabolic and chemical sensitivity traits (we used plates PM1-4). Of note, the 
Phenotypic Microarray plates we used do not contain the redox dye, while the FF ID plates do. 
Consequently, we followed the manufacture’s protocol for using the PM plates with filamentous 
fungi, including resuspending conidia in FF media and adding redox dye to allow measurement 
in the Omnilog colormetric plate reading device.  

We apologize for any confusion caused by the lack of clarity in our previous response. 

 

I appreciate re-doing this experiment could be costly (both time and financially) so maybe 
mentioning in the discussion that this is a consideration. Or maybe it's an editorial decision to 
do an additional experiment just to check redox dye does not differ from FF plate. 

Response: We clarify our methodology further in the respective methods section of the 
phenotypic microarrays as follows: 
“Phenotypic microarrays were performed using Biolog Phenotypic Microarray plates PM1, 
PM2, PM3, and PM4 (Biolog Inc., Hayward, CA, USA) prepared following the manufacturer’s 
protocol for filamentous fungi, including resuspending conidia in filamentous fungi (FF) media 
and the addition of 0.16 ml of Biolog Redox Dye D to the master mix of each plate to quantify 
fungal metabolic activity. By using PM1-PM4 we could investigate 379 different growth 
conditions rather than only 95 as available with Biolog’s FF plate (Fungi Identification Test 
Panel).”  

 


	': Genome-scale metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome


