Supplementary Information

Insertion sequence transposition inactivates CRISPR-Cas immunity

Yong Sheng,^{1,4} Hengyu Wang,^{1,4} Yixin Ou,^{1,2} Yingying Wu,^{1,3} Wei Ding,¹ Meifeng Tao,^{1,2} Shuangjun Lin,^{1,2} Zixin Deng,^{1,2,*} Linquan Bai,^{1,*} and Qianjin Kang^{1,2,*}

¹State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

²Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China

³National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.

⁴These authors contributed equally

*Corresponding authors. E-mails: qjkang@sjtu.edu.cn (Q.J.K.),

bailq@sjtu.edu.cn (L.Q.B.) and zxdeng@sjtu.edu.cn (Z.X.D.)

Supplementary Figures

Figure S1. Identification of naturally occurring transpositions of ISs into cas genes

based on ISfinder database. All 28 identified transposition events are shown above.

Each IS element in the figure represents a unique IS type.

AE006641.1 1563182 1570359	cmr4	ISNCY		cas10	<u>></u>	AE008691.1 2523470_2535849	cmr4 cm	r3 cmr1 csx1		iS110 (ca	s10
	2	2000	4000		6000		2500	5000	7500	10000	12500
AP013042.1 1077113 1082875	cas1	IS256	X	cas9		AP019755.1 1469613 1478683	Cas1 cas5	cas7 cas6 cas6	²² cse1	cas3	S5 Cas3a
	1000	2000	3000	4000	5000		0	2500	5000	7500	
CM001022.1 290802_304411	cas1 Cas	s9 IS2	21		(kcas1	CM001226.1 3101421_3111720	Cas1 Com6	IS3 (cs	m5 (csm4 (csm3)	cas10	cas6
	ò	5000		10000			0 2	2500	5000	7500	10000
CP000943.1 1934813_1943605	cas3a	IS30 cast	3) cas5c	cas8c)	cas7c cas1	CP002033.1 1394941_1404260		cas7c cast	Cassc IS2	256 cas	:3
	0 3	2000	4000	6000	8000		0	2500	5000	7500	
CP002539.1 57070_68517	cse1 X	IS4 cse	e2 (IS982	cas7)cas5)c	as6 cas1	CP002858.1 1431374_1443414	(csm4 {csm3	IS5 〈	cas10	cas6	(cas1
		5000	7500	1	0000		2500	5000	7500	10000	
CP007156.1 454743_465440	cas1 cas6 ca	.s5 (cas7 (cse2	cse1	ISL3	Cas3a	CP007586.1 778805_785993		cas9	X	S3 ca	151)
	0 25	500	5000	7500	10000		0	2000	4000		6000
CP009709.1 2406546_2411440	csf1 >	IS110		csf2	csf3	CP016786.1 964810_974540	cas1	as4) IS1182	case	a1b2 cas7b	2 cas5b2
	0 1	1000	2000	3000	4000		0	2000	4000	6000	
CP017844.1 2351935_2360926	cas3	C:	se1) 🗠 Ca	as7) ===> IS	1 cas1	CP018995.1 464919_474829	cas3a> I	S3 cas3	cse1 🔤	cas7 cas5 case	e) cas1
	0	2500	5000	-	7500		0	2500	5000	7500	10000
CP023258.1 3114540_3124450	cas1 cas6 ca	s5 (cas7 🚧	cse1	cas3	S3 (cas3a	CP025840.1 2918723_2928633	cas3	Cse	1) cas7)	X IS3	6 cas1
	0 2	2500	5000	7500	1000	00	0	2500	5000	7500	10000
CP025851.1 1457471_1461436	- cas1	cas6	IS	1 < ca	s3a	CP026831.1 722044_731522	cas3	csei	 cas7)	cas5)cas6)cas1)	IS5
	10	00	2000	3000	4000		0	2500	5000	7500	
CP027319.1 1688978_1696230	<pre>cas1 (cas</pre>	56 IS3		Ca:	s 3	CP027388.1 4944772_4954660	cas3	cse1	IS3 🚧	cas7 cas5 cas	6 cas1
	0	2000	4000	6	000		0	2500	5000	7500	10000
CP027597.1 4204621_4214740	cas3		S3 <mark>cse1</mark>)==	cas7) cas5	cas6 cas1	CP034843.1 1021243_1032352	cas3	IS5	cse1		us cast
	0	2500	5000	7500	1000	D	0	3000	6000	9000	
CP035122.1 1478_32371		as10d	cas3	15605		CP037427.1 3673396_3680644	(<i>csm</i> 4	IS256	csm3 csm2		(cas6
	ō	10000	20	0000	30000		2000		4000	6000	
CP039845.1 395706_400635			IS4	81	csy1	CP041628.1 1974815_1984536	cas1 cas6	as5 IS30 (c	as7 (cse1		3
	1000	2000	3000	4000	500	D	Ō	2500	5000	7500	10000
CP042169.1 2430344_2439870		*	cas3	csb2	csb1	CP042909.1 1643817_1652216	cas3a 〉	IS256		csm2	csm3
	250	0	5000	7500			200	00	4000		6000
CP044315.2 314691_324579	cas3	cse1	IS3 🖂	cas7)cas5	cas6 cas1	CP044346.1 2148521_2158208	cas1 IS	5 (s7 🚧 cse1		:3
	0	2500	5000	7500	100	00	0	2500	5000	7500	
CP051716.1 1005528_1015243	cas3	IS5	cse1 >==	cas7 cas5	cast Cas1	CP055669.1 3652362_3661263	cas1 cas6	IS1 (cas5) Ca	157 🕬 CS6	<mark>∍1 ⊂</mark> a	383
	0	2500	5000	7500)		0	2500	5000	750	0
CP056842.1 990462_999117	cas3	XIS1	cse1)	cas7 cas5	casé) Cas1)	CP057838.1 1027475_1033487	cas3	> IS5	cas7 c	as5) cas6	cas1 >
	0 2	2000	4000	6000	8000		0	2000		4000	6000
CP059288.1 995851_1004221	cas3			61) cas5)c	as6 cas1	LR134176.1 2978402_2985486	cast IS	630 (cas1		cas9	
	0 2	2000	4000	6000	8000		:	2000	4000	6000	D0
LR882973.1 1070439_1078905	cas3	cse	1 🖂 📾	7)^{cas5}/ IS1	cas1	LT618776.1 2207732_2217904	cas6 <mark>cas5(c</mark>	as7 cse2 18	SL3 Cse1	cast	3
	0 2	000	4000	6000	8000		250	0 5	000	7500	10000

AP012340.1 3110047_3120966	cas1	IS3 (a	sm5 csm4 csm3	cas10	cas6	AP019551.1 1550072_1567450	- Cruel Kerred	IS1634 cm3	cmr1	with Comr4 Comr3	cas10
	0 30	000	6000	9000			0	5000	10000	150	000
AP019703.1 3443693_3453655	cas1 cas6 cas5	cas7 keekcs	<mark>e1</mark> IS3	cas	3	AP023240.1 4314949_4328179	- (200	IS3 (csy3 (cs	y2 Csy1 C	as3–cas2	cas1
	0 250	00	5000	7500	1000	D	2500	5000	7500	10000	12500
AP024237.1 3105822_3116265		0)(#54)	cas3	csb2	csb1	AP024271.1 12765_31897	cmr4	153	nr6(15701)	(IS3	cas3a
	0 250	0 5	000	7500	10000			5000	10000	1500	0
CM001227.1 3082147_3092446	cas1 csm6	IS3 ⟨csm	15 (csm4 (csm3)	cas10	cas6	CP000679.1 63753_75656	cas8a	162	IS256 [621 cas3	cas1
	0 250	0 5	000	7500	10000		ò	3000	6000	9000	12000
CP002411.1 19013_30444	cas6	cas7b3	IS607	562 (IS	256	CP002432.1 1110033_1131789	e ca	<u>s10</u>	csm5 <mark>XISL3</mark>	csx1u	
	0 20	00	4000	6000	8000		5000	100	000	15000	20000
CP003056.1 2106532_2116723	cas6	cas702) cas502	cas3) IS1182	cas1	CP005941.1 781875_789066	;	cas9	X	IS3 C	as1)
	0 25	00	5000	7500	10000		ò	2000	40	00	6000
CP007390.1 1021263_1031173	cas3a> IS3	cas3	cse1)	cas7 cas5 cas6	cas1	CP010143.1 3287218_3292477	. —(cas	1 (cas6 (c	cas5 IS	63 (cas3a
	0 25	600	5000	7500	1000	00	1	000 20	00 3000	4000	5000
CP010152.1 3454620_3459877	cas1 (c	as6 (cas5	IS3	⟨ са	<mark>Is3a</mark>	CP011271.1 3895422_3903236	, <u> </u>	cas3 X	IS701	cas3a	csb1
	1000	2000	3000	4000	5000		0	2000		4000	6000
CP012753.1 555704_565196	cas3) <u>cse1</u>	IS5 cse2 ca	s6) Cas7) cas5	cas1	CP014360.1 1372682_1384224		s3	e1) as7	cas5 IS5 cas6	cast
	0 2	500	5000	7500			0	3000	6000	9000	
CP019256.1 2687809_2697404	<u>cas3a</u> (1	S3	cse1)	se2) cas7) cas	5) cas6	CP019259.1 1449094_1459004		3 IS3	cse1	cas7) cas5) =	cas1
	0	2500	5000	7500)		0	2500	5000	7500	10000
CP022279.1 3161613 3173088	CSY3 CSY2 CS	y1 (cas3-c	as2 IS21	Casi	a cas1	CP023139.1 906565_916003	- Cé	as3	IS256 ca	S8C cas7c cas	cas1
_	300	10	6000	9000			0	2500	5000	7500	
CP023669.1 1400276_1411878	cas3 XI	S3	se1) 🛶 🖸	as7 cas5 cas6	cast	CP024955.1 2802374_2805948		cas1	IS256		cas4
	0 30	000	6000	9000				1000	2000	3000)
CP026846.1 4014078_4023792	cast cast cast	(<i>cas</i> 7 (===)	cse1	IS3 (ca	s 3	CP027234.1 1787146_1794776	-{cas1		82	cas9	
	0 25	00	5000	7500	100	00	0	2000	4000	6000	
CP027763.1 3384689_3394651	cas1 cas6 cas5	cas7 📾 (cs	<mark>e1</mark> IS3	cas	3	CP028249.1 890119_897556		cas9		< IS30	cas1
	0 250	00	5000	7500	1000	D	ò	2000	4000) 6	000
CP028370.1 3309620_3319725	cas3	<mark>}</mark> IS5∕ a	as8a1a3 cas7		as1)	CP029250.1 941894_948798	cas5c	cas8c	cas7c)	24 Cas1	S30
	0 25	00	5000	7500	10000)	Ō	2000	D	4000	6000
CP029687.1 966535 973133	cas3a IS1	CS62	S1 cas7	cas5 cas6	cas1 >	CP031349.1		cas6 cas5	S3	Cas3	
000000_070100	0	2000	4000		6000	0120110_0100101	0	2000	4000	600	0
CP034309.1 740496_746312		cas9		cas1 IS	3	CP034935.1 3578257_3588263	Case Cas	5 (cas7 (cse2	IS3 Xcse1	cas3 IS1	(cas3a
	Ö	2000		4000				2500	5000	7500	10000
CP038281.1 1381078_1391862	cas1 cas6	cas5	IS30(cas7	Kcse2 K CS	ə1	CP041944.1 2114835_2120428	-	cas9		ast X IS3	
	0 2	000	4000	6000			Ó	1000	2000 30	00 4000	5000
CP043739.1 1044651_1054561	cas3a > IS3	cas3	cse1)==>	cas7 cas5 case	cas1	CP047571.1 972829_981977	, <mark>cas3e</mark> X [S3	cse1 cset	Cas7 (285) (285) (28	cas1
	0 25	600	5000	7500	1000	00	ò	2500	5000	750	0
CP058954.1 753094_761752		156	IS3	cas10)	csm3	CP065383.1 2043741_2054066	cas8a1	b2 cas7b2 cas80	IS21	cas3	cas1
	0	2000	4000	60	00		0	2500	5000	7500	10000

AP008937.1 1393892_1403207	Cas1 Cas4 Cas7c C	as8c (as5c IS256	6 cas3	AP008937.1 805003_815530	cas3	> IS256 d	se1 🚧 casī	cas5 cas6 cas1
	0 2500	5000	7500		0 2	500 5	5000 7	500 10000
AP018824.1 2275309 2284600	cas1) cas3-cas	<mark>52</mark>) csy1 csy.	2) csy3 > IS30 >	AP019189.1 1099594 1109020	<i>cas3a</i> ∕IS1	cas3	cas7	cas5 cas6 cas1
	0 2500	5000	7500		0	2500	5000	7500
AP021879.1 2819669_2833771		cas702 cas8a1b2	zed (Cas1	AP023239.1 296766_306207	cas3	N IS110	cas8c	cas7c) cas4) Cas1
	0 500	10 10	000		0	2500	5000	7500
CP001101.1 2332460_2342625	IS1380 cas	3 Cse1 and a	6 cas7 cas5 cas1	CP002033.1 805673_816205	cas3) IS256 0	se1) casi	cas5 cas6 cas1
	0 2500	5000	7500 1000	D	0 2	500 5	5000 7	500 10000
CP002552.1 2939010_2944939	cas1 IS5		as9	CP007265.1 2316424_2326334	cas3a IS3	cas3	cse1 as	cas5 cas6 cas1
	2000	4000	6000		0 2	500	5000	7500 10000
CP007391.1 1111702_1121612	cas3a> IS3 cas	3) cse1 a	as7 ass case cas1	CP007587.1 778513_785702	_	cas9	X IS3	cas1)
	0 2500	5000	7500 100	00	0	2000	4000	6000
CP011410.1 3649275_3657973	cas3 cas5c ca	s8c ass7c	63 ass) cas1)	CP012911.1 1374329_1380520	cas1	ISL3	cas	9
	2000	4000 6000	0 8000			2000	4000	6000
CP018109.1 3035030_3044791	Cas1 cas6 cas5 Cas7	ceel IS5 (csel	cas3	CP018215.1 943865_953303	Cas1 Cas4 Ca	^{287c} Cas8c	IS256	Cas3
	0 2500	5000	7500 1000	00	0 2	500	5000	7500
CP019636.1 4909071_4926413	cas6	S110 IS110 IS110	csx10 (cas10	CP022912.1 1159630_1168620	cas3	cse1) IS1 (<i>cas1</i>)
	0 5000	10000	15000		0	2500	5000	7500
CP024260.1 4083521_4092512	cas3	cse1 cas7	∞∞) IS1) cas1 >	CP024659.1 3428149_3435413	Cas1 (cas6	^{cas5} IS3		cas3
	0 2500	5000	7500		0 2	2000	4000	6000
CP026503.1 1240803_1248591	Cas1	IS1182	cas9	CP026834.1 1930472_1940479	cas3a IS1	cas3 cse1	X IS3 🛛 🚧	cas7 cas5 cas6
	2000	4000	6000 800	0	0	2500	5000	7500
CP028247.1 271670_279107	cast IS30	Ca	as9	CP029981.1 1386065_1395056	cas3	cse1)	IS1 cas1
	2000	4000	6000		0	2500	5000	7500
CP031916.1 4302906_4312794	cas1 cas6 cas5 cas7	🚧 (IS3 (cse1	cas3	CP032507.1 3392798_3407080		CSe1 IS3	Cas3	
	0 2500	5000	7500 1000	D	0	5000	10000)
CP039845.1 328914_338531	cas1) cas3-cas2)	IS3 cs	sy1 csy2 csy3	CP041806.1 3108948_3119247	cas1 csm6	S3 Csm5		cas10 cas6
	0 2500	5000	7500		0 250	00 500	00 750	0 10000
CP041875.1 3146233_3156532	(cas1 (csm6 (cms) IS	3 (csm4 (csm3)	cas10 (cas6	CP042606.1 4293562_4302490	cas1 cas6	IS3 X Ca	s7 ccc2 cse1	cas3
	0 2500	5000 7	7500 10000		0 :	2500	5000	7500
CP044222.1 336767_347303		S3 cse1) and cas7)	cas5 cas6 cas1	CP044345.1 1463334_1473633	Cas1 cam6	S3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	csm4 csm3	cas6
	0 2500	5000	7500 10000		0 250	00 500	00 750	0 10000
CP046311.1 1789988_1797771	Cas1	IS1182	cas9	CP051101.1 2570978_2578414	cas1	cas	3a X	IS630
	2000	4000	6000 800	0	0	1000	2000	3000
CP055945.1 4813114_4822015	cas1 cas6 IS1 cas5	cas7 cm² cse1	cas3	CP056495.1 1112294_1121650	cas3a) IS5	cas3	cse1 cse2 c	cas5 cas6
	0 2500	5000	7500		0 20	400	00 6000	8000
CP057207.1 4180674_4188477	<u>cas3</u>	IS30	cas5 cas6 cas1	CP057287.1 3651024_3659925	cas1 cas6 IS	61 (as5 (cas7	ceel csel	cas3
CP057207.1 4180674_4188477	cas3	IS30 4000	cas5 cas6 cas1	CP057287.1 3651024_3659925		61 (2855) (cas7 2500	5000	7500
CP057207.1 4180674_4188477 CP059929.1 3471797_3478663	cas3 0 2000	1530 4000 5562 (CAST) (C	(as5) (as6) (cas1) 6000 (as5) (cas6) (cas1)	CP057287.1 3651024_3659925 LR699570.1 3090968_3101267	Cas1 (cas6 15 0 (cas1 153)	61 (2005) (Cas7 2500 (csm6) (csm5	ccc2 (cse1 5000 (ccm4 (csm3) (cas3 7500 cas10 (cas6)

Figure S2. Identification of naturally occurring transpositions of ISs into *cas* **genes using a highly sensitive software pipeline, ISEScan.** A total of 163 transposition events are shown above. Each IS element in the figures represents a unique IS family.

Horizontal axes indicate the relative position of each gene or IS within the targeted genomic region.

Figure S3. Analysis of ISs engagement in 163 cases of naturally occurring transpositions of ISs into *cas* **genes.** It is important to note that certain transposition events within the analyzed cases involve the participation of multiple IS families, rather than a single IS family.

Figure S4. Naturally occurring transpositions of MITEs into *cas* **genes.** Horizontal axes indicate the relative position of each gene or MITE within the targeted genomic region.

Figure S5. ISs mediate the fitness trade-off between the benefits of acquiring plasmids and the genotoxicity induced by the type I-E CRISPR/Cas system of *E. coli* DH10B under antibiotic pressure. a Schematic of the engineered type I-E CRISPR-Cas locus of *E. coli* DH10B. The strain ActSY01 was generated by replacing the native promoters of *casABCDE12* operon and *cas3* with a constitutive promoter J23119 and an arabinose-inducible promoter (pBAD), respectively. Primer pairs P1 and P2 were designed to amplify the entire *cas* cluster of the strain ActSY01; expected amplicon sizes are shown. b In the presence of L-arabinose induction, transformation efficiencies of p15A-sgRNA::lacZ02 (control, lacking the targeting spacer for the type I-E CRISPR/Cas system), p15A-CRISPR::arpA (targeting the non-essential gene *arpA* of the strain ActSY01) and p15A-CRISPR::ftsA (targeting the essential gene *ftsA* of the strain ActSY01) into the strain ActSY01 were determined through counting CFUs per 200 ng of plasmids. Error bars denote means \pm S.D. from three biological replicates;

****, P < 0.0001, using two-tailed unpaired t-test; P = 9.03e-05, 9.03e-05 (from top to bottom). Source data are provided as a Source Data file. **c** Colony PCR screening with primer pairs P1 and P2 for IS insertions into the *cas* cluster of the 23 escapers (A01-A23). Lanes "WT", control amplicons with the strain ActSY01 template; larger PCR products suggest IS transposition events. Except for samples A8, A15, A21 and A22, IS insertions were detected within the *cas* genes of all other 19 samples. Detailed information regarding the IS types involved in transposition and their resulting TSD sequences can be found in Table S4. The experiment was conducted independently three times and yielded consistent results. Source data are provided as a Source Data file.

Figure S6. Analysis of the diversity and copy number of different insertion sequences within *E. coli* DH10B (a) and *E. coli* MG1655 (b). Each colored circle represents a specific IS family, and the circle size reflects the copy number of the IS element on the chromosome with a larger size indicating greater copy number. Except for the IS10 element, the same ISs were detected in both strains.

^a Insertion of IS1 element into the coding region of SpCas9-HF1

Figure S7. Schematic illustrations of the process for ISs insertion into the coding region of the Cas protein (a) and of the DNA rearrangements resulting from homologous recombination between two identical IS elements (b). a Transposition

example showing the insertion of IS1 into the coding region of SpCas9-HF1. IS1 is composed of the internal transposase flanked at both ends by two inverted repeats (IRL and IRR). The transposase cleaves at the target site within the coding region of SpCas9-HF1 and introduces the staggered nicks, followed by joining to the resulting singlestranded ends. Subsequently, the DNA gaps are filled by DNA polymerase, and the remaining nicks are sealed with DNA ligase, generating an 8 bp or 9 bp target site duplication around IS1 within the SpCas9-HF1 coding region. **b** Inversion, deletion, and duplication of the DNA segment resulting from recombination between two copies of the same IS element. The intervening sequence is likely inverted by homologous recombination when an IS element is inserted into the target sequence in two opposite orientations, whereas copies of the IS element in the same orientation may trigger either deletion or duplication of the intervening sequence.

Figure S8. The mere induction of Cas protein expression does not lead to noticeable growth defects in the host strains. Growth curves of the strains encoding different Cas protein variants under both IPTG-induced and non-induced conditions. Shaded areas indicate the means \pm S.D. from five biological replicates. Source data are provided as a Source Data file.

Figure S9. Identification of mutations in the CRISPR-tolerant mutants (a) and schematic illustration of the CRISPR double-nicking strategy (b). a Except for the colonies with IS insertions into the *cas* gene, all the remaining CRISPR-tolerant mutants (targeted by sgRNA::ompF) described in Figure 4c were further analyzed to determine the other factors that enabled escape from CRISPR-Cas interference. All genetic components necessary for the proper functioning of CRISPR-Cas system, including the sgRNA expression cassette, the genomic target, and the nuclease expression cassette, were sequenced by the Sanger method. Sequence analysis revealed a deletion mutation within the sgRNA expression cassettes of the mutant B1 and C6, as well as a frameshift mutation within the coding region of SpCas9-HF1 of the mutant B2, all of which led to their escape from SpCas9-HF1-mediated DSB. However, in contrast to SpCas9-HF1, the variants containing mutated nuclease domains, including

SpCas9-HF1 (D10A), SpCas9-HF1 (H840A), and SpCas9-HF1 (D10A & H840A), were unable to induce any detectable mutations which might potentially compromise CRISPR-Cas systems, indicating that they were incapable of triggering genotoxic stress. **b** The CRISPR double-nicking strategy with two pair of offset sgRNAs. The schematic depiction of the staggered DSB formation by SpCas9-HF1 (D10A) nickase in the presence of paired sgRNAs.

Figure S10. Comparison of base composition between the coding regions of SpCas9-HF1 and SpCas9-HF1-OP01 (a), and FnCpf1 and FnCpf1-OP01 (b). To determine the local base composition features within a nucleotide sequence, the coding regions of SpCas9-HF1, SpCas9-HF1-OP01, FnCpf1, and FnCpf1-OP01 were individually divided into 37, 37, 60, and 60 fragments, respectively, and the strand bias in nucleotide composition was computed for each segment. The total number of samples analyzed was indicated under each boxplot (n = 37 for SpCas9-HF1 and SpCas9-HF1-OP01; n = 60 for FnCpf1 and FnCpf1-OP01). The boxplots show medians (midlines), interquartile ranges (boxes) and ranges (whiskers).

Figure S11. Enrichment analysis of the naturally occurring transposition events of IS1 and IS10 across bacterial taxonomic groups. The number of genomes per genus in which IS1 or IS10 had been transposed is indicated by a color gradient, and the actual numbers are displayed in boxes.

Figure S12. Comprehensive comparison of various TSD motifs generated by IS1 and IS10 within all constructed *cas* genes. Naturally occurring TSD motifs are labeled with "Enrichment" in red text (in reference to their enrichment/retrieval through bioinformatics analysis), and the name of each *cas* gene from which TSD sequences were collected is marked above the corresponding sequence logo.

Figure S13. Detection of targeted indel mutations induced by NHEJ repair. The sgRNA targeting site (N20::ompF) is marked with a black rectangle, and the sequencing result from WT (without CRISPR/Cas-induced DSB) served as the control. A series of pixels was used to represent each nucleotide sequence, and the four distinct colors represent each base (A, T, C, G). Note that only the confidence intervals of sequencing results should be considered.

Figure S14. Diversity distribution of different IS families across bacterial taxonomic groups. The number of genomes per class containing a specific IS family is indicated by the color gradient from white (less) to firebrick red (more). Due to the different scales of the values within the heatmap analysis, the numbers in boxes were log-transformed (log2(x+1)) for better visualization.

Figure S15. Diversity distribution of different IS families across archaeal taxonomic groups. The number of genomes per genus containing a specific IS family is indicated by the scaled color coding. The values in boxes were log-transformed (log2(x+1)) for better visualization.

Figure S16. Distribution of different IS family counts among bacterial taxonomic groups. The boxplot diagram shows the counts per genome of each IS family across various bacterial genomes at the class level. The counts were log-transformed (log2(x+1)) for enhanced resolution, and only non-zero counts were plotted. The boxplots show medians (midlines), interquartile ranges (boxes) and ranges (whiskers). As the figure includes multiple boxplots, the number of genomes analyzed in each individual boxplot is provided in Supplementary Data 3.

Figure S17. Distribution of different IS family counts among archaeal taxonomic groups. The boxplot diagram shows the counts per genome of each IS family across various archaeal genomes at the genus level. The count distributions were plotted on a log2(x+1) scale (x-axis) for better data visualization, and only non-zero values were plotted. The boxplots show medians (midlines), interquartile ranges (boxes) and ranges (whiskers). As the figure includes multiple boxplots, the number of genomes analyzed in each individual boxplot is provided in Supplementary Data 4.

Figure S18. Diversity distribution of different IS families across viral taxonomic groups. The number of genomes per genus containing a specific IS family is indicated by a color gradient, and the numbers in boxes represent the actual values.

Figure S19. Distribution of different IS family counts among viral taxonomic groups. The boxplot diagram shows the counts per genome of each IS family across the various viral genomes at the genus level, and the horizontal coordinates represent the actual numbers. Only non-zero observations are shown. The boxplots show medians (midlines), interquartile ranges (boxes) and ranges (whiskers). As the figure includes multiple boxplots, the number of genomes analyzed in each individual boxplot is provided in Supplementary Data 5.

Figure S20. Diversity distribution of different IS families within the class Gammaproteobacteria. Heatmap analysis of the diversity distribution of different IS

 Parkan

 12
 Characteria

 13
 Characteria

 14
 Marconsubist

 15
 Characteria

 14
 Marconsubist

 15
 Characteria

 16
 Characteria

 17
 Characteria

 18
 Characteria

 19
 Characteria

 10
 Characteria

 10
 Characteria

 10
 Characteria

 10
 Characteria

 10
 Characteria

 11
 Characteria

 12
 Characteria

 13
 Characteria

 14
 Characteria

 14
 Characteria

 14
 Characteria

 14</td

families within the class Gammaproteobacteria at the genus level. The color gradient indicates the number of genomes per genus that contained the given IS family. The values in boxes were log-transformed (log2(x+1)) for greater clarity.

Figure S21. Distribution of different IS family counts among the class Gammaproteobacteria. Boxplot diagram of counts per genome for each IS family within Gammaproteobacteria genomes is shown at the genus level. On the x-axis, the counts were log-transformed (log2(x+1)), and only non-zero values were plotted. The boxplots show medians (midlines), interquartile ranges (boxes) and ranges (whiskers). As the figure includes multiple boxplots, the number of genomes analyzed in each individual boxplot is provided in Supplementary Data 6.

Figure S22. Schematic diagram of compromised defense systems resulting from naturally occurring transpositions of IS1 and IS10. All identified transposition events are shown.

Supplementary Tables

Table S1.	Primers	used in	this	study.
14010 011	1 1 111101 5	useu m	UIIIS	study.

	•
Assembly cloning of the typ	e I-E CRISPR-Cas system of <i>Erwinia amylovora</i> 7-3
EraCas-locus234-2-F	AGATCTCAGGCAGACTGCCG
EraCas-locus234-2-R	CTGCGCGTCAGACGGCATCC
EraCas-locus234-3-F	CTGCCTGTTACAAACGCTGT
EraCas-locus234-3-R	AGGTGGGCGGCAATAGTGAG
EraCas-locus234-4-F	GTGCAAGCCGTGAGCAGGCG
EraCas-locus234-4-R	AAGCTTGCCCAGTATTCTTC
T-Apr-IS10-Era-1-F	ATTATCAGCAGCACCTTGGGGAATCAAGCATGCGCACCACTGA
	GAGATCCCCTCATAAT
T-Apr-IS10-Era-1-R	TTATCATCCCCTTTTGCTGATCATGACCAATTTCTAGCCG
T-Apr-IS10-Era-2-F	CGGCTAGAAATTGGTCATGATCAGCAAAAGGGGATGATAA
T-Apr-IS10-Era-2-R	GAGCAATGTTCAAAGAAAGCTCATGAGCTCAGCCAATCGA
T-Apr-IS10-Era-3-F	TCGATTGGCTGAGCTCATGAGCTTTCTTTGAACATTGCTC
T-Apr-IS10-Era-3-R	GACGGGCATGAACCACATTACGCAGATCCGCCAGATGGATG
	TGCGCACTGATGAATCCCCTAATG
T-Apr-pBAD-1-F	CCGTCTGATAATGGAATATAACGGTCGTAAAGGGAGCTTCTCG
	TTCTCCGCTCATGAGC
T-Apr-pBAD-1-R	CGCTCATGTCTAGACGATCGTCAGCAAAAGGGGATGATAA
T-Apr-pBAD-2-F	TTATCATCCCCTTTTGCTGACGATCGTCTAGACATGAGCG
T-Apr-pBAD-2-R	CTTACCCCAATAGCGGTAATACTCAGGCTGCGAATTCATTTTT
	ATAACCTCCTTAGAG
T-EraP-pro-Ichl-F	AGGGCCGCAGATGCGACCCTTGTGTATCAAACAAGACGAACG
	CACCGGTGCAGCCTTTT
T-EraP-pro-Ichl-R	ATTGACTATCCGGTATTACCCGGCATGACAGGAGTAAAACGCG
	CGCGCAATTGAAAAAT
RT-qPCR analysis	
qPCR-Eracas3-1-F	GCGGCTATATCTACGGCAACAC
qPCR-Eracas3-1-R	GGTTCTGCATCATCGGCTTCG
qPCR-Eracse1-2-F	AGCTGCTGATCTGCCTGTTACA
qPCR-Eracse1-2-R	GCTGCTGCGGATGGTTGAGA
qPCR-Eracse2-3-F	GCCTAGCGAAGATAAGCAGCAA
qPCR-Eracse2-3-R	CACCTCGGGTTCGGCATGAATA
qPCR-Eracas7-4-F	CTGATGAGCGAGGTGGGTAACG
qPCR-Eracas7-4-R	AGAACTCCTGGGTGCCAAGATG

GCGGCTTGCCACTGTGAACA

qPCR-Eracas5-5-F	GCAGCATCAGGCGGAACATG
qPCR-Eracas5-5-R	AACTGGCGTGGTAGGTGGATT
qPCR-Eracas6-6-F	AAGCAGGCGGTGGCAGGAAA
qPCR-Eracas6-6-R	AGGCACGGGCGATGGATAACA
qPCR-Eracas1-7-F	AATGGCGTGGGCGTCGTTAC

qPCR-Eracas1-7-F qPCR-Eracas1-7-R

qPCR-Eracas2-8-F	ATGGCTGCTGGAAGTGCGTG
qPCR-Eracas2-8-R	AAACCCGACTCGCTGTTAGTGG
16sRNA-F	ACCCTTATCCTTTGTTGCC
16sRNA-R	TATGAGGTCCGCTTGCTCT
Construction of the strain ActSY0	1
T-Pcas3-aprpBAD-F	TTTGGCTTAAAAAGGGAATGTGGGTTACACGAAGGGTAACTCG
	TTCTCCGCTCATGAGC
T-Pcas3-aprpBAD-R	TTTTCCCCAGTAATGGCATATATATTTAAAAGGTTCCATTTTT
	ATAACCTCCTTAGAG
T-Pcas-kan23119-1-F	GAAGGGATGACCAGAGTCATCCCTGCAAATCCCAAATAAGGC
	GTCCCGGAAAACGATTC
T-Pcas-kan23119-1-R	TAGTAGCTAGCATTATACCTAGGACTGAGCTAGCTGTCAACAC
	GCTGCCGCAAGCACTCA
T-Pcas-kan23119-2-F	AGGTATAATGCTAGCTACTAGAGAAAGAGGAGAAATACTAGA
	TGAATTTGCTTATTGATA
T-Pcas-kan23119-2-R	CCAACAGTTTTTCCATTGGA
T-Pcas-kan23119-2-II-R	CGGGCGTACAGGGATCCAGT
Constructions of the <i>recA</i> -deficien	t knock-out mutants
ΔrecA-FRT-MG1655-F	GACTATCCGGTATTACCCGGCATGACAGGAGTAAAAATGATTC
	CGGGGATCCGTCGACC
∆recA-FRT-MG1655-R	GCCGCAGATGCGACCCTTGTGTATCAAACAAGACGATTATGTA
	GGCTGGAGCTGCTTC
∆recA-FRT-MDS42-F	ATGGCTATCGACGAAAACAAACAGAAAGCGTTGGCGGCAATT
	CCGGGGATCCGTCGACC
∆recA-FRT-MDS42-R	TTAAAAATCTTCGTTAGTTTCTGCTACGCCTTCGCTATCTGTAG
	GCTGGAGCTGCTTC
Constructions of CRISPR interfer	ence plasmids in the ISs trapping system
Tar-tet-F	ATCAGGTTTGTGCCAATACCAGTAGAAACAGACGAAGAATTG
	GCCAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Tar-tet-R	GCGCAACGCAATTAATGTAAGTTAGCGCGAATTGATCTGGTGG
	CCACGCCGGCTTCCATTCAGGTC
Tar-SmR-pTrc-1-F	GCACCCTCGCAAGCTCGGTTGCGGCCGCAATCGGGCAAATCTC
	GAGTTCATGTGCAGCTCCATAA
Tar-SmR-pTrc-1-R	TAATTGTCAACAGCTCATTTAGATCTCTCGAGACTGGCGAGCG
	GCATCTTAT
Tar-SmR-pTrc-2-F	ATAAGATGCCGCTCGCCAGTCTCGAGAGATCTAAATGAGCTGT
	TGACAATTA
Tar-SmR-pTrc-2-R	TTGTGCCGATATCTAAGCCTATTGAGTATTTCTTATCCATAGAT
	CCTTTCTCCTCTTTGC
SpCas9-HF1-1-F	TTCGAATTCCTTATTATGTT
SpCas9-HF1-1-R	GAAGATTTTTATCAAACGCTGTCATGCGTTCAATA
SpCas9-HF1-2-F	TATTGAACGCATGACAGCGTTTGATAAAAATCTTC
SpCas9-HF1-2-R	TCAATTTTCGAGACAACGCTCCCCAACCAGTATAA
SpCas9-HF1-3-F	TTATACTGGTTGGGGAGCGTTGTCTCGAAAATTGA

SpCas9-HF1-3-R	TATCATCATGGATCAGCGCCATAAAATTGCGATTG
SpCas9-HF1-4-F	CAATCGCAATTTTATGGCGCTGATCCATGATGATA
SpCas9-HF1-4-R	CCACATGCTTAGTGATCGCGCGAGTTTCAACCAAT
SpCas9-HF1-5-F	ATTGGTTGAAACTCGCGCGATCACTAAGCATGTGG
SpCas9-HF1-5-R	TCTAGACGATCGTTAAGCAGCCAGAGCGTAGTTTTCGTCGTTA
	GCAGCGTCACCTCCTAGCTGACT
Tar-Δλ-red-kan-F	TATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTAAG
	GCGTCCCGGAAAACGATTC
Tar-Δλ-red-kan-R	TTGCGCCTACCCGGATATTATCGTGAGGATGCGTACGTAC
	CTGCCGCAAGCACTCA
Tar-Δλ-red-kan-ssrA-F	GCGCACATTTCCCCGAAAAGTGCCACCTGCATCGATTTAGGCG
	TCCCGGAAAACGATTC
Tar-Δλ-red-kan-ssrA-R	TTGCGCCTACCCGGATATTATCGTGAGGATGCGTACGTAC
	CTGCCGCAAGCACTCA
Tar-spe-FnCpf1-1-F	AGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGAT
	CGACATTGATCTGGCT
Tar-spe-FnCpf1-1-R	AATTCTTGATAAATTGACATAGATCCTTTCTCCTCTTTGC
Tar-spe-FnCpf1-2-F	GCAAAGAGGAGAAAGGATCTATGTCAATTTATCAAGAATT
Tar-spe-FnCpf1-2-R	TTCTAAATACATTCAAATATGTATCCGCTCATGTCTAGACGATC
	GTTAGTTATTCCTAT
Tar-spe-SpCas9-HF1(D10A)-1-F	CAGCGCAATGACATTCTTGC
Tar-spe-SpCas9-HF1(D10A)-1-R	CTATTTGTGCCGATAGCTAAGCCTATTGAGT
Tar-spe-SpCas9-HF1(D10A)-2-F	ACTCAATAGGCTTAGCTATCGGCACAAATAG
Tar-spe-SpCas9-HF1(D10A)-2-R	CTGACCGCTTCCTCGTGCTT
Tar-spe-SpCas9-HF1(H840A)-1-F	CAGCGCAATGACATTCTTGC
Tar-spe-SpCas9-HF1(H840A)-1-R	CTTTGTGGAACAATGGCATCGACATCATAATC
Tar-spe-SpCas9-HF1(H840A)-2-F	GATTATGATGTCGATGCCATTGTTCCACAAAG
Tar-spe-SpCas9-HF1(H840A)-2-R	CTGACCGCTTCCTCGTGCTT
Tar-spe-F	CAGCGCAATGACATTCTTGC
Tar-spe-CasOP01-R	ATGCTATACTTTTTATCCATAGATCCTTTCTCCTCTTTGC
Tar-spe-CasOP01-1-F	GCAAAGAGGAGAAAGGATCTATGGATAAAAAGTATAGCAT
Tar-spe-CasOP01-1-R	CGGGTCATCCAGGCGAAGCGACTGTTCCCGCGAGCCAGAG
Tar-spe-CasOP01-2-F	CTCTGGCTCGCGGGAACAGTCGCTTCGCCTGGATGACCCG
Tar-spe-CasOP01-2-R	ATTGCACGGGTCTCTACCAGCTGACGTTTGATAAAACCCG
Tar-spe-CasOP01-3-F	CGGGTTTTATCAAACGTCAGCTGGTAGAGACCCGTGCAAT
Tar-spe-CasOP01-3-R	TTTCTAAATACATTCAAATATGTATCCGCTCATGTCTAGACGAT
	CGTCAGTCTCCCCCAGCTGACTCA
Tar-spe-CasOP01-ssrA-3-R	TTTCTAAATACATTCAAATATGTATCCGCTCATGTCTAGACGAT
	CGTCAGGCGGCCAGGGCGTAGT
Tar-spe-Cpf1OP01-R	AATTCCTGGTAAATCGACATAGATCCTTTCTCCTCTTTGC
Tar-spe-FnCpf1OP01-1-F	GCAAAGAGGAGAAAGGATCTATGTCGATTTACCAGGAATT
Tar-spe-FnCpf1OP01-1-R	TCAGTTCCTGTTCTTTTTCGAAGGATTATCGAGATTTTT
Tar-spe-FnCpf1OP01-2-F	AAAAATCTCGATAATCCTTCGAAAAAAGAACAGGAACTGA
Tar-spe-FnCpf1OP01-2-R	CGTAAAGCGCTTATCCTTGATCAGATCATATTCAAACACG

Tar-spe-FnCpf1OP01-3-F	CGTGTTTGAATATGATCTGATCAAGGATAAGCGCTTTACG
Tar-spe-FnCpf1OP01-3-R	TTTCTAAATACATTCAAATATGTATCCGCTCATGTCTAGACGAT
	CGTCAATTATTACGGTTCTGGA
Tar-spe-CasOP02-1-R	GCCACCATCGATGTAGCCCGCATATCCGTTTTTTGACTG
Tar-spe-CasOP02-2-F	CAGTCAAAAAACGGATATGCGGGCTACATCGATGGTGGC
Tar-spe-CasOP02-2-R	TTTACGGGTCATCCAGGCAAACCTACTGTTCCCGCGAGC
Tar-spe-CasOP02-3-F	GCTCGCGGGAACAGTAGGTTTGCCTGGATGACCCGTAAA
Tar-spe-CasOP02-3-R	TCGTATCGGTTTGTCCCGGTGTTTATTATACGCTGAAAGCAC
Tar-spe-CasOP02-4-F	GTGCTTTCAGCGTATAATAAACACCGGGACAAACCGATACGA
Tar-spe-III-R	GTGGCACTTTTCGGGGGAAAT
Tar-spe-FnCpf1OP02-1-R	ATTACGGATGCGCAGAATGTCTTCAGACGGA
Tar-spe-FnCpf1OP02-2-F	TCCGTCTGAAGACATTCTGCGCATCCGTAAT
Tar-spe-CasOP03-1-R	CGACTCTTCCAGGCGGTGAAAAAAGCTATCATCTACCTTCGC
Tar-spe-CasOP03-2-F	TTCACCGCCTGGAAGAGTCGTTTCTGGTTGAAGAGGATAAAAA
Tar-spe-CasOP03-2-R	
Tar-spe-CasOP03-3-F	
Tar-spe-CasOP03-3-R	GATIGATCCATTATCGAATGTTCGCTGTTTACGCAGC
Tar-spe-CasOP03-4-F	GCTGCGTAAACAGCGAACATTCGATAATGGATCAATC
Tar-spe-CasOP03-4-R	GIGIICITICAGAATTIGGCICCCCAGTICT
Tar-spe-CasOP03-5-F	AGAACIGGGGGGGCCAAATICIGAAAGAACAC
Tar-spe-FnCpf1OP03-1-R	AAAGAGATACAATTTACCTTGGTTCACCACC
Tar-spe-FnCpf1OP03-2-F	GGTGGTGAACCAAGGTAAATTGTATCTCTTT
Tar-spe-FnCpf1OP03-2-R	TGCCTTTTCTTTCAGTAAGAGGTTGATTTCATC
Tar-spe-FnCpf1OP03-3-F	GATGAAATCAACCTCTTACTGAAAGAAAAGGCA
Constructions of NHEJ expre	ssion plasmids
pBAD-Mm-ku-1-F	GCGGCCGCCGATCGTCTAGACATGAGCG
pBAD-Mm-ku-1-R	CCCTTCCAGATGGAGCGCATTTTTTATAACCTCCTTAGAG
pBAD-Mm-ku-2-F	CTCTAAGGAGGTTATAAAAAATGCGCTCCATCTGGAAGGG
pBAD-Mm-ku-2-R	ACTAGTTGCTTGGATTCTCACCAATA
pBAD-Ms-ku-1-F	ACATGTCGATCGTCTAGACATGAGCG
pBAD-Ms-ku-1-R	CCCTTCCAGATGGATCGCATTTTTTATAACCTCCTTAGAG
pBAD-Ms-ku-2-F	CTCTAAGGAGGTTATAAAAAATGCGATCCATCTGGAAGGG
pBAD-Ms-ku-2-R	ACTAGTTGCTTGGATTCTCACCAATA
pBAD-Bs-ku-1-F	GCGGCCGCCGATCGTCTAGACATGAGCG
pBAD-Bs-ku-1-R	AGAGAAGGAGTACGATTCATTTTTTATAACCTCCTTAGAG
pBAD-Bs-ku-2-F	CTCTAAGGAGGTTATAAAAAATGAATCGTACTCCTTCTCT
pBAD-Bs-ku-2-R	ACTAGTTGCTTGGATTCTCACCAATA
Determination of the indel mu	itations in the gene ompF
V-ompF-F	GTGCGAGCACGTTTGTCATT
V-ompF-R	CTTCGTTGGTCGTGTTGGCG
Detection of the target site du	plications
S-IS1-1-F	CGCCATTCATGGCCATATCA

S-IS1-2-F	CCTGAAGGGAAAGCTGCACG
S-IS2-1-F	CCTGTATGTGCCCGTTTCGA
S-IS2-2-F	CCGGAGAGTAACGGAATAGC
S-IS3-1-F	CCGATGCGTTCAGCAAGCTT
S-IS3-2-F	GAACACTTTATCAGCCGGGA
S-IS5-1-F	GTACCAATGCTGCATGCAGT
S-IS5-2-F	ATACGTCAGTGGGAGAGATC
S-IS10-1-F	TTGGTTGGCAGGTTACGGCC
S-IS10-2-F	GCTCAGAAACAAGGTTGGGA
S-IS150-1-F	GAGCGCGCGTAAACCAGCTT
S-IS150-2-F	CTGTTCTGCACTCTGACCAG
PCR amplifications of the con	nplete coding regions of SpCas9-HF1, FnCpf1 and their derivatives
S-univer-c&9-F	TAAGATGCCGCTCGCCAGTC
S-univer-c&9-R	CTGACCGCTTCCTCGTGCTT
Sanger sequencing for the con	nplete coding regions of SpCas9-HF1, FnCpf1 and their derivatives
S-SpCas9-HF1-1M-F	GCTGGTTTTCGCATTCCTTC
S-SpCas9-HF1-2-F	CAAATTCACTTGGGTGAGCT
S-SpCas9-HF1-3-F	CGCCAAGTTAATCACTCAAC
S-SpCas9-HF1-4-F	GGTAATCACTTTAACCTCTC
S-FnCpf1-1-F	CCCACAGGGTAAAACACTTG
S-FnCpf1-2-F	GGCAGAAGAGCTAACCTTTG
S-FnCpf1-3-F	GCAAACTTTGCGGCTATTCC
S-FnCpf1-4-F	TAAGCATCCGGAGTGGAAAG
S-FnCpf1-5-F	CTCAAAATAGCCCTTATCAAGG
S-SpCas9-HF1-OP01-1-F	CTTTTCATCCAGCTGGTGCA
S-SpCas9-HF1-OP01-2-F	CCGCACCAGATTCACTTGGG
S-SpCas9-HF1-OP01-3-F	GTACGCCCATCTGTTTGATG
S-SpCas9-HF1-OP01-4-F	CCCGCAGTGACAAAAACCGT
S-SpCas9-HF1-OP01-5-F	TGTGGGATAAAGGTCGGGAC
S-FnCpf1-OP01-1-F	GCAGCAATGATATTCCGACC
S-FnCpf1-OP01-2-F	CCGCGGTGTTGGAATACATT
S-FnCpf1-OP01-3-F	CGGCGTTATGAACAAGAAAA
S-FnCpf1-OP01-4-F	CCCGAAAAAGGAAAGCGTGT
Sanger sequencing for the sgF	RNAs and crRNAs expression cassettes
V-p15A-cm-circle-F	CAAGGCGACAAGGTGCTGAT
V-p15A-cm-circle-R	GGTAGCTCAGAGAACCTTCGA

Table S2. Plasmids used in this study.					
Plasmids	Descriptions	Source			
General plasmids					
pBluescript SK(+)	the vector backbone for cloning PCR products	Stratagene			
p15A-cm	the verctor backbone for cloning both sgRNAs and crRNAs expression cassettes	1			
pUC57-1.8K	the vector backbone for cloning NHEJ expression cassettes	Qingke ^a , General ^b			
pClone007	the vector backbone for cloning the type I-E CRISPR Cas system of <i>Erwinia amylovora</i> 7-3	Qingke ^a			
pSET152	the template plasmid for amplifying the apramycin selective marker	2			
the plasmids associated with the ty	pe I-E CRISPR-Cas system of <i>Erwinia amylovora</i> 7-3				
pClone007-EraCas01	the plasmid pClone007 containing the fragment EraCas01	This study			
pClone007-EraCas02	the plasmid pClone007 containing the fragment EraCas02	This study			
pClone007-EraCas03	the plasmid pClone007 containing the fragment EraCas03	This study			
pClone007-EraCas04	the plasmid pClone007 containing the fragment EraCas04	This study			
pClone007-EraCas05	the plasmid pClone007 containing the fragment EraCas05	This study			
pEraCas234	the plasmid pClone007 containing the fragment EraCas02, EraCas03 and EraCas04	This study			
pEraCas1234	the plasmid pClone007 containing the fragment EraCas01, EraCas02, EraCas03 and EraCas04	This study			
pEraCas	the plasmid pClone007 containing the engineered type I-E CRISPR-Cas locus of <i>E. amylovora</i> 7-3	This study			
pEraCas-IS10-Apr	derived from the plasmid pEraCas, in which the IS10 element together with the apramycin resistance marker were inserted into the coding region of <i>cas7</i>	This study			
pEraCas-IS10	derived from the plasmid pEraCas-IS10-Apr, in which the apramycin resistance marker was removed	This study			
p15A-Eraprotos	the plasmid p15A-cm containing the engineered protospacers that were designed from the plasmid p7-3	This study			
SK(+)-spe	the plasmid pBluescript SK(+) containing the spectinomycin resistance cassette	This study			
p15A-Eraprotos-spe	the plasmid p15A-Eraprotos with the insertion of the spectinomycin resistance cassette	This study			
p15A-spe	derived from the plasmid p15A-Eraprotos-spe, in which all protospacers were deleted	This study			
pEraCas-pBAD	derived from the plasmid pEraCas, in which the <i>araC</i> gene and pBAD promoter were inserted in front of <i>cas3</i> to dirve the expression of <i>cas</i> operon in the presence of L-arabinose	This study			

Table S2. Pl	lasmids us	ed in th	is study.
--------------	------------	----------	-----------

p15A-sgRNA::lacZ02	A::lacZ02 the sgRNA::lacZ02 expression cassette was cloned into plasmid p15A-cm	
p15A-CRISPR::arpA	the CRISPR array expression cassette (CRISPR::arpA) was cloned into plasmid p15A-cm	This study
p15A-CRISPR::ftsA	the CRISPR array expression cassette (CRISPR::ftsA) was cloned into plasmid p15A-cm	This study
CRISPR interference plasmids in t	the ISs trapping system	
pCas	the original vector backbone for the constructions of the CRISPR interference plasmids	Addgene # 62225
pY001	the template plasmid containing the complete coding region of FnCpf1	Addgene # 69973
pCas-tet	pCas with the insertion of tetracycline resistance marker	This study
pCasY-1	derived from the plasmid pCas-tet, in which kanamycin resistance marker together with its neighboring sequences were substituted with both spectinomycin resistance marker and pTrc promoter	This study
pCasY-2	derived from the plasmid pCasY-1, in which the complete coding region of SpCas9 was replaced with the high-fidelity SpCas9-HF1 nuclease fused with the ssrA degratation tag to its C-terminus	This study
pCasY-3-∆SIM-kan	derived from the plasmid pCasY-2, in which the λ -red expression cassette together with the ssrA degratation tag were substituted with the kanamycin resistance marker	This study
pCasY-3-ΔSIM-kan (D10A) pCasY-3-ΔSIM-kan with the mutation D10A in the coding region of the SpCas9-HF1		This study
pCasY-3-ΔSIM-kan (H840A) pCasY-3-ΔSIM-kan with the mutation H840A in the coding region of the SpCas9-HF1		This study
pCasY-3-∆SIM-kan (D10A&H840A)	pCasY-3-∆SIM-kan with the mutations D10A and H840A in the coding region of the SpCas9-HF1	This study
pCasY-3-∆SIM-kan-ssrA-PvuI	the vector backbone derived from the plasmid pCasY-3- ΔSIM-kan-ssrA, in which both the partial C-terminus of spectinomycin resistance protein coding region and the complete SpCas9-HF1-ssrA expression cassette were deleted	This study
pCasY-3-∆SIM-kan-OP01	the vector backbone pCasY-3-∆SIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the SpCas9-HF1-OP01 expression cassette	This study
pCasY-3-∆SIM-kan-OP02	the vector backbone pCasY-3-∆SIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the SpCas9-HF1-OP02 expression cassette	This study

the plasmids associated with the type I-E CRISPR/Cas system of E. coli DH10B and ActSY01

pCasY-3-ΔSIM-kan-OP03 the vector backbone pCasY-3-ΔSIM-kan-ssrA-Pvul with the insertions of both C-terminus of spectinomycin resistance protein coding region and the SpCas9-HF1-OP03 expression cassette		This study	
$\frac{1}{2} derived from the plasmid pCasY-2, in which the \lambda-redexpression cassette was substituted with the kanamycinresistance marker$		This study	
pCasY-3-∆SIM-kan-OP01-ssrA	CasY-3-ΔSIM-kan-OP01-ssrA the vector backbone pCasY-3-ΔSIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the SpCas9-HF1-OP01-ssrA expression cassette		
pCasY-3-∆SIM-kan-OP02-ssrA	the vector backbone pCasY-3-ΔSIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the SpCas9-HF1-OP02-ssrA expression cassette	This study	
pCasY-3-∆SIM-kan-OP03-ssrA	the vector backbone pCasY-3-ΔSIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the SpCas9-HF1-OP03-ssrA expression cassette	This study	
pCpf1Y-3-∆SIM-kan	the vector backbone pCasY-3-ΔSIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the FnCpf1 expression cassette	This study	
pCpf1Y-3-∆SIM-kan-OP01	the vector backbone pCasY-3-ΔSIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the FnCpf1-OP01 expression cassette	This study	
pCpf1Y-3-∆SIM-kan-OP02	the vector backbone pCasY-3- Δ SIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the FnCpf1-OP02 expression cassette	This study	
pCpf1Y-3-∆SIM-kan-OP03	the vector backbone pCasY-3-ΔSIM-kan-ssrA-PvuI with the insertions of both C-terminus of spectinomycin resistance protein coding region and the FnCpf1-OP03 expression cassette	This study	
sgRNAs/crRNAs expression plasmids			
p15A-cm-sgRNA-nonespacer	the sgRNA cassette without any spacer sequence cloned into plasmid p15A-cm	This study	
p15A-cm-sgRNA::ompF	the sgRNA::ompF expression cassette was cloned into plasmid p15A-cm	This study	
p15A-cm-sgRNA::pyrF the sgRNA::pyrF expression cassette was cloned into plasmid p15A-cm		This study	
p15A-cm-sgRNA::lpp the sgRNA::lpp expression cassette was cloned into plasmid p15A-cm		This study	

p15A-cm-sgRNA::lacZ	the sgRNA::lacZ expression cassette was cloned into plasmid p15A-cm	
the sgRNA::ompF pair 01 the sgRNA::ompF pair 01 expression cassette was cloned into plasmid p15A-cm		This study
p15A-cm-sgRNA::ompF pair 02	215A-cm-sgRNA::ompF pair 02 the sgRNA::ompF pair 02 expression cassette was cloned into plasmid p15A-cm	
p15A-cm-crRNA-nonespacer	the crRNA cassette without any spacer sequence cloned into plasmid p15A-cm	This study
p15A-cm-crRNA::ompF	the crRNA::ompF expression cassette was cloned into plasmid p15A-cm	This study
p15A-cm-crRNA::pyrF	the crRNA::pyrF expression cassette was cloned into plasmid p15A-cm	This study
p15A-cm-crRNA::lpp the crRNA::lpp expression cassette was cloned into plasmid p15A-cm		This study
p15A-cm-crRNA::lacZ the crRNA::lacZ expression cassette was cloned into plasmid p15A-cm		This study
NHEJ expression plasmids		
pUC57-1.8K-Bs-ku	the complete coding region of the Ku from the <i>Bacillus subtilis</i> 168 was cloned into the plasmid pUC57-1.8K	This study
SK(+)-pBAD-Bs-ku	the gene <i>ku</i> was amplified from the plasmid pUC57-1.8K-Bs- ku and fused together with the promoter pBAD by overlap PCR, subsequently, the overlap PCR product was cloned into the plasmid pBluescript SK(+)	This study
pUC57-1.8K-Bs-ligD	the gene <i>ligD</i> from the <i>Bacillus subtilis</i> 168, was assembled with the promoter J23119, and then cloned into the plasmid pUC57-1.8K	This study
pUC57-1.8K-Ms-ku	the complete coding region of the Ku from the <i>Mycobacterium smegmatis</i> mc ² 155 was cloned into the plasmid pUC57-1.8K	This study
SK(+)-pBAD-Ms-ku	the gene <i>ku</i> was amplified from the plasmid pUC57-1.8K- Ms-ku and fused together with the promoter pBAD by overlap PCR, subsequently, the overlap PCR product was cloned into the plasmid pBluescript SK(+)	This study
pUC57-1.8K-Ms-ligD	the gene $ligD$ from the <i>Mycobacterium smegmatis</i> mc ² 155, was assembled with the promoter J23119, and then cloned into the plasmid pUC57-1.8K	This study
pUC57-1.8K-Mm-ku	the complete coding region of the Ku from the <i>Mycobacterium marinum</i> M was cloned into the plasmid pUC57-1.8K	This study

SK(+)-pBAD-Mm-ku	the gene <i>ku</i> was amplified from the plasmid pUC57-1.8K- Mm-ku and fused together with the promoter pBAD by overlap PCR, subsequently, the overlap PCR product was cloned into the plasmid pBluescript SK(+)	This study
pUC57-1.8K-Mm-ligD	the gene <i>ligD</i> from the <i>Mycobacterium marinum</i> M, was assembled with the promoter J23119, and then cloned into the plasmid pUC57-1.8K	This study
pBs-NHEJ	the DNA cassette harboring the gene <i>ku</i> and pBAD promoter was digested from the plasmid SK(+)-pBAD-Bs-ku, and then cloned into the plamid pUC57-1.8K-Bs-ligD	This study
pMs-NHEJ	the DNA cassette harboring the gene <i>ku</i> and pBAD promoter was digested from the plasmid SK(+)-pBAD-Ms-ku, and then cloned into the plamid pUC57-1.8K-Ms-ligD	This study
pMm-NHEJ	the DNA cassette harboring the gene <i>ku</i> and pBAD promoter was digested from the plasmid SK(+)-pBAD-Mm-ku, and then cloned into the plamid pUC57-1.8K-Mm-ligD	This study

^a denoted the Beijing Qingke Biotechnology Co., Ltd.

^b indicated the General Biological System (Anhui) Co., Ltd (Anhui, China).

Strains	Descriptions	Source	
Escherichia coli			
DH10B	str. K-12 F ⁻	Invitrogen	
MG1655	K-12 F ⁻ λ^- <i>ilvG⁻rfb-50 rph-1</i>	3	
MG1655-∆recA	MG1655 strain with recA gene disrupted	This study	
MDS42	a derivative of E. coli K-12 without IS elements	4	
$MDS42-\Delta recA$	MDS42 strain with <i>recA</i> gene disrupted	This study	
GB08-red	for expression of λ -red recombination system	1	
	DH10B equipped with an exogenous E. amylovora		
SYHY01	type I-E CRISPR-Cas system in a single plasmid	This study	
	pEraCas		
	DH10B harboring an exogenous E. amylovora type I-		
SYHY02	E IS10-aborted CRISPR-Cas system in a single	This study	
	plasmid pEraCas-IS10		
SYHY01::p15A-Eraprotos-spe	SYHY01 bearing plasmid p15A-Eraprotos-spe	This study	
SYHY02::p15A-Eraprotos-spe	SYHY02 bearing plasmid p15A-Eraprotos-spe	This study	
SYHY01::p15A-spe	SYHY01 bearing plasmid p15A-spe	This study	
SYHY02::p15A-spe	SYHY02 bearing plasmid p15A-spe	This study	
SVIIV02	DH10B containing all protospacers that were designed	This study	
STH105	from plasmid p7-3		
DH10B::pEraCas	DH10B containing plasmid pEraCas	This study	
DH10B::pEraCas-pBAD	DH10B containing plasmid pEraCas-pBAD	This study	
A at SV01	DH10B harboring an engineered type I-E	This study	
ActSYUI	CRISPR/Cas system	i nis study	

Table S3. Strains used in this study.

Samples	IS type	TSD sequences	TSD length
A01	IS10	CGCAGAACA	9
A02	IS10	TGCTATGCT	9
A03	IS10	TGTCAGGCA	9
A04	IS10	TGCTATGCT	9
A05	IS5	TTAG	4
A06	IS1	ACGCCAGCG	9
A07	IS1	GGCAATGGC	9
A09	IS2	GGCAC	5
A10	IS10	TGCTATGCT	9
A11	IS10	GGCCTGGCT	9
A12	IS10	CACTCGACG	9
A13	IS5	TTAA	4
A14	IS10	CACTCGACG	9
A16	IS10	TGCTGCGCA	9
A17	IS10	CACTCGACG	9
A18	IS1	CTGGTTTCC	9
A19	IS10	GGCCTGGCT	9
A20	IS10	AGCTTCGCC	9
A23	IS10	CGCAGAACA	9

Table S4. Analysis of a total of 19 larger amplicons containing an IS element insertion into *cas* genes within the type I-E CRISPR/Cas system of the strain ActSY01.

Samples	IS type	TSD sequences	TSD length
1108-02A1	IS1	GAGATGGCG	9
1108-02A2	IS1	GATTTGCGC	9
1108-02A3	IS1	GAGATGGCG	9
1108-02A5	IS5	CAAG	4
1108-02B4	IS1	GTAACCGTT	9
1110-03A1	IS5	CTAA	4
1110-03A2	IS10	TGCTAAGTC	9
1110-03A3	IS10	TGCTAAGTC	9
1110-03A4	IS10	CACTCAACG	9
1110-03A5	IS1	GTGATTATG	9
1110-03A6	IS10	TGCTAAGTC	9
1110-03A7	IS10	CACTCAACG	9
1110-03A8	IS3	GGT	3
1110-03B1	IS10	CACTCAACG	9
1110-03B2	IS10	TGCTAAGTC	9
1110-03B3	IS10	TGCTAAGTC	9
1110-03B4	IS10	TGCCCCAAG	9
1110-03B5	IS1	AGTAACCGT	9
1110-03B6	IS10	TGCTAAGTC	9
1110-03B7	IS10	CACTCAACG	9
1110-03B8	IS10	TGCTAAGTC	9
1110-03C1	IS1	CAAGGTTC	8
1110-03C2	IS5	TTAG	4
1110-03C3	IS10	TGCTAAGTC	9
1110-03C5	IS10	CACTCAACG	9
1110-03C6	IS1	CAAGGTTC	8
1110-03C7	IS10	TGCTAAGTC	9
1110-03C8	IS10	CGCATGACA	9
1110-03D1	IS10	TGCTAAGTC	9
1110-03D3	IS3	GGT	3
1110-03D4	IS3	GGT	3
1110-03D5	IS10	TGCTAAGTC	9
1110-03D6	IS10	TGCTAAGTC	9
1110-03D7	IS1	CAAGGTTC	8
1110-03D8	IS10	CACTCAACG	9
1110-03E4	IS10	CACTCAACG	9
1110-03E5	IS3	GGT	3
1110-03E6	IS10	CACTCAACG	9
1110-03E8	IS1	GTAACCGTT	9

Table S5. Analysis of a total of 44 larger amplicons containing an IS element insertion into the coding region of SpCas9-HF1.

1110-03F1	IS5	CTAA	4
1110-03F2	IS10	AGCTCTATC	9
1110-03F3	IS10	TGCTAAGTC	9
1110-03F4	IS10	CACTCAACG	9
1110-03F5	IS10	CACTCAACG	9

Samples	Genome accession	IS type ^a
SY221	CP106998	/
SY22A1	CP107005	IS10
SY22A3	CP107004	IS1
SY22A4	CP106999	IS5
SY22A6	CP106994	IS1
SY22B1	CP107003	IS5
SY22B2	CP107000	/
SY22B3	CP106995	IS10
SY22B5	CP107001	IS2
SY22B6	CP106997	/
SY22C3	CP107002	IS2
SY22D8	CP106996	/

 Table S6. Summary of whole-genome sequencing of 11 CRISPR-tolerant mutants

and the control strain.

^a identified by PCR and Sanger sequencing.

"/" indicated that no IS element was inserted into the coding region of SpCas9-HF1 in

the given sample.

Table S7. The non-canonical length of TSD sequences generated by IS1 in our

Samples	TSD sequences	TSD length
0201-2F3	ATCAAGACGAT	11
0310-3A3	CAAATATACAACAAGGACTTTTC	23
0310-3D1	CAAATATACAACAAGGACTTTTC	23
0310-3E6	CAAATATACAACAAGGACTTTTC	23
0526-1B5	GTTTTAT	7

CRISPR/Cas-mediated ISs trapping system.

Supplementary References

- Wang, H. *et al.* ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. *Nucleic Acids Res* 46, e28 (2018).
- Bierman, M. *et al.* Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene* 116, 43-49 (1992).
- Blattner, F.R. *et al.* The complete genome sequence of *Escherichia coli* K-12. *Science* 277, 1453-1462 (1997).
- Pósfai, G. *et al.* Emergent properties of reduced-genome *Escherichia coli*. *Science* 312, 1044-1046 (2006).